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Homogenization of 3D finite photonic crystals with
heterogeneous permittivity and permeability
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We consider a heterogeneous magneto-dielectric photonic crystal and derive the so-called ‘homoge-
nized Maxwell system’ via the multi-scale method and provide ad hoc proofs for the convergence of
the electromagnetic field towards the homogeneous one using the notion of two-scale convergence.
The homogenized medium is described by anisotropic matrices of permittivity and permeability, de-
duced from the resolution of two annex problems of electrostatic type on a periodic cell. Noteworthily,
this asymptotic analysis also covers the case of photonic crystals with non-cuboidal periodic cells. We
solve numerically the associated system of partial differential equations with a method of fictitious
charges and a finite element method (FEM) in order to exhibit the matrices of effective permittivity and
permeability for given magneto-dielectric periodic composites. We then compare our results in the 2D
case against some Fourier expansion approach and provide duality relations in the case of magneto-
dielectric checkerboards. We further compute some low-frequency eigenmodes of a photonic crystal
fiber with metallic outer boundary and compare them with the eigenmodes of a corresponding effective
anisotropic waveguide, thanks to the FEM. Finally, we derive the effective properties of a 3D photonic
crystal both through classical homogenization (solving numerically two decoupled annex problems)
and Bloch wave homogenization. In the case of spherical inclusions, the latter approach amounts to
evaluating the slope of the first band around the origin on a Bloch diagram which we compute using
finite edge elements.

1. Introduction

In a sense, every material can be considered as a composite, though the individual ingredi-
ents may consist of atoms and molecules. The original objective in defining a permittivity, ε,
and a permeability, µ, was to present a homogeneous view of the electromagnetic properties
of a medium: this natural homogenization gives mesoscopic effective properties by averag-
ing a microscopic arrangement of atoms. It is only a small step to replace the atoms of the
previous microscopic structure by some mesoscopic inclusions. In crystallography, experi-
ments provide some evidence that one can still average the electromagnetic properties of the
mesoscopic structures, and define an effective permittivity εeff, and an effective permeability,
µeff: this second averaging process is called artificial homogenization. In what follows, we
consider this meso-macro homogenization process using rigorous mathematical tools of limit
analysis. However, we will concentrate here on periodic structures called ‘photonic crystals’,
although these tools can be generalized to the study of some very interesting and unusual
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654 S. Guenneau et al.

phenomena arising in the recently discovered ‘photonic quasi-crystals’ [1]. We model the
periodic structures by a unit cell Yη of characteristic dimensions η (Yη = [0, η[3). The con-
tent of the cell will define the effective response of the macroscopic finite structure. Clearly,
there must be some restrictions on the dimensions of the cell Yη. If we are concerned about
the response of the composite structure to an electromagnetic radiation of frequency ω, the
conditions should be η � λ = 2πc0

ω
, where c0 denotes the speed of light. If such conditions

were not obeyed, there would be the possibility that the internal structure of the medium could
diffract as well as refract radiation. This so-called long wavelength limit assumption ensures
that the electromagnetic wave is too myopic to detect the internal structure and in this limit an
effective permittivity and permeability is a valid concept. In this paper, we will discuss how
the diffracted field can be related to εeff and µeff.

In the last decade, advances have been made towards a better understanding of photonic
crystals (PC). Such remarkable structures prohibit the propagation of light, or allow it only in
certain directions at certain frequencies, or localize light in specified areas (PC with defaults).
These materials, which affords us complete control on light propagation, result when a small
block of dielectric material is repeated in space. The optical properties of such photonic crystals
depend on the geometry of the crystal lattice [2–9]. PC are periodic devices which induce
the so-called photonic band gaps just as electronic band gaps exist in semiconductors: light
propagation is forbidden for certain frequencies in certain directions. This effect is well known
and forms the basis of many devices, including Bragg mirror, dielectric Fabry–Pérot filters, and
distributed feedback lasers. All of these devices employ low-loss dielectrics that are periodic
in one dimension, and are therefore called one-dimensional photonic crystals. However, while
such mirrors are tremendously useful, their reflecting properties depend greatly upon the
frequency of the incident wave in conjunction with its incidence. In practice, one wishes to
reflect light of any polarization at any angle (complete photonic band gap) for some frequency
range. This could be achieved with certain structures with periodicity in three dimensions.
Such a three-dimensional photonic crystal has been engineered by Yablonovitch in 1987 [10].
The recent thrust in this area is partly fueled by advances in theoretical techniques, based on
Fourier and multipole expansions in the vector electromagnetic Maxwell equations [11–14],
which allow non prohibiting computations. This plane wave expansion method is by far the
most popular theoretical tool employed for studying the photonic band gap problems. In this
paper, we adopt another point of view, based on asymptotic analysis techniques which have
been used for a long time as applied to many problems of mechanic or electrostatic types [15].
Following the work of G. Bouchitté, D. Felbacq and R. Petit [16–19], we adapt these classical
methods to electromagnetism for ‘three-dimensional finite periodic’ structures.

Throughout this paper, we consider a magneto-dielectric structure either illuminated by
a monochromatic wave or within which such a wave propagates. Our main assumption is
that the wavelength λ is large in comparison with typical heterogeneity sizes, i.e. with the
period η of the medium. Using these hypotheses, our goal is to replace the photonic crystal by
an equivalent homogeneous structure having analogous electromagnetic properties. Thanks
to our formalism, we can treat 3D crystals of arbitrary shape � f described by a piecewise
continuous complex matrix valued permittivity and permeability for scattering problems. We
need to further assume that these matrices are hermitian for spectral problems (this excludes
at a stroke absorptive media).

Such hypotheses cover the physical domains of application. In the sequel, we will pay
special attention to the case where the permittivity and permeability are piecewise constant
functions. Such functions describe the inclusions in the scattering object we are studying. These
inclusions are usually called scatterers. It is worth noting that a scatterer can possibly touch
the sides of the basic cells; for instance, this allows us to study compact cubic structures such
as face-centered cubic and simple cubic ones (figure 1) or the well-known ‘Yablonovite’ [20].
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Homogenization of 3D magneto-dielectric crystals 655

Figure 1. Homogenization of a photonic crystal made of ellipsoidal scatterers (right figure). The grid of dotted lines
defines a virtual ‘scaffolding’ �η of the whole obstacle � f . For the sake of simplicity, we give an example with η

near to 1, i.e. with a small number of rather big scatterers (here 5). The reader has to imagine the same body (� f )
filled with a great number of scatterers (on the order of 1000) of small size (η near to 0). The result of the process of
homogenization is a finite homogeneous anisotropic object (left figure).

Moreover, when the number of scatterers is great, and when they are very small with regard
to the wavelength, one can expect the structure to become homogeneous: that is to say that
the scattering object behaves as if it were made of a homogeneous material with an effective
permittivity and permeability.

From a theoretical point of view, one can only hope to obtain relevant results when the
number of scatterers is infinite. Therefore, there are two ways of tackling this problem: one
used by most people, consists in assuming that the size of the scatterers is fixed, while the
obstacle filled up by these scatterers is increasing until it covers the overall space R

3, and
the wavelength goes to infinity. It is a useful method in solid state physics, since it enables
physicists to use the powerful tools of Bloch wave decomposition. This is a perfectly valid
point of view: at first glance, the incident field seems to be confined within the complement
of the overall space (of zero measure!) which suggests that the boundary of the crystal is
not taken into account. In fact, the contribution of the boundary of the scattering obstacle
appears in the behavior of so-called lattice sums near the origin of the reciprocal space, as
one would expect from a low frequency analysis using a Fourier method. Also, the advantage
of this method is that it gives some information for every size of wavelength: one can therefore
deduce some effective properties for a photonic crystal even in the resonance domain, what
may lead to anomalous dispersion [21]. We will make use of this Bloch wave homogenization
in the sequel, yet restricting ourselves to low frequencies. For a high frequency analysis, we
refer the reader to [22].

Now, if we consider that the obstacle and the wavelength remain fixed, while the size of
scatterers goes to zero and their number goes to infinity, it is then quite intuitive that the
boundary of the obstacle has an influence in this limit, and one can still speak of incident
wave. This homogenization process is different from the first one (the crystal does not cover
the whole space), but the results it provides are identical, as we shall rigorously prove.

Homogenization techniques used in this paper, namely the multiple scale and the Bloch wave
methods, allow us to study structures of practical interest, for wavelengths large compared
to the size of the scatterers of the obstacle. With the former approach we achieve mathemat-
ical proofs by using the so-called two-scale convergence [23]. We derive that the effective
permittivity and permeability of the homogeneous object depend upon local problems arising
in a basic cell of the crystal lattice (direct space). With the latter approach (Bloch wave ho-
mogenization) these quantities are deduced from problems taking place in the first Brillouin
zone (reciprocal space). This work is an extension of our previous work on homogenization
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656 S. Guenneau et al.

of 3D dielectric PC [24] (2000) and [25] (2004). Its material was first presented at the IUTAM
symposium held in Liverpool in July 2002 [26]. In the case of vanishing filling ratio of a set of
parallel metallic fibers, D. Felbacq and G. Bouchitté performed the homogenization of both
2D scalar TE and TM cases in 1997 [19] and vector coupled case in 2006 [27]. Last, but not
least, K. Cherednichenko et al. looked at non-local effects in the homogenization of a periodic
set of highly anisotropic fibers in 2006 [28].

Let us now outline the plan of the paper. In sections 2 and 3, we present the asymptotic
derivation of homogenized scattering problems for periodic structures and their justification
via two-scale convergence. In section 4, we look at corresponding spectral problems in the
homogenization of heterogeneous cavities and waveguides. The material of these first sec-
tions is based upon the PhD thesis of S. Guenneau in 2001 [1], except for the subsection 4.3
which describes a Bloch wave approach of homogenization of 3D magneto-dielectric photonic
crystals based upon the work by Bao Ke-Da et al. in 2000 [29]. In the year 2001, N. Wellan-
der published an independent derivation for the homogenization of the scattering problem
described in sections 2 and 3 [30]. We note that Wellander’s asymptotic approach involves
some ansatz for both electric and magnetic fields making use of the four Maxwell equations.
Although this approach shortens the derivation of the homogenization result, it cannot handle
the spectral problem. Moreover, it assumes some stronger hypotheses on the regularity of
the electromagnetic field: in the present study, we merely assume that either the electric or the
magnetic field is locally square integrable, not both of them. In section 5, we then present some
numerical results for 2D and 3D photonic crystals (with elliptical and spherical inclusions).
We also investigate properties of magneto-dielectric checkerboards, thereby extending our
earlier work [31]. We finally look at effective properties of photonic crystal waveguides.

The asymptotic analysis carried out in our paper allows us to homogenize a 3D magneto-
dielectric PC with a metallic boundary ∂� f (asymptotic analysis of a spectral problem).
Zhikov, Birman and Suslina have independently developed a general approach for such ef-
fective problems. The former author has adapted the notion of two-scale convergence to se-
quences of operators’ resolvent [32]. The latter authors used the spectral perturbation theory
for operator-valued functions admitting an analytic factorization [33]. It is worth noting that
Allaire and Conca have introduced a notion of Bloch wave homogenization technique which,
unlike the classical homogenization method, characterizes a renormalized limit of the spec-
trum (denoted by Bloch spectrum), which consists of sequences of eigenvalues of the order of
the square of the medium period η2 [34]. A natural extension of our study is to look for high
frequency vibrations of a heterogeneous metallic magneto-dielectric cavity which may result
in a limit spectrum consisting of a band spectrum (or Bloch spectrum, associated with photonic
band gaps) and a boundary layer spectrum associated with modes whose support concentrate
near the metallic outer boundary (surface waves). In the simpler case of a heterogeneous
dielectric PC with no boundary (a Torus), the analysis has been performed in [22].

To conclude this introduction, although there is a vast amount of literature on homogeniza-
tion theory as applied to problems of electromagnetism [15, 30, 33, 35–47], to the best of our
knowledge the material presented in this paper is original. In the context of interferometric
experiments, one will be concerned with the phase change of an electromagnetic wave as it
crosses the composite material. In this latter context, homogenization using the Bloch theo-
rem in the long wavelength limit seems to be more appropriate and can be carried out in a
rigorous mathematical fashion [48]. Such a Bloch wave homogenization was performed in
the low frequency regime for an infinite array of 3D dielectric spherical inclusions by Bao
Ke-Da et al. [29] using the Rayleigh method. It has been further extended to fully anisotropic
infinite periodic dielectric crystals in the high frequency regime in [22]. Here, we provide a
plethora of homogenization results covering a wide range of 2D and 3D magneto-dielectric
PCF (including fully anisotropic ones). Noteworthily, our analysis covers the case of periodic
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Homogenization of 3D magneto-dielectric crystals 657

Figure 2. Band of finite parallel rods seen a 3D photonic crystal infinite in one direction (left figure). Bi-grating
seen as a 3D photonic crystal bounded in the x3 axis (right figure).

structures in other orthogonal coordinates systems (such as polar and spherical ones) and even
non-orthogonal coordinate systems. In these cases, our formulas should be applied mutatis
mutandis replacing ε and µ by the proper tensors involving the curvilinear metric of space
attached to the (non-cubic) array (see for instance [49] for a comprehensive presentation of
Maxwell’s equation undergoing geometric transforms).

2. Set-up of the problem of diffraction

From now on, assuming a time dependance in e−iωt , we will deal with time harmonic Maxwell
equations. For this study, we have to consider objects of opposite natures: the first ones are
purely geometrical and the others physical. The first approach is a geometrical description of
the obstacle, which lies in a fixed domain � f not necessarily simply connected. Furthermore,
although our study only deals with the bounded case, it remains relevant for � f infinite in one
(figure 2 left) or two directions (figure 2 right). In such cases, one just has to adapt the study
with ‘ad hoc’ outgoing wave conditions (as for gratings, the reader may refer to [50]).

The second approach (a physical one) describes the optical characteristics of the material
illuminated by the electromagnetic wave. Let us begin by the geometrical description of the
objects involved in our study. Let (O, x1, x2, x3) be a Cartesian coordinates system of axes of
origin O, i = (i1, i2, i3) a multi-integer of Z

3 and η a small positive real.
Let Y =]0; 1[3 be a basic cell, and τi Y be the translation of Y by the vector i:

τi (Y ) =]i1, i1 + 1[×]i2, i2 + 1[×]i3, i3 + 1[= Y + i

Let us designate by η(τi Y ) the homothety on τi Y of ratio η: thus we form a box of size η

and centre ηi (figure 4).
Under such considerations, one can now define a ‘scaffolding’ �η of � f in the following

manner: �η is defined as the greatest union of boxes of size η which is entirely enclosed in � f

and whose fineness is controlled by η. More precisely, the finer the scaffolding (the smaller
the η), the better the imitation (figure 1). Obviously, as we wish to ‘build up’ � f , the number
Nη of cells depends upon η, since it corresponds the following equivalence:

Nη = meas(�η)

η3
� meas(� f )

η3

where meas(�η) and meas(� f ), respectively, denote the measure (volume) of �η and � f .
We can now start the description of the physical problem we are interested in. Let us define

what we will call up to the end a scattering-box (SB): we note B an obstacle merely defined
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658 S. Guenneau et al.

Figure 3. The fixed set � f with two ‘scaffolding’ �η′ and �η with η < η′ in the 2D case.

by its relative permittivity εB
r (x) and permeability µB

r (x):

∀x ∈ R
3, εB

r (x) = 1 − χY + χYε̃r(x), µB
r (x) = 1 − χY + χYµ̃r(x),

with χY the characteristic function of Y (i.e. χY = 1 when x ∈ Y and χY = 0 elsewhere).
Here, ε̃r (x) and µ̃r (x) are two given piecewise continuous complex valued functions, which
denote the relative permittivity and permeability in the overall physical space. By analogy
with the geometrical study developed above, we define τi B, η(τi B) and Bη. Thus, as η goes
to 0, we build up a sequence of 3D bounded structures Bη made of a periodic arrangement of
an increasing number Nη of identical SB of decreasing size, whose global shape �η tends to
� f .

For each obstacle Bη, we can define a total field Fη = (Eη, Hη), corresponding to the field
generated by the Nη SB when they are illuminated by a given incident monochromatic wave
of wavelength λ: Fi = (Ei , Hi ). As explained above, our purpose is to make clear the behavior
of Fη when η goes to zero. In other words, we try to understand the electromagnetic behavior of
our set of SB when their size tends to zero and their number to infinity. It is obvious that for all
x in �η, ε

Bη

r (x) = εB
r ( x

η
) and µ

Bη

r (x) = µB
r ( x

η
), where εB

r and µB
r are two Y -periodic complex

valued functions in � f such that 0 ≤ arg(εB
r ) < π , i.e. 	e(iεB

r ) ≥ 0 (resp. for µ). Hence,
unlike most of the articles dealing with solid state physics, we do not assume periodicity of
εB

r and µB
r in the overall space R

3.

Figure 4. The elementary cell of the photonic crystal is the homothety on a unit cell of ratio η (left). Basic cell Y
with an ellipsoidal scatterer (right).
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Homogenization of 3D magneto-dielectric crystals 659

Moreover, let us note the relative permittivity and permeability at every point x ∈ R
3 by

εη(x) = ε̃(x, x
η
) and µη(x) = µ̃(x, x

η
), with

ε̃(x, y) =
{

1 , if x ∈ �c
η

ε
Bη

r (y) , if x ∈ �η

and µ̃(x, y) =
{

1 , if x ∈ �c
η

µ
Bη

r (y) , if x ∈ �η

where �c
η denotes the complementary of the obstacle in the overall space R

3, i.e. R
3 \ �̄η.

This is the crucial point of our discussion: unlike εB
r and µB

r , these functions can be seen as
two Y -periodic functions of the y variable (which continuously depends on its variable x).
Therefore, we can introduce (Ed

η, Hd
η) the diffracted field (which only makes sense outside the

structure) deduced from the incident field (Ei , Hi ) illuminating the structure by (Ed
η, Hd

η) =
(Eη, Hη) − (Ei , Hi ). It is worth noting that we can rigorously define the diffracted field,
since the structure does not cover the overall space, which emphasizes the importance of its
boundary. Thus by defining the complex wave number k0 as k0 = ω(ε0µ0)

1
2 , we obtain the

following problem of electromagnetic scattering:

(Pη)




curlEη + iωµ0µηHη = 0 (1a)

curlHη − iωε0εηEη = 0 (1b)

Hd
η = O

(
1

| x |
)

, Ed
η = O

(
1

| x |
)

(1c)

k0Ed
η + ωµ

(
x

| x | ∧ Hd
η

)
= o

(
1

| x |
)

(1d)

where (1c–1d) denote the outgoing wave conditions of Silver–Müller type, which play a
fundamental role by insuring existence and uniqueness of the solution of (Pη): the uniqueness
is due to the fact that if (Ed

η, Hd
η) is null, then (1c) and (1d) ensure that for a given open subset

� strictly including �η (εη(x) = µη(x) = 1 in R
3 \ �̄)

Re
∫

∂�

(Eη ∧ H̄η) · x

x
ds ≥ 0 (2)

with equality in 2 if and only if (Eη, Hη) = 0 in R
3 \ �̄ (for existence, see e.g. [51]).

Of course, equations (1a) and (1b) of the above system make sense when assuming that Eη

and Hη and all their derivatives are taken in the sense of distributions in the overall space R
3.

The radiation conditions are relevant in C∞(R3 \�̄η). That is to say, Eη and Hη are continuous,
as all their derivatives outside the obstacle (this is a consequence of the Helmholtz equation
arising outside the obstacle, which induces analyticity of the diffracted electromagnetic field).
From now on, we will always assume these hypotheses. If we take the curl of the former
equations we then have two similar problems:

(P E
η )




curl
(
µη

−1 curl Eη

) − k2
0εηEη = 0 (3a)

Ed
η = O

(
1

| x |
)

(3b)

x
| x | ∧ curl Ed

η + ikEd
η = o

(
1

| x |
)

(3c)
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660 S. Guenneau et al.

(PH
η )




curl
(
εη

−1 curl Hη

) − k2
0µηHη = 0 (4a)

Hd
η = O

(
1

| x |
)

(4b)

x
| x | ∧ curl Hd

η + ikHd
η = o

(
1

| x |
)

(4c)

At this point, let us note a fundamental difference with our previous work on homogenization
of dielectric PCF [24] in which it appeared much more difficult to perform the study of the
problem (P E

η ) than the one of the problem (PH
η ), since µ was a constant function equal to µ0

unlike εη. The magnetic field Hη was divergence free, in contrast with the Electric field for
which div Eη behaves like 1

η
. Indeed, taking the divergence in the second equation in (Pη), we

obtain div(εηEη) = 0 which implies that div Eη = −∇ εη

εη
Eη ∼ −∇y ε

ηε
Eη. The behavior of the

gradient of Eη being related to the ones of the divergence and the curl of Eη, it implies strong
oscillations for the gradient of the electric field Eη. Hence, in [24] we exclusively dealt with
(PH

η ). Here, the Maxwell system is completely symmetric and the same difficulty occurs for
the magnetic field Hη. We arbitrarily choose the magnetic field as the variable (this is more
convenient to make some comparisons with results established in [1]), but all this study holds
for the electric field mutatis mutandis. Thus, taking into account that Eη = i

ωε0εη
curl Hη, we

will come back to the couple (Eη, Hη), solution of the initial problem (Pη) by taking the curl
of Hη, solution of the problem (PH

η ). To conclude this section, let us emphasize that in this
paper, we explain in which sense the field Hη tends to a field Hhom, solution of the so-called
homogenized diffraction problem (PH

hom), whose resolution leads to two annex problems of
electrostatic types that are discussed in full details and solved numerically.

3. Homogenized Maxwell system for the scattering problem

In this section, we use the multiple-scale method to homogenize a 3D structure filled with
a periodic arrangement of magneto-dielectric inclusions. More precisely, using a multi-scale
expansion technique applied to a scattering problem, we prove that a 3D finite crystal behaves as
if it were homogeneous, when the period becomes very small in regard with a fixed wavelength.
We show that the homogeneous medium is actually anisotropic, and we derive the expression
of its tensors of permittivity and permeability from the calculus of six scalar periodic potentials,
solutions of two systems of partial differential equations of electrostatic type.

3.1 Main homogenization results for cubic basic cells

Let Hη be a sequence of locally square integrable functions on R
3 solutions of

(PH
η )




curl ε̃−1

(
x,

x
η

)
curl Hη − k2

0µ̃

(
x,

x
η

)
Hη = 0 , in D′(R3)

Hd
η = O

(
1

| x |
)

, in C∞(R3 − �̄η)

x
|x| ∧ curl Hd

η + ikHd
η = o

(
1

| x |
)

, in C∞(R3 − �̄η)
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where ε̃−1(x, x
η
) and µ̃−1(x, x

η
), respectively, denote the relative permittivity and permeability

of the media.
We suppose that Hη, solution of the problem (PH

η ) has a two-scale expansion of the form:

∀x ∈ � f , Hη(x) = H0

(
x,

x
η

)
+ ηH1

(
x,

x
η

)
+ η2H2

(
x,

x
η

)
+ · · · (5)

where Hi : � f × Y �−→ C
3 is a smooth function of 6 variables, independent of η, such that

∀x ∈ � f , Hi (x, ·) is Y -periodic.
Our goal is to characterize the electromagnetic field when η tends to 0. If the coefficients

Hi do not increase ‘too much’ when η tends to 0, the limit of Hη will be H0, a rougher
approximation to Hη. Hence, we make the assumption that for all x ∈ R

3, Hi (x, x
η
) = o( x

ηi ),
so that the expansion still makes sense in neighborhood of 0. If the above expansion is relevant,
we can state the following fundamental result:

THEOREM 3.1 (Homogenized Maxwell’s system for a diffracting obstacle) When η tends to
zero, Hη solution of the problem (PH

η ), converges weakly in L2(� f ) to the average of the first
term of its asymptotic expansion on the basic cell Y, namely Hhom(x) = ∫

Y H0(x, y) dy, which
is the unique solution of the following problem (PH

hom) :

(
PH

hom

) =




curl
([

ε−1
hom

]
(x)curl Hhom(x)

) − k2
0[µhom]Hhom(x) = 0

Hd
hom(x) = O

(
1

| x |
)

x
| x | ∧ curl Hd

hom(x) + ikHd
hom(x) = o

(
1

| x |
)

with {
[εhom](x) = 〈ε̃(x, y)(I − ∇yVY (y))〉Y ,in � f

[εhom](x) = I ,in �c
f

(6)

and {
[µhom](x) = 〈µ̃(x, y)(I − ∇yWY (y))〉Y ,in � f

[µhom](x) = I ,in �c
f

(7)

Here, 〈 f 〉Y is the average of f in Y (i.e.
∫

Y f (x, y)dy). Furthermore, ε̃(x, y) and µ̃(x, y)
respectively denote

ε̃(x, y) =
{

1 , if x ∈ �c
f

εB
r (y) , if x ∈ � f

(8)

and

µ̃(x, y) =
{

1 , if x ∈ �c
f

µB
r (y) , if x ∈ � f

(9)

Besides, VY = (V1, V2, V3) and WY = (W1, W2, W3), where Vj , j ∈ {1, 2, 3} and W j , j ∈
{1, 2, 3}, are the unique solutions in H 1


 (Y )/R of one of the six following problems (K j ) and
(M j ) of electrostatic type:

(K j ) : −divy
[
εB

r (y)(∇y(Vj (y) − y j ))
] = 0, j ∈ {1, 2, 3}
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662 S. Guenneau et al.

and

(M j ) : −divy
[
µB

r (y)(∇y(W j (y) − y j ))
] = 0, j ∈ {1, 2, 3}

As η tends to zero, we can replace the isotropic heterogeneous magneto-dielectric diffracting
obstacle of shape �η, by a homogeneous obstacle of shape � f with anisotropic permittivity
and permeability given by what follows:

COROLLARY 3.2 (Developed form for effective permittivity and permeability) The relative
permittivity and permeability matrices arising in the homogenized problem (PH

hom) are equal
to:

[εhom] =




〈εB
r (y)〉Y 0 0

0 〈εB
r (y)〉Y 0

0 0 〈εB
r (y)〉Y


 −




ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33




and

[µhom] =




〈µB
r (y)〉Y 0 0

0 〈µB
r (y)〉Y 0

0 0 〈µB
r (y)〉Y


 −




ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33


 ,

where ϕi j and ψi j represent corrective terms defined by:

∀i, j ∈ {1, 2, 3}, ϕi j =
〈
εB

r

∂Vj

∂yi

〉
Y

=
〈
εB

r

∂Vi

∂y j

〉
Y

= − 〈
εB

r ∇ Vi · ∇ Vj
〉
Y ,

and

∀i, j ∈ {1, 2, 3}, ψi j =
〈
µB

r

∂W j

∂yi

〉
Y

=
〈
µB

r

∂Wi

∂y j

〉
Y

= − 〈
µB

r ∇ Wi · ∇ W j
〉
Y .

Here, the brackets denote averaging over Y . Furthermore, Vj and W j are the unique solu-
tions in H 1


 (Y )/R of the six partial differential equations K j and M j . Hence, thanks to the
symmetry of the matrices with entries ϕi j = ϕ j i and ψi j = ψ j i , the homogenized permittivity
and permeability are given by the knowledge of twelve terms ϕi j and ψi j , depending upon the
resolution of six annex problems (K j ) and (M j ).

Proof Since ∇y VY denotes the Jacobian matrix ∂Vj

∂yi
of VY , [εhom] clearly derives from

the equation of the theorem. Also, multiplying divy(ε ∇y(Vi − yi )) by Vj , j ∈ {1, 2, 3}, and
integrating by parts over the basic cell Y leads to:〈

εB
r (y)(∇y(Vi − yi )) · ∇ Vj

〉
Y = 0.

Therefore, we get the equality:

ϕi j =
〈
εB

r

∂Vi

∂y j

〉
Y

= − 〈
εB

r ∇ Vi · ∇ Vj
〉
Y

=
〈
εB

r

∂Vj

∂yi

〉
Y

, i and j playing a symmetrical role.

Hence, we derive that ϕi j = ϕ j i . As for the matrix of effective permeability, one can reproduce
this derivation where µB

R , Wi and ψi j stand for εB
R , Vi and ϕi j .
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3.2 Homogenization result applied to non-cuboidal basic cells

We now want to adapt Theorem 3.1 to the case of photonic crystals displaying other types
of periodicity e.g. multiply-coated cylinders and spheres showing a periodicity along their
radial direction respectively in polar and spherical coordinates. One way to do this is to adopt
a covariant approach of Maxwell’s equations, see for instance [49].

For this, let us consider a map from a co-ordinate system {u, v, w} to the co-ordinate
system {x1, x2, x3} given by the transformation characterized by x1(u, v, w), x2(u, v, w) and
x3(u, v, w). We emphasize the fact that it is the transformed domain and co-ordinate system
that are mapped onto the initial domain with Cartesian coordinates, and not the opposite. The
transformation of the differentials is given by



dx1 = ∂x1

∂u
du + ∂x1

∂v
dv + ∂x1

∂w
dw

dx2 = ∂x2

∂u
du + ∂x2

∂v
dv + ∂x2

∂w
dw

dx3 = ∂x3

∂u
du + ∂x3

∂v
dv + ∂x3

∂w
dw

(10)

This change of co-ordinates is characterized by the Jacobian of the transformation:

Jxu = ∂(x1, x2, x3)

∂(u, v, w)
=




∂x1

∂u

∂x1

∂v

∂x1

∂w

∂x2

∂u

∂x2

∂v

∂x2

∂w

∂x3

∂u

∂x3

∂v

∂x3

∂w




, (11)

and the transformation of the differentials is given by


dx1

dx2

dx3


 = Jxu




du

dv

dw


 . (12)

In electromagnetism, this change of coordinates amounts to replacing the different materials
(often homogeneous and isotropic, which corresponds to the case of scalar piecewise con-
stant permittivities and permeabilities) by equivalent inhomogeneous anisotropic materials
described by a transformation matrix T (metric tensor) [49]. On a geometric point of view,
the matrix T

T = JT J
det(J)

, (13)

is a representation of the metric tensor.
In order to apply our Theorem 3.1 to photonic crystals with non cuboidal basic cell, the

only thing to do in the transformed coordinates is to replace the materials (often homogeneous
and isotropic) by equivalent ones that are inhomogeneous (their characteristics are no longer
piecewise constant but merely depend on u, v, w co-ordinates) and anisotropic ones (tensorial
nature). More precisely, this amounts to taking

ε′
η = εηT−1 and µ′

η = µηT−1, (14)

in equation (4a) of (PH
η ), so that the main Theorem 3.1 applies mutatis mutandis by replacing

εB
r and µB

r by εB
r

′ = εB
r T−1 and µB

r
′ = µB

r T−1.
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Remark 1 In the case of orthogonal systems of coordinates (such as polar and spherical
ones), the transformation matrix T is diagonal, thus the corollary 3.2 is still applicable. For
non-orthogonal systems of coordinates, T has non-vanishing off diagonal entries and can also
be non-symmetric: the homogenization of a photonic crystal consisting of a large assembly of
spherical scatterers arranged within an oblique array leads to artificial anisotropy, unlike for
a cubic array.

3.3 Comments on the limit analysis

3.3.1 Convergence of the diffracted field. Our purpose is to study the behavior of the
electromagnetic field Fη = (Eη, Hη) in order to answer the following question: does this
function converge, in some sense which remains to be cleared up, to some function F0?
If so, is it possible to characterize F0 as solution of the problem of diffraction of incident
wave Fi by a certain structure which we are able to give ‘clearly’? This can be done using a
notion of two-scale convergence [23] for the convergence of the field in the photonic crystal
together with considerations on the convergence of the diffracted field outside the photonic
crystal. This method has been successfully applied, among others, by G. Bouchitté and R.
Petit in the electromagnetic theory of gratings [16, 17] and by G. Bouchitté and D. Felbacq
in the case of a 2D finite photonic crystal [52]. Let us briefly outline this mathematical
justification.

The multi-scale method which relies on the boundedness of the asymptotic terms of the
expansion (5), risks being mathematically unsound, and hence leading to untrue equations.
Nevertheless, in our case, the multiple-scale method gives the good form of the homogenized
equation: in case of dielectric media, this method has been successfully applied to various
problems [15]. It remains to get the same results using the two-scale convergence relying on
the following result due to G. Allaire [23]:

THEOREM 3.3 (Two-scale convergence, Allaire) Let � be a bounded open subset of R
3 and

(uη) be a bounded sequence in [L2(�)]
3
. Then there exists ηk tending towards 0 (as k tends to

infinity) and there exists a function u0(x, y) in [L2(� × Y )]
3

(Y -periodic in y) such that for
every ϕ in [L2(�, C
(Y ))]

3
(such functions ϕ are said to be admissible)

lim
k �−→+∞

∫
�

uηk (x) · ϕ

(
x,

x

ηk

)
dx =

∫∫
�×Y

u0(x, y) · ϕ(x, y)dxdy. (15)

Definition 3.4 A sequence (uη) in L2(�) satisfying (15) is said to two-scale weakly converge
to a limit u0 and we note uη ⇀⇀ u0.

Dealing with variational formulations, one has to take the limit in the product of bounded
sequences of oscillating functions. To ensure a convergence in the sense of distributions of
such sequences, we need to introduce the notion of strong two-scale convergence [23]:

Definition 3.5 (uη) in L2(�) strongly two-scale converge to u0(x, y) ∈ L2

(� × Y ) – and we

note uη→→u0(x, y) – if

lim
η→0

∫
�

| uη |2 dx =
∫∫

�×Y
|u0(x, y)|2 dxdy.
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The two-scale convergence is based on a variational approach of the problem and uses suit-
able test functions of the form: ϕη(x) = ϕ0(x, x

η
)+ηϕ1(x, x

η
), which can be seen as an ansatz of

the first order. Coming back to the multiple scale method, the first order term H1 provides the
likely form of a corrector C1 chosen in such a way that ‖Hη − (Hhom + ηC1)‖H 1(curl,� f ) → 0.

In other words, this expression converges to 0 for the Hilbert L2 norm of the field and for
the L2 norm of its rotational. Roughly speaking, the corrector C1 is given for correcting
strong oscillations near the macroscopic obstacle of shape � f . It is very important in nu-
merical computation since it gives a convergence criterion. This problem has been solved by
Wellander [30] who proved that ‖Hη − (H0(x, x

η
) + ηH1(x, x

η
))‖

H 1(curl,� f )
→ 0, if H0, H1

and their rotationals are admissible functions (in the 2D electromagnetic case, in transverse
electric polarization, the proof is straightforwardly deduced from that of [23] given for the
diffusion equation). Also, when div(Hη) or div(Eη) = 0, the corrector type result holds in
H 1(� f ): it is well-known, in functional analysis [51], that the Hilbert space H 1(� f ) has got a
behavior close to H 1(curl, � f )’s provided one gets some control on the divergence in L2(� f )
norm and on the trace on ∂� f . That is to say that the vectorial aspect of the diffraction by
3D photonic structures appears in the decomposition of the gradient on its tangential (curl)
and normal (divergence) components. Our battle plan is then to get enough information on
the curl and on the divergence of the field to realize a study similar to the one of the 2D case
[19].

Let us now assume that, for physical reasons, the electromagnetic field of each problem
(Pη), namely Fη = (Eη, Hη) is locally of finite electromagnetic energy. In mathematical terms,
it means that for all η, Fη is locally square integrable, that is to say that: ∀η > 0, ∃Mη >

0,
∫
� f

εη| Eη |2dx + ∫
� f

µη| Hη |2dx ≤ Mη (εη and µη are coercive and bounded). The proof
of the convergence of the diffracted field, based upon this hypothesis, is rather subtle and
proceeds in two steps: in step 1, we assume (Hη) to be uniformly bounded in L2(� f ) and
we state some result allowing us notably to determine completely the limit function H0 (as
given heuristically in the previous section by the multi-scale method) thanks to the two-scale
convergence. In step 2, we consider a radius R > 0 and a ball�of R

3 such that� := {| x |< R}
satisfies �̄ f ⊂ � (� strictly includes the diffracting object of shape � f ). Then, assuming Hη’s
boundedness in L2(�) for a given η, using a reductio ad absurdum method and theoretical
results obtained in step 1, we deduce that (Hη) is actually uniformly bounded in L2(�). In the
sequel, we will just prove two lemmas, namely a result of two-scale convergence with adequate
assumptions to be used in step 1, and a result of boundedness for the electromagnetic field to
perform the second step of the proof. The reader can find any further details in the original
work by Bouchitté and Petit [16,17] or in our previous paper about the homogenization of 3D
dielectric PC [24].

3.3.2 Convergence of permittivity, permeability and refractive index. It is worth noting
that we cannot expect any nice convergence for the sequences of permittivities and permeabil-
ities εη and µη. Indeed, εη and µη are proportional to the identity matrix, hence characterize
an isotropic magneto-dielectric medium, unlike their limits which characterize a medium with
anisotropic matrices of permittivity and permeability (although their product εηµη which de-
fines the refractive index, may remain proportional to the identity). It is a typical difficulty
encountered in many homogenization problems (εη and µη are just bounded which implies
bad convergence properties for Fη = (Eη, Hη) ∼ (εη curl Hη, µη curl Eη)). Hence, there is no
hope to get control on the convergence of the diffracted field, by means of volume integral
equations. Furthermore, we note that bodies of various permittivity and permeability can ver-
ify εeffµeff = α I d, and one has thus to define a class of equivalence for such heterogeneous
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structures, which behave in the same way for the long wavelengths, although they are quite
different structures: similarly to the well-known lack of uniqueness of the solution to inverse
problems, the homogenized diffracted field can be associated to various effective structures.
Also, since µeff can be close to 0 (µη can be chosen strictly lower than 1), the effective refrac-
tive index can be arbitrarily close to 0, giving rise to astonishing properties as was shown by
Pendry et al. [53].

To conclude this paragraph, we want to point out that the main problem of homogenization
of diffraction comes from the strong oscillations of the electromagnetic field near the interior
boundary of the obstacle. In fact, it is to be understood that in both mathematical and physical
aspects in homogenization of diffraction, the good parameter is the diffracted field. Hence, our
goal is to show in what sense does the electromagnetic field Fη = (Eη, Hη) converge towards
the first term of its asymptotic expansion, and to be more precise to verify that the limit field
Fhom is still solution of a diffraction problem. This can be done, thanks to the Stratton–Chu
formula (SC), which assures that we only have to control the restriction of the electromagnetic
field on the boundary of the lit body to keep control on the field in the overall space. Here is
the main difficulty of the homogenization of diffraction of 3D finite structures: the divergence
of the sequences of electric-fields and magnetic-fields goes to infinity, hence we cannot easily
keep controlling Fη|∂� f . Therefore, we consider a ball � strictly including the diffracting
obstacle � f . By the knowledge of the convergence of the diffracted field on the boundary of
the ball ∂�, we deduce the convergence of the diffracted field outside the obstacle � f , thanks
to the Stratton–Chu formula (SC). Let us recall that there is no alternative way to achieve the
proof by means of volume integral equations. Unlike physicists of solid state physics who
consider an obstacle whose boundary is going to infinity, we deal with global problems: the
boundary of the obstacle remaining fixed, its influence is still sensible at the limit (one has to
estimate the so-called boundary layer).

4. Homogenization of spectral problems for heterogeneous cavities and waveguides

Although the mathematical and physical natures of scattering and spectral problems look
intimately different, we can take benefit of the asymptotic study carried out in the third section
to look at effective properties of a 3D structure with an infinite conducting boundary filled with
a periodic arrangement of magneto-dielectric inclusions. This leads to the uneasy questions
of the connections between on one hand the classical homogenization theory [15, 23, 41]
dealing with fast oscillating periodic functions (or more generally functions of fast and slow
variables) and on the other hand the so-called Bloch wave homogenization introduced in
various mathematical frameworks [29, 34, 48] which relies essentially on the theorem of
Bloch wave decomposition (phase-shift assumption for waves propagating in heterogeneous
periodic media). Although the question of how wave is propagating at low frequencies in
an ‘infinite periodic’ medium [48] seems intimately connected with the properties of an
incident wave to an analogous ‘finite periodic’ structure in the low frequency regime (being
understood that no concentration effect occurs on the macroscopic boundary of the finite
structure), one has to precise in which sense to analyse the effective properties in this particular
context.

In this section, we will first adopt the point of view of multi-scale method (heuristic version
of two-scale convergence) and then make use of the Rayleigh method (a heuristical version
of Bloch wave homogenization introduced by Allaire and Conca). We will not prove the
convergence results as we do in the appendix for section 3, since they are already well covered
in the aforementioned literature. Nevertheless, we think it may be useful to recall the classical
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results on the homogenization of spectral problems. Let us consider differential operators of
the form

Aη = b(D)∗g

(
x
η

)
b(D), η > 0 (16)

where b(D) ∈ L(L2(Rd ; C
m)) with constant coefficients and g is a bounded invertible periodic

function. Here, ∗ denotes the adjoint of an operator. The homogenization theory (see [41])
amounts to looking at the convergence for the resolvent of Aη (in a suitable sense)

(b(D)∗g

(
x
η

)
b(D) + I)−1 → (b(D)∗g0b(D) + I)

−1
, (17)

when η tends to 0. The constant matrix g0 associated with the homogenized medium is usually
called effective matrix. In [33], Birman and Suslina identify this matrix g0 by considering the
spectral decomposition of the family of operators Aη in a neighborhood of the origin (hence,
they do not pass to the limit). Their approach is related to the Bloch decomposition proposed
by C. Conca and M. Vanninathan [43]. In our case, we consider the limit of the resolvent with
g function of slow and fast variables (i.e. g(x, x

η
)): this function is only periodic in its second

variable. This allows us to take into account the finite size of the photonic crystal (thanks to
the slow variable x). Also, our Maxwell operator involves two oscillating (matrix) functions
ε(x, x

η
) and µ(x, x

η
), which make its form more general than that of Aη. In [32] Zhikov proves

the mathematical results for such a two-scale convergence of operators’ resolvent in the case of
the wave equation in porous media. In the present case, the sequence of operators is uniformly
elliptic and compact, hence the strong convergence in classical operator norm.

4.1 Homogenization of a cavity problem

We are looking for electromagnetic vibrations of a metallic cavity of shape � f containing a
heterogeneous magneto-dielectric periodic medium of period η when η tends towards 0. In the
harmonic regime, this amounts to looking for eigenfrequencies ω ∈ R

+ and their associated
electromagnetic eigenmodes (Eη, Hη) in L2(� f , C

3) × L2(� f , C
3), (Eη, Hη) �≡ (0, 0), such

that

(SPη)




curl Eη + iωµ0µηHη = 0, in � f (18a)

curl Hη − iωε0εηEη = 0, in � f (18b)

n ∧ Hη = Jη, on ∂� f (18c)

n ∧ Eη = 0, on ∂� f (18d)

where Jη is a surface current with support on the metallic boundary ∂� f , ε0, µ0, are the
permittivity and permeability of vacuum and εη = ε( x

η
), µη = µ( x

η
), where ε(y) and µ(y) are

Y -periodic real functions (or hermitian matrices) to ensure the self-adjointness of the Maxwell
operator (see below).

Since the tangential trace n ∧ Hη of the magnetic field Hη on the boundary ∂� f is an
unknown of the spectral problem, we choose an electric field formulation: we are therefore
looking for (�η, Eη) ∈ R

+ × [H 1(curl, � f , εηdx)]
3
, Eη �≡ 0, such that

(
SP E

η

)



ε

(
x

η

)−1

curl

(
µ

(
x

η

)−1

curl Eη

)
= 1

�η

Eη, in � f (19a)

n ∧ Eη = 0, on ∂� f (19b)
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668 S. Guenneau et al.

where εη and µη satisfy the usual coercivity and boundedness properties to ensure the uni-
form ellipticity of the corresponding sequence of Maxwell operators. Since εη and µη are
real oscillating functions (or hermitian matrices), we cannot handle absorptive materials (we
require the self-adjointness of the operators), unlike for the corresponding scattering problem
in Theorem 3.1.

Looking for the spectrum of (SP E
η ) amounts to characterizing the spectrum of the Green

operator (resolvent) Sη defined for all f ∈ [L2(� f , εηdx)]
3

by Sη f = uη where uη is the
unique solution (via Lax–Milgram lemma) in H (curl, � f , εηdx) of

ε−1
η curl

(
µ−1

η curl uη

) = f in � f , n ∧ uη = 0 on ∂� f . (20)

Since � f is bounded, Sη is compact self-adjoint L([L2(� f , εηdx)]
3
). The self-adjointness

follows from the boundary condition together with the Green formula applied in
H (curl, � f , εηdx), and the compactness derives from Rellich lemma: Sη f = uη ∈
H (curl, � f , εηdx) ∩ H (div, � f , εηdx) ↪→ [L2(� f , εηdx)]

3
↪→ [L2(� f , dx)]

3
. We note ση

the spectrum of the operator associated with (20) which consists of a countable sequence
of eigenvalues tending towards 0 and such that ση = {0} ∪ ⋃

k≥1{�k
η} [34]. Besides, to

each eigenvalue �k
η, one can associate an eigenfunction uk

η ∈ [L2(� f , εηdx)]
3

such that
‖uk

η‖L2(� f ,εηdx)
= 1. Moreover, the family {uk

η}k≥1
is an orthonormal basis of [L2(� f , εηdx)]

3

[34]. The spectral asymptotic analysis consists in studying the convergence of the discrete
spectrum ση, when η tends towards 0. The limit spectrum turns out to be also discrete, hence
we are dealing here with a pointwise convergence of spectra. This is evident since we are
dealing with a sequence of uniformly compact operators. We note that in the case of a high-
frequency analysis (eigenvalues on the order of η2), this is no longer the case: the limit spectrum
may contain both continuous and discrete parts, as shown by Allaire and Conca for the scalar
wave equation [34], and Cherednichenko and Guenneau for the vector Maxwell operator [22].

We can now state our basic theorem on the spectral asymptotic analysis of a heterogeneous
cavity (classical homogenization at a fixed frequency):

THEOREM 4.1 (Homogenized Maxwell’s operator for a closed cavity) Whenη tends to zero, the
sequence of bounded self-adjoint operators Sη in L([L2(� f , εηdx)]

3
) ↪→ L([L2(� f , dx)]

3
)

(associated with SP E
η ) strongly converges in operators norm to a limit operator S defined

for every f ∈ [L2(� f , [εhom]dx)]
3

↪→ [L2(� f , dx)]
3

by S f = Ehom where Ehom are the non-
zero eigenfields in H (curl, �, [εhom]dx) associated with the countable set of real positive
eigenvalues �hom of the following homogenized spectral problem:

(
SPE

hom

) =
{

[εhom]−1curl([µhom]−1curl Ehom(x)) = 1
�hom

Ehom(x), in � f ,

n ∧ Ehom(x) = 0, on ∂� f ,
(21)

where the effective permittivity and permeability [εhom] and [µhom] are symmetric bounded
coercive matrices respectively given by

[εhom]ξ · ξ = min
�∈H 1


 (Y )

∫
Y

ε(y)(ξ + ∇y �(y)) · (ξ + ∇ �(y)) dy, ∀ξ ∈ R
3, (22)

and

[µhom]ξ · ξ = min
�∈H 1


 (Y )

∫
Y

µ(y)(ξ + ∇y �(y)) · (ξ + ∇ �(y)) dy, ∀ξ ∈ R
3. (23)

Also, when η → 0, ση converges (in a pointwise sense) to σhom, spectrum associated with the
limit operator S f = Ehom.
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Homogenization of 3D magneto-dielectric crystals 669

Proof Since Sη is a sequence of uniformly compact resolvent operators, S is itself a compact
self-adjoint operator and its spectrum σhom is discrete. More precisely, σ = {0} ⋃ ⋃

k≥1

�k
hom the

eigenvalues being ordered in decreasing order and limk �−→+∞ �k
hom = 0. From the Courant–

Fischer min–max lemma, it follows that ∀k ≥ 1, limη �−→0 �η
k = �k

hom (see [34] for the scalar
wave equation).

4.2 Homogenization of metallic magneto-dielectric waveguides

In this section, we are looking for out-of-plane propagating modes (oblique incidence, i.e.
(E, H)(x1, x2, x3) = (E(x1, x2), H(x1, x2))eiγ x3 , with γ ≥ 0 the propagation constant. We con-
sider the case of a metallic waveguide of constant cross-section � f (open bounded subset of
R

2) filled with a periodic assembly of dielectric rods for the large wavelengths.
In waveguide theory, it is customary to develop the electric field E(x1, x2) in its transverse

and longitudinal components Et(x1, x2) and El(x1, x2):

E(x1, x2) = Et(x1, x2) + El(x1, x2)e3. (24)

We then define its transverse gradient, divergence and curl as

∇t El(x1, x2) = ∂ El

∂x1
e1 + ∂ El

∂x2
e2

divt(Et,1e1 + Et,2e2) = ∂ Et,1

∂x1
+ ∂ Et,2

∂x2
(25)

curlt(Et,1e1 + Et,2e2) = ∂ Et,2

∂x1
− ∂ Et,1

∂x2
.

It is also convenient to define the operators curlγ and divγ as per:

divγ E = ∂ Et,1

∂x1
+ ∂ Et,2

∂x2
+ iγ Hl = divt Et + iγ El

curlγ E =
(

∂ El

∂x2
− iγ Et,2

)
e1 +

(
iγ Ht,1 − ∂ El

∂x1

)
e2 +

(∂ Et,2

∂x2
− ∂ Et,1

∂y

)
e3

= curlt Et e3 + (∇t El − iγ Et) × e3.

(26)

The problem depends upon two positive real parameters: the small parameter η characterizing
the distance between inclusions (tending to zero), and the fixed propagating constant γ . Since
the tangential trace n ∧ Hη of the magnetic field Hη on the boundary ∂� f is an unknown of
the spectral problem, we choose an electric field formulation: we are therefore looking for
(γ, �η, Eη) ∈ R

+ × R
+ × [H 1(curl, � f , εηdx)]

3
, Eη �≡ 0, such that

PE
η


 εη

−1
(
curlγ µη

−1 curlγ Eη(x)) = 1

�η

Eη(x
)

in � f ,

n ∧ Eη = 0 on ∂� f ,

(27)

where εη and µη are real valued functions such that M ≥ εη, µη ≥ m > 0. The operator
associated with this problem has a compact resolvent. Its spectrum is a discrete set of isolated
eigenvalues belonging to [ γ 2

εηµη
; +∞[.

We can state the following homogenization result:

THEOREM 4.2 (Homogenized Maxwell’s operator for a closed waveguide) When η tends
to zero, Eη eigensolution of the problem (PE

η ), converges (for the norm of energy on
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670 S. Guenneau et al.

� f ) to the eigensolution Ehom of the spectral problem (PE
hom) defined as follows: look for

(γ, �hom, Ehom) ∈ R
+ × R

+ × [H 1(curl, �, εhomdx)]
3
, Ehom �≡ 0, such that

PE
hom

{
[εhom]−1curlγ [µhom]−1curlγ Ehom(x) = 1

�hom
Ehom(x) in �

n ∧ Ehom = 0 on ∂�.
(28)

The relative permittivity and permeability matrices for the effective waveguide are equal to:

χhom =




〈χ B
r (y)〉Y 0 0

0 〈χ B
r (y)〉Y 0

0 0 〈χ B
r (y)〉Y


 −




ϕ
χ

11 ϕ
χ

12 0

ϕ
χ

21 ϕ
χ

22 0

0 0 0


 (29)

where χ ∈ {ε, µ} and ϕ
χ

i j represent corrective terms defined by:

∀i, j ∈ {1, 2}, ϕχ

i j =
〈
χ B

r

∂V χ

j

∂yi

〉
Y

=
〈
χ B

r

∂V χ

i

∂y j

〉
Y

= −〈
χ B

r ∇ V χ

i · ∇ V χ

j

〉
Y
,

the brackets denoting averaging over Y . Furthermore, V χ

j are the unique solutions in H 1

 (Y )/R

of the four partial differential equations:

−divt,y
[
χ B

r (y)
(
∇ t,y(V χ

j (y) − y j )
)] = 0, j ∈ {1, 2}, χ ∈ {ε, µ}.

Hence, thanks to the symmetry of the right matrix in (29) with entries ϕ
χ

i j = ϕ
χ

j i , the homoge-
nized permittivity and permeability are fully described by the knowledge of the six terms ϕ

χ

i j ,
i, j ∈ {1, 2}, i ≥ j, χ ∈ {ε, µ}.

Remark 1 We have actually a strong convergence (in operator norm) for the sequence of
uniformly compact resolvent operators associated with PE

η and thus a pointwise convergence
for the sequence of corresponding spectra as in Theorem 4.1. The resolvent operator associated
with PE

hom is therefore compact and its spectrum is discrete.

To conclude this paragraph, we note that our homogenization results do not cover the
important case of a periodic assembly of vanishing fibers. For the transverse case, we refer
the reader to the work by Felbacq and Bouchitté [19], and for the oblique case to the paper by
Poulton et al. [54]. In this latter case, the oblique parameter γ makes the problem singularly
perturbed (suggesting non-commuting limits): it is not obvious to retrieve the homogenization
results in [19] simply by taking the limit γ → 0.

4.3 Multi-scale method versus Bloch wave homogenization

In Theorem 3.1, we have assumed that if {Eη}η>0, satisfies certain limit conditions on
the boundary ∂� f of the cavity, in addition to the equation AηEη = f in � f , then the
H (curl, � f , εηdx) bound on {Eη} was a consequence of ellipticity and the Poincaré in-
equality. In the present section, � f = R

3 is unbounded, then there is no estimate on {Eη}
in H (curl, R

3, εηdx) because the Poincaré inequality is not available (note that if we consider
Aη + I d instead of Aη, then the bound in H (curl, R

3, εηdx) is automatic). The natural question
which arises is to know what happens to periodic oscillations in Fourier space. To this end, we
denote by ξ and ζ the variables dual to x and y in Fourier space. Since the Fourier transform of
a function depending on x/η is a function of ηξ , we have the relation ξ = ηζ . This indicates
that the fast oscillations in the medium give place to the slow variable ζ . Further, if we replace
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Homogenization of 3D magneto-dielectric crystals 671

each derivative ∂/∂x j as is usual in Fourier analysis, by ξ j , which is equal to η−1ζ j , we see that
we accumulate negative powers of η. The original difficulty arising from products of weakly
convergent sequences is therefore transformed to dealing with slow variations combined with
singularities in the Fourier space. The passage to the limit in the homogenization process
requires now certain regularity of the dominant Bloch eigenvalue and of the corresponding
eigenmode in a neighborhood of the origin: the homogenized matrix is given by the Hessian
of this dominant Bloch eigenvalue at the origin. In the 2D case, it was numerically shown
that the two approaches (classical homogenization together with finite elements versus Bloch
wave homogenization via a multipole method) give the same numerical results for elliptical
dielectric inclusions [31].

In the sequel, we want to discuss these connections with respect to the work by Bao Keda
et al. [29]. This multipole expansion is essentially based on the so-called Rayleigh identity,
which contains within it all the information on Bloch waves, solutions of Helmholtz equa-
tions, propagating in a homogeneous medium (in that case, there are no bands in the spectrum).
From the derivation of a scattering matrix associated with boundary conditions for the elec-
tromagnetic field across the interface between the two-media, and the Rayleigh identity, one
can derive some effective properties in the long-wavelength limit, which are graphically in-
terpreted as the slope of the dispersion curves going through the origin, i.e. the limit when
the modulus of the Bloch vector kBloch (which lies within the first Brillouin zone ]0; 2π [3)
tends to zero along with the eigenfrequency. In the classical book by Bensoussan, Lions and
Papanicolaou (1978) [15], a lemma states that when it exists, the tensor

ε−1
hom,pq = 1

2

∂2ω12

∂kBloch,p∂kBloch,q
(0),

defines the effective mass tensor of the first band which is generated by eigenfrequencies ω1

for various values of the Bloch vector kBloch. The work by McPhedran et al. (1996) [48] which
establishes the first dynamic correction to the Lorentz–Lorenz formula by using the Rayleigh
identity should thus provide consistent numerical results with our approach. We are going to
show that the analytical formulae derived with the Rayleigh method in the quasi-static limit
are consistent with that of the multi-scale method.

If we consider a 3D periodic two-phase medium with spherical inclusions, our results give
also some information on the corresponding effective properties of the material derived as
a limit case of the multipole expansion (long-wavelength and dilute composite): the propa-
gation of electromagnetic waves in triply periodic lattices of magneto-dielectric spheres can
be represented in terms of Debye potentials and leads to a generalized Rayleigh identity. It
must be noticed that this procedure leads to an eigenvalue problem formulation that enables
one to construct both low-frequency curves (giving rise to effective properties) and high-order
dispersion curves. The philosophy of this method is connected to the ’Bloch wave homog-
enization’ theory co-developed by G. Allaire and C. Conca [34]: these methods are dual in
the Fourier sense discussed above. For the sake of completeness, in the sequel we adapt the
homogenization result of Bao Keda et al. [29] derived in the long-wavelength limit for a cubic
array of dielectric spheres thanks to the multipole expansion, to the case of magneto-dielectric
spheres.

The solution of the Maxwell equations can be expressed in terms of two-scalar functions
(v and w), called Debye potentials (see Van Bladel [55]), as follows:

E(r) = iωµ(r) curl{ f (r)w(r)} + curl curl{ f (r)v(r)}, (30)

H(r) = −iωε(r) curl{ f (r)v(r)} + curl curl{ f (r)w(r)}, (31)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
L
i
v
e
r
p
o
o
l
]
 
A
t
:
 
1
0
:
2
3
 
2
0
 
A
u
g
u
s
t
 
2
0
0
8



672 S. Guenneau et al.

where ω represents the frequency of the wave, r = x/| x | and ε and µ are piecewise constant
functions, which take value εi and µi inside the sphere and εe and µe otherwise.

Following Bao Keda et al. [29], the Debye potentials v and w satisfy Helmholtz equations
in each homogeneous medium. If u represent either v or w, we have

(� + ν2τ 2k2)u(i)(r) = 0, (32)

in the inclusions (ν and τ denoting respectively the scaled relative permittivity εi
r/ε

e
r and the

scaled relative permeability µi
r/µ

e
r ), and

(� + k2)u(e)(r) = 0, (33)

outside the inclusions.
The spectral problem is well-specified if the Debye potentials satisfy adequate boundary

conditions at the surface of the spheres (derived from the continuity of the tangential compo-
nents of the fields [55]) together with quasi-periodicity (or Floquet–Bloch) conditions

u(r + Rp) = v(r )eikBloch·Rp , (34)

where kBloch is known as the Bloch wave-vector and Rp = p1a(1) + p2a(2) + p3a(2) is the
vector attached to the nodes (p1, p2) ∈ Z

2 of the lattice of translations vectors a(1) and a(2),
which form the basis for the lattice as a whole.

Setting f(r) = R − Rp in the unit cell centred about Rp, (30) and (31) reduce to classical
expressions used in the Mie theory [55]. Moreover, by means of the Debye potentials we can
classify fields in E-type (or transverse magnetic), when only the electric field has a component
along r (w = 0) and M-type (or transverse electric) when only the magnetic field has a
component along r (v = 0). In each case we use a multipole expansion of the corresponding
Debye potentials v and w in the vicinity of the sphere (r =| r |= rc) located at the origin. In
the inclusions, we have

u =
∞∑

l=0

l∑
m=−l

cα
lm Jl(kr )Zlm(θ, ϕ), (35)

where u denotes v if α = E and w if α = M ; here, Jl and Yl represent spherical Bessel
functions and Zlm are spherical harmonics. Besides, θ and ϕ are the usual angular variables
in spherical coordinates. Similarly, we get the following expansion between the inclusions:

u =
∞∑

l=0

l∑
m=−l

{
aα

lm Jl(kr ) + bα
lmYl(kr )

}
Zlm(θ, ϕ). (36)

On the interface boundary {r = rc} we prescribe the conditions of the continuity of the
Debye potential and of the normalized flux. According to the choice of polarization, two types
of boundary conditions are possible:

u(e) = u(i) and
∂µ(e)

∂r
= 1

ξ

∂µ(i)

∂r
(37)

In transverse magnetic polarization (E-type) we have the boundary conditions (37) with
u = v and ξ = 1/τ 2, whereas in transverse electric polarization M(-type), u = w and ξ should
be 1/ν2. Using multipole expansions (35)–(36), we are led to

cα
ml Jm

(
k(i)rc

) = aα
ml Jm

(
k(e)rc

) + bα
mlYm

(
k(e)rc

)
, (38)

ξcα
ml J ′

m

(
k(i)rc

) = aα
ml J ′

m

(
k(e)rc

) + bα
mlY

′
m

(
k(e)rc

)
, (39)
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Homogenization of 3D magneto-dielectric crystals 673

where ξ stands for 1
ν2 if α = E and 1

τ 2 if α = M ; also, k(e) = ντk and k(e) = k. Eliminating
cm we find

aα
ml = −Mαα

m bα
ml , (40)

where

Mαα
m = ξ−1 Jm

(
k(i)rc

)
Y ′

m

(
k(e)rc

) − J ′
m

(
k(i)rc

)
Ym

(
k(e)rc

)
ξ−1 Jm

(
k(i)rc

)
J ′

m

(
k(e)rc

) − J ′
m

(
k(i)rc

)
Jm

(
k(e)rc

) . (41)

This so-called M matrix is block diagonal (M (E M)
l = M (M E)

l = 0).
Because the Debye potentials are quasi-periodic and obey the Helmholtz equation, we

obtain the following Rayleigh identities

aα
lm =

∑
l ′,m ′

σlm,l ′m ′bα
l ′,m ′ , ∀α ∈ {E, M}, (42)

where expressions σlm,l ′m ′ depend on the so-called lattice sums [29, 56]:

SY
lm(ke, kBloch) =

∑
p∈Z3\(0,0,0)

Yl(k
e Rp)Z∗

lm(θp, ϕp)ei�q l+ikBloch·Rp . (43)

Therefore the Rayleigh system for the triply periodic structure has the form:

∑
l ′,m ′

{
Mαα

l δll ′δmm ′ +
l+l ′∑

l ′′=|l−l ′|
SY

l ′′,m−m ′
(
k(e), kBloch

)
Al ′′,m−m ′

lm,l ′m ′

}
Bα

l ′m ′ = 0, (44)

for every α ∈ {E, M}. Here SY
l ′′,m−m ′ (k(e), kBloch) are the dynamic lattice sums and Al ′′,m−m ′

lm,l ′m ′

can be expressed in terms of Clebsch–Gordan coefficients for the vector coupling of angular
momenta l and l ′.

Furthermore, we want to truncate this infinite algebraic system to the dipole order (−1 ≤
l, l ′, m, m ′ ≤ 1) and take the quasi-static limit when kBloch tends towards 0, as does k with
k = αkBloch.

Now, we assume that α has the following expansion

α = α0 + α2(kBlochd)2 + O(kBlochd)4. (45)

Here, α0 and α2 are quantities we seek to determine: α0 is related to an equivalent (phase)
refractive index for the array, since the change of phase across the unit cell is given by

�� = kBlochd = Neffk
(e)
⊥ d. (46)

Taking into account the following series expansions for small k(e) [29]

Mαα
0 ∼ 1

(ξ−1 − 1)krc
, ∀α ∈ {E, M}, (47)

where ξ = 1/τ 2 in transverse magnetic polarization (E-type), whereas for transverse electric
polarization M(-type) ξ should be 1/ν2. For the lattice sums, one finds the following leading
order asymptotics [29, 56]

SY
0,0 ∼ −

√
4π

α(1 − α2)

1

k3
Bloch

, SY
1,m ∼ −4π Z1,m(θ0, ϕ0)

α2(1 − α2)

1

k3
Bloch

, (48)

SY
2,m ∼ 4π Z2,m(θ0, ϕ0)

α2(1 − α2)

1

k3
Bloch

− 3

(αkBloch)3 S2,m . (49)
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674 S. Guenneau et al.

Denoting the area fraction of the spheres f by f = 4πr3
c

3d3 and collecting the terms of the same
order of kBloch in the dipole approximation of (44) one gets two equations of Clausius–Mossotti
type

ε0
eff = ν + 2 f

ν − f
, µ0

eff = τ + 2 f

τ − f
, (50)

which can both be deduced by an electrostatic argument involving a Lorentz cavity [57]. Also,
multiplying these two expressions, we get

(
N 0

eff

)2 = ε0
effµ

0
eff =

(
ν + 2 f

ν − f

)(
τ + 2 f

τ − f

)
. (51)

This formula calls for two few remarks.
Firstly, the decoupling between effective permittivity and permeability is in agreement with

our results of section 2. Secondly, we note that in the 2D case, 2 f should be replaced by
f , where f = πr2

c /d2. Therefore, if the dielectric contrast and the magnetic contrast across
the interface boundary are chosen such that ν = τ−1 or ν = −τ , the effective refractive in-
dex is that of the vacuum. This suggests that when ν is replaced by −ν (resp. τ by −τ ),
εeff is replaced by 1/εeff (resp. µeff with 1/µeff). In the 2D case, this is in accordance with
Keller’s theorem [58] (1964). In 1970, Dykhne, using the fact that a divergence-free field
in 2D when rotated locally at each point by 90 degrees produces a curl-free field and vice
versa, could generalize Keller’s result to isotropic multiphase and polycrystalline media [59].
Zolla and Guenneau noticed that it still holds true for 2D media described by bounded,
symmetric and coercive tensors of permittivity [31]. In the 3D case, there is no such sim-
plification (there is no equivalent to the checkerboard problem in 3D): this is caused by the
fact that the symmetry of the problem appeals to compose by two rotations of 90 degrees
in 3D, but they do not commute (taking ν = −2τ does not simplify the Clausius–Mossotti
expression).

5. Numerical implementation

5.1 Numerical illustration in 2D

5.1.1 TM polarization deduced from the 3D case. In the sequel we seek to determine
the coefficients of the tensor of effective permittivity [εhom] in 2D case (this procedure repeats
mutatis mutandis for the effective permeability [µhom]). More precisely, � f is invariant itself
with respect to the third component and we look at the particular case of TM polarization, i.e.
H = u(x1, x2)e3. When ε does not depend on the third component namely ε(y) = ε(y1, y2)
we get from the annex problem (K j )

[εhom] =

 [Ahom]

0
0

0 0 〈ε〉Y 2


 ,

where Y 2 =]0; 1[2 and [Ahom] is the 2 × 2 matrix given by:

[Ahom] =
(

〈ε〉Y 2 − 〈ε∂1V1〉Y 2 − 〈ε∂1V2〉Y 2

− 〈ε∂2V1〉Y 2 〈ε〉Y 2 − 〈ε∂2V2〉Y 2

)
,

and Vj , j ∈ {1, 2}, is the unique solution in H 1

 (Y 2)/R of

(K j ) : div[ε(y)(∇(Vj (y) − y j ))] = 0.
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Homogenization of 3D magneto-dielectric crystals 675

Multiplying divy(ε ∇y(Vi − yi )) by Vj in (P j ), j ∈ {1, 2}, and integrating by parts over the
basic cell Y 2 leads to the weak formulation:

〈ε(y)(∇y(Vi − yi )) · ∇ Vj 〉Y 2 = 0. (52)

To get the corresponding variational equation from the annex problem (M j ), one has to replace
ε by µ in (K j ). In the discrete formulation the basic cell is meshed with triangles and node
elements are used for the scalar fields Vi :

Vi =
n∑
k

βk
i wn

k (x, y), in Y 2, (53)

where βk
i denotes the nodal value of the component Vi of the multi-scalar potential V. Besides,

wn
k are basis functions of first order finite elements. The GetDP software [60] has been used

to set up the finite element problem with some periodicity conditions imposed to the field on
opposite sides of the basic cell Y . If we take ε as a piecewise constant function in (52), i.e.
ε = 4 + 3i in an elliptical inclusion (minor and major axes 0.3 and 0.4) and 1.25 elsewhere
(cf. figure 5), [εhom] is(

1.9296204 + i0.2536979 (−1 − i)10−16

(−44 − 2i)10−18 2.1127643 + i0.4618554

)
,

with 〈ε〉Y 2 = 2.2867255 + i1.1309734 (see figure 5 for the associated potentials V1 and V2).
We note that the off-diagonal terms are not strictly null: this artificial anisotropy induced by
the mesh of the structure indicates the order of magnitude of the numerical error. Also, these
numerical results have been retrieved with the so-called method of fictitious charges based
on an integral approach, which we discuss in the next paragraph (see also [31]). We found
that the diagonal terms were accurate to the seven first significant figures (which are therefore
reported above). The order of magnitude of the off diagonal terms was about the same in both
methods.

5.1.2 TE polarization deduced from the 3D case. We can also look at the case of TE
polarization, i.e. E = u(x1, x2)e3. When µ does not depend on the third component namely

Figure 5. Potentials V1 (left) and V2 (right): the basic cell contains an elliptic inclusion (ε = 4.0 + 3i) with minor
and major axes a = 0.3 and b = 0.4 in a silica matrix (ε = 1.25).
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676 S. Guenneau et al.

µ(y) = µ(y1, y2) we get from the annex problem (M j )

[µhom] =

 [Bhom]

0

0
0 0 〈µ〉Y 2




where Y 2 =]0; 1[2 and [Bhom] is the 2 × 2 matrix given by:

[Bhom] =
(

〈µ〉Y 2 − 〈µ∂1W1〉Y 2 − 〈µ∂1W2〉Y 2

− 〈µ∂2W1〉Y 2 〈µ〉Y 2 − 〈µ∂2W2〉Y 2

)

and W j , j ∈ {1, 2}, is the unique solution in H 1

 (Y 2)/R of

(M j ) : div[µ(y)(∇(W j (y) − y j ))] = 0

5.1.3 Generalized Keller formulae. Let us now consider the TM field Hη = uη(x1, x2)e3,
where uη is the unique solution of the scalar wave equation:

µ−1

(
x,

x
η

)
div

(
ε−1

(
x,

x
η

)
∇ uη

)
+ k2

0uη = 0

with Sommerfeld radiation conditions

(SO) : ud
η = O(1/

√
| x |), (

ud
η − ik0∂ud

η

/
∂x

) = o(1/
√

| x |) .

When η tends to 0, uη tends in L2
loc(R2) to u = u(x1, x2) unique solution of

〈µ〉Y 2
−1 div(A′

hom ∇ u) + k2
0u = 0

where the diffracted field ud satisfies the radiation conditions (SO) and where A′
hom is given

by:

A′
hom =


 〈ε−1〉Y 2 − 〈ε−1∂1V ′

1〉Y 2 −〈ε−1∂1V ′
2〉Y 2

−〈ε−1∂2V ′
1〉Y 2 〈ε−1〉Y 2 − 〈ε−1∂2V ′

2〉Y 2




with V ′
j the unique solution in H 1


 (Y 2)/R of

(N j ) : div[ε−1(y)(∇(V ′
j (y) − y j ))] = 0

with j ∈ {1, 2}.
If we now consider the TE field Eη = uη(x1, x2)e3, where uη is the unique solution of the

scalar wave equation:

ε−1

(
x,

x
η

)
div

(
µ−1

(
x,

x
η

)
∇ uη

)
+ k2

0uη = 0

When η tends to 0, uη tends in L2
loc(R2) to u = u(x1, x2) unique solution of

〈ε〉Y 2
−1 div(B ′

hom ∇ u) + k2
0u = 0

where the diffracted field ud satisfies the radiation conditions (SO) and where B ′
hom is given

by:

B ′
hom =


 〈µ−1〉Y 2 − 〈µ−1∂1W ′

1〉Y 2 −〈µ−1∂1W ′
2〉Y 2

−〈µ−1∂2W ′
1〉Y 2 〈µ−1〉Y 2 − 〈µ−1∂2W ′

2〉Y 2



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with W ′
j the unique solution in H 1


 (Y 2)/R of

(P j ) : div[µ−1(y)(∇(W ′
j (y) − y j ))] = 0

with j ∈ {1, 2}.
We are facing a paradox: the annex problems (K j ) and (M j ) for TE polarization (respec-

tively (N j ) and (P j ) for TM polarization) involve respectively the permittivity (TE case)
and permeability (TM case) and their inverse. To explain this discrepancy, we establish the
following subtle property:

PROPOSITION 5.1

µ−1
hom curl

(
ε−1

hom curl(u(x1, x2)e3)
) = −〈µ〉−1

Y 2 div

(
R

(
π

2

)
A−1

hom R

(
− π

2

)
∇ u

)
e3

ε−1
hom curl

(
µ−1

hom curl(u(x1, x2)e3)
) = −〈ε〉−1

Y 2 div

(
R

(
π

2

)
B−1

hom R

(
− π

2

)
∇ u

)
e3

where R(π/2) is the rotation matrix of angle π/2, namely:

R(π/2) =
(

0 1

−1 0

)
.

Proof
Let L and M be two symmetric matrices defined as

L =

 l11 l 0

l l22 0
0 0 l33


 =

(
L̃ 0
0 l33

)
, M =


 m11 m 0

m m22 0
0 0 m33


 =

(
M̃ 0
0 m33

)
(54)

we get:

L curl(M curl(u(x1, x2)e3)) = −l33

(
∂

∂x1

(
m22

∂u

∂x1
− m

∂u

∂x2

)
+ ∂

∂x2

(
m11

∂u

∂x2
− m

∂u

∂x1

))
e3

(55)
Furthermore, let M ′ be defined as

M ′ =
(

m ′
11 m ′

12

m ′
21 m ′

22

)
(56)

we have

L curl(M curl(u(x1, x2)e3)) = −l33 div(M ′ ∇ u)e3

if and only if

m ′
11

∂u

∂x1
+ m ′

12
∂u

∂x2
= m22

∂u

∂x1
− m

∂u

∂x2

m ′
21

∂u

∂x1
+ m ′

22
∂u

∂x2
= m11

∂u

∂x2
− m

∂u

∂x1

which is true if M ′ = R(π
2 )M̃ R(−π

2 ). As a conclusion the results found for TE and TM
polarizations are consistent if and only if

A′
hom = R

(
π

2

)
A−1

hom R

(
− π

2

)
, B ′

hom = R

(
π

2

)
B−1

hom R

(
− π

2

)
,
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678 S. Guenneau et al.

i.e.

A′
hom = Ahom

det(Ahom)
, B ′

hom = Ahom

det(Ahom)
.

This remarkable result can be straightforwardly proved with the following result [31].

LEMMA 5.1 Let Ahom and A′
hom (respectively Bhom and B ′

hom) be the homogenized matrices
associated to v j and v′

j (respectively w j and w′
j ), j ∈ {1, 2}, unique solutions in H 1


 (Y 2)/C

of the eight following problems:

div(a(y) ∇(y j + v j (y))) = 0, div(b(y) ∇(y j + w j (y))) = 0 (57)

div(a′(y) ∇(y j + v′
j (y))) = 0, div(b′(y) ∇(y j + w′

j (y))) = 0 (58)

where a′ = a−1 and b′ = b−1. Then, we have:

A′
hom = Ahom

det(Ahom)
, B ′

hom = Bhom

det(Bhom)
. (59)

5.1.4 Two-phase media. Let � f be a bounded photonic crystal filled with a periodic
heterogeneous material with two optical indices n1 = √

ε1µ1 and n2 = √
ε2µ2. Thanks to

the previous proposition, we can deduce from the computation of the effective ’refrac-
tive matrix’ Nhom([ε1, ε2]) = Ahom([ε1, ε2])Bhom([µ1, µ2]) the effective ’refractive matrix’
Nhom([ε2, ε1]) = Ahom([ε2, ε1])Bhom([µ2, µ1]) corresponding to the same structure with the
reverse contrast. For this we use the following general property:

Ahom(λε) = λAhom(ε), Bhom(λµ) = λBhom(µ) for any fixed λ in C.

and the duality relation. Indeed, we have:

Ahom([ε2, ε1]) = ε1ε2 Ahom([ε−1
1 , ε−1

2 ]), Bhom([µ2, µ1]) = µ1µ2 Bhom
([

µ−1
1 , µ−1

2

])
and then

χhom([ξ2, ξ1]) = ξ1ξ2

det χhom([ξ1, ξ2])
χhom([ξ1, ξ2]), ∀(χ, ξ ) ∈ {(A, ε), (B, µ)}

In particular for lossless dielectric materials, we have:

χhom([ξ1, ξ2]) = R(ϕ)

(
ξM 0

0 ξm

)
R(−ϕ), ∀(χ, ξ ) ∈ {(A, ε), (B, µ)},

i.e.

Ahom([ε1, ε2])Bhom([µ1, µ2]) = R(ϕ)

(
εMµM 0

0 εmµm

)
R(−ϕ)

where R(ϕ) is the rotation matrix of angle ϕ and where εM > εm (respectively µM >

µm). The relation between the two matrices Ahom([ε1, ε2]) and Ahom([ε2, ε1]) (respectively
Bhom([µ1, µ2]) and Bhom([µ2, µ1])) leads to the following property:

χhom([ξ2, ξ1]) = R(ϕ)

(
ξ ′

M 0
0 ξ ′

m

)
R(−ϕ), ∀(χ, ξ ) ∈ {(A, ε), (B, µ)},
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i.e.

Ahom([ε2, ε1])Bhom([µ2, µ1]) = R(ϕ)

(
ε′

Mµ′
M 0

0 ε′
mµ′

m

)
R(−ϕ)

with ε′
Mµ′

M = ε1ε2µ1µ2

εmµm
and ε′

mµ′
m = ε1ε2µ1µ2

εM µM
(note that ε′

Mµ′
M > ε′

mµ′
m ).

5.1.5 Checkerboards. The checkerboard problem is obviously a two-phase problem. Be-
sides, for a square symmetry (it is the case for the checkerboard problem up to a translation)
it can be easily proved that Ahom is equal to R(π

2 )Ahom R(−π
2 ) and consequently Ahom (respec-

tively Bhom) is proportional to the identity matrix (the effective permittivity/permeability in
TM/TE polarization is therefore isotropic):

Ahom([ε1, ε2]) = Ahom([ε2, ε1]) = ahom I,

Bhom([µ1, µ2]) = Bhom([µ2, µ1]) = bhom I.
(60)

The previous result shows that:

Ahom([ε1, ε2])Bhom([µ1, µ2]) = ε1ε2µ1µ2 Ahom([ε1, ε2])Bhom([µ1, µ2])

det Ahom([ε1, ε2]) det Bhom([µ1, µ2])
,

and consequently

det Ahom([ε1, ε2]) det Bhom([µ1, µ2]) = a2
homb2

hom = ε1ε2µ1µ2.

Finally we generalize the result of Dykhne:

Ahom Bhom = Bhom Ahom = √
ε1ε2

√
µ1µ2 I . (61)

A striking physical implication is to consider a two phase composite such that

ε1 = C

µ2
, ε2 = 1

Cµ1
, (62)

where C is a positive constant. This implies that εeffµeff = 1 and consequently the effective
index is that of vacuum. This is physically reasonable, since there exist some materials with
permeabilities 0 < µ1 < µ2 < 1 (unlike their permittivities ε1 and ε2, which should always
be greater than 1). This composite would be transparent for the waves of low frequency (no
guiding properties).

Remark 1 In the case of a four-phase checkerboard structure, i.e. where the unit cell of
periodicity is square and subdivided in four equal squares each having a different conductivity,
a generalized Dykhne’s formula (61) has been conjectured by Mortola and Steffe in 1985 [61]
and independently derived by Craster and Obnosov [62] and Milton [63].

In our case, using the same arguments as above, we found that the effective properties of
the four-phase magneto-dielectric checkerboard are given by two diagonal matrices, namely

Ahom([ε1, ε2, ε3, ε4]) =
√

ε1ε2ε3ε4(1/ε1 + 1/ε2 + 1/ε3 + 1/ε4)

ε1 + ε2 + ε3 + ε4

×




√
(ε1 + ε2)(ε3 + ε4)

(ε1 + ε4)(ε2 + ε3)
0

0

√
(ε1 + ε4)(ε2 + ε3)

(ε1 + ε2)(ε3 + ε4)



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680 S. Guenneau et al.

Table 1. Comparison of effective refractive index for a square array of dielectric cylinders of circular
cross-section and permittivity 50 lying in air computed in [12] using Fourier expansions (Neff) with N∗

eff given by
the finite element method. The filling fraction f = πr2

c is increased whereas the number of triangles for the mesh
remains constant (about 2500 triangles); in [12] the number of Fourier coefficients was also kept constant

(corresponding to summation over 1812 reciprocal vectors of the square lattice). The computational time with the
finite element software Getdp [60] is about 2 seconds on a 1 GHz PC with 128 Mb RAM.

f ε Ref. [12] εPresent work ε∗ Ref. [12] ε∗ Present work

0.1 1.239010 1.239007 40.354793 40.354791
0.2 1.511636 1.511634 33.076744 33.076741
0.3 1.971824 1.971821 25.357226 25.357223
0.4 2.644923 2.644921 18.904143 18.904141
0.5 7.071068 7.071066 7.071068 7.071065

and Bhom whose entries are deduced from that of Ahom simply by replacing εi by µi . The
product of Ahom by Bhom (which commutes) then provides us with the Mortola–Steffe formula
for magneto-dielectric four-phase checkerboards.

5.2 Effective properties for oblique propagation

In this section, we give some numerical results on the homogenization of a circular metallic
waveguide made of a periodic arrangement of dielectric rods of elliptic cross-section of re-
fractive index 2 embedded in a matrix of refractive index 1. We derive the tensor of effective
permittivity from the resolution of the two annex problems of electrostatic type K j (cf. The-
orem 3.1), with the method of fictitious charges [31] (its dynamic analogue is the method of
fictitious sources [64]). This method consists in representing the potential by an approximate
potential created by two families of fictitious charges: the first ones are located in the scatterer
S and they radiate in its complement Y \ S in the periodic cell Y , and the second ones are
located in Y \ S and radiate in S. Each of these charges satisfies a Laplace equation in Y
with periodic conditions and they are chosen such that the potential Vj verifies the boundary
conditions that appears in the following system:


�Vj = 0 , in Y \ ∂S[
ε
∂Vj

∂n

]
∂S

= −[
ε
]
∂Sn j[

Vi
]
∂S

= 0

with

ε =



εscat, in S

1, in Y \ S̄.

Table 2. Same caption as table 1 except that the dielectric cylinders have now a permittivity 100.

f ε Ref. [12] ε Present work ε∗ Ref. [12] ε∗ Present work

0.1 1.249889 1.249887 80.007121 80.007120
0.2 1.569954 1.569952 63.696132 63.696131
0.3 2.000515 2.000512 49.987129 49.987127
0.4 2.935262 2.935259 34.068509 34.068507
0.5 10.000000 9.999999 10.000000 9.999999
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Homogenization of 3D magneto-dielectric crystals 681

[ f ]∂S denotes the jump of f across the boundary ∂S, and n j , j ∈ {1, 2}, denotes the projection
on the axis e j of a normal of ∂S.

Moreover, the calculus of the anisotropic permittivity can be simplified. Indeed it had been
shown [24] that the coefficients ϕi, j are given by the following simple integral:

ϕi, j = [ε]∂S

∫
∂S

Vi n j dl. (63)

Let us remark that Vi is well defined on ∂S because it doesn’t suffer a jump across the boundary
of the scatterer. This last formula is very important for numerical implementations: it is not
necessary to compute the gradient of Vi (which gives rise to numerical inaccuracy) to perform
the calculus of the homogenized permittivity.

In figure 6, we compare the transverse electromagnetic field of a heterogeneous metallic
waveguide made of a periodic arrangement of elliptic dielectric rods with that of its effective
anisotropic waveguide, derived from the asymptotic analysis. We must solve an annex problem

set in the basic cell Y = ]0; 1[2 with the shape of the scatterer defined by the equation y2
1

a2 + y2

b2 =
1 with a = 0.4 and b = 0.2. Its permittivity is given by εscat = 4. The method of fictitious
sources gives us

εhom =




1.39787 0 0

0 2.01435 0

0 0 4.769911


 (64)

If we denote by εhom
harm the harmonic mean of ε over the basic cell Y , we check that εhom

harm =
1.30824 ≤ εhom

1,1 , εhom
2,2 ≤ εhom

3,3 = 〈εhom〉Y , which is consistent in this canonical case with the
theory of bounds [65]. An interesting case is that of a metallic inclusion within the basic cell
Y : this induces an infinite value for εhom

3,3 = 〈εhom〉Y . We use the GetDP software [60] to model
the anisotropic waveguide defined by the tensor of permittivity given above (see figure 6).

5.3 Numerical illustration in 3D

The possible formulations are identical to the ones of the resonant cavity problem [66] and as
our purpose is to deal not only with dielectric but also with metallic inclusions, the electric
field formulation is chosen. According to the Bloch theorem [67], our problem reduces to
looking for Bloch waves solutions which are the solutions Ek that have the form:

Ek(x, y, z) = eik·rE(x, y, z) = ei(kx x+ky y+kz z)E(x, y, z) (65)

where k = (kx , ky, kz) ∈ R
3 is a parameter (the so-called Bloch vector or quasi-momentum

in solid state physics) and E(x, y, z) is a periodic function on the unit cube Y .
In order to find Bloch modes with the finite element method, some changes have to

be performed with respect to classical boundary value problems that will be named Bloch
conditions [68]. The classical weighted residual is used

R(Ek, E′
k) =

∫
Y\�m

curl Ek · curl E′
k dxdy − µ0ω

2
∫

Y\�m

εEk · E′
k dxdy (66)

where �m are the perfectly conducting inclusions. For discretization, edge elements on a
tetrahedral mesh are introduced. The constraint on the mesh is that opposite faces of the cube
Y must have exactly the same surface triangular mesh. In the case of a periodic problem,
unknowns (i.e. line integrals of Ek) on corresponding edges are imposed to have the same
value. In the case of a Bloch problem, equal values up to the phase factor given by (65)
are imposed. Equations associated to corresponding edges have also to be combined, using
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682 S. Guenneau et al.

Figure 6. Comparison between the transverse electric fields TE21 and TE31 of a metallic PCF for a propagation
constant γ = 1 cm−1 (wave numbers k = 0.7707 cm−1 and k = 0.7607 cm−1) with the ones of the homogenized
anisotropic associated metallic waveguide for γ = 1 cm−1 (k = 0.5478 cm−1 and k = 0.5201 cm−1).

the complex conjugate of the phase factor [68]. Finally, a generalized eigenvalue problem
involving large sparse Hermitian matrices is obtained. The eigenvalues correspond to feasible
values of ω2 for the given Bloch vector k. Such a problem can be solved using a Lanczos
algorithm, which permits to compute the largest eigenvalues. Since we are in fact interested in
the smallest eigenvalues, the inverse of the matrix of the system must be used in the iterations.
The inverse is never computed explicitly but the matrix–vector products are replaced by system
solutions thanks to a GMRES method. The practical implementation of the model has been
performed thanks to the GetDP software [60].

Our edge-element formulation for Bloch waves (65) also holds for dielectric inclusions, for
this one has just to integrate over the whole cell Y in (66). An interesting issue is then to look
at the effective properties of 3D dielectric photonic crystals by means of Bloch approach and
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Table 3. Comparison of effective refractive index Neff given by the Clausius–Mossotti formula, N∗
eff given by

‘Bloch homogenization’ and N∗∗
eff given by ‘two-scale homogenization’, for different values of the radius rc of a

spherical dielectric inclusion of permittivity 3 surrounded by air in a cubic unit cell.

rc Neff N∗
eff N∗∗

eff

0.1 1.0020952 1.0020968 1.0022840
0.25 1.0329132 1.0332791 1.0374103
0.34 1.0836032 1.0875975 1.0950892
0.43 1.1724446 1.2157954 1.1977349

Figure 7. Quasi-periodic electric field in a basic cell of air containing a dielectric spherical inclusion of permittivity
3 whose radius rc = 0.34 when the Bloch vector kBloch = (π/100, 0, 0) (left); First component V1 of the periodic
multi-scalar potential Vy for the same basic cell and inclusion (right).

to compare it with both two-scale homogenization and Clausius–Mossotti formula (50). If we
consider a dielectric sphere of radius rc and relative permittivity εr surrounded by air in a cubic
basic cell Y =]0; 1[3, the Clausius–Mossotti formula [69] tells us that the effective refractive

index should be Neff =
√

εr +2 f
εr − f where f = 4πr3

c
3 is the volume fraction of the sphere. On the

other hand, the effective index Neff can be defined as the limit of dk
dω

when both the modulus
of the Bloch vector k and ω tend to zero (note that in the case of an ellipsoidal inclusion, the
previous limit is a tensor since it depends on the trajectory in the coordinates {k, ω}, i.e. the
effective material is anisotropic). In our case, if we pick up a point corresponding to a particular
Bloch vector in the neighborhood of the origin, say k = (0.01π, 0, 0), the associated lower
frequency in the spectrum will provide us with Neff. In the table above, we report the values
for Neff given by the Mossotti’s formula, the ones provided by edge-element computations for
Bloch electromagnetic waves and those derived from nodal-element computations for periodic
electrostatic problems.

6. Conclusion

In this paper, we have achieved the homogenization of 2D and 3D finite photonic crystals
described by coercive and bounded permittivity and permeability, which covers the range
of physical applications from 2D-3D photonic crystals to photonic crystal fibers. We have
discussed some new duality relations for magneto-dielectric materials in the long wavelength
limit. We have also presented two very efficient numerical algorithms to illustrate our theo-
retical study: a method of fictitious charges and a finite element modeling. We have provided
a comprehensive bibliography on related numerical and theoretical work: although some

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
L
i
v
e
r
p
o
o
l
]
 
A
t
:
 
1
0
:
2
3
 
2
0
 
A
u
g
u
s
t
 
2
0
0
8



684 S. Guenneau et al.

material on homogenization of other spectral problems with similar tools may be found
in [33, 34], to the best of our knowledge, the theoretical results presented in this paper are
new and would by no means intersect with existing ones in the classical literature on homog-
enization theory [15, 41] or most recent papers [30]. Our 2D numerical results are validated
with previous work by Halevi et al. [12, 13]. In the general case, the effective properties pro-
vided in this paper for photonic crystal fibers and 3D photonic crystals have been checked
with finite element models for heterogeneous waveguides and 3D periodic structures. Finally,
we discuss the connections between the homogenization of scattering and spectral problems
(finite/infinite photonic crystal structures).
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Appendix A: Multiple-scale expansion of Hη

The main idea underlying our asymptotic analysis is to select two scales in the study: a
microscopic one (the size of the basic cell) and a mesoscopic one (the size of the whole
obstacle of shape � f ). From a physical point of view, one can say that the modulus of the
incident field is forced to oscillate like the permittivity in the illuminated periodic structure. In
fact, the smaller the size η of the SB, the faster the modulus of the field Fη oscillates. Hence,
we suppose that Hη, solution of the problem (PH

η ) has a two-scale expansion of the form:

Hη = H0

(
x,

x
η

)
+ ηH1

(
x,

x
η

)
+ · · · + ηN HN

(
x,

x
η

)
+ o(ηN ), (A1)

where Hi : � f × R
3 �−→ C

3 are smooth complex valued functions of the variables (x, y),
independent of η, periodic in y of period 1. The introduction of the variable y = x

η
takes

into account the periodic dependance on x of the permittivity εη(x) = ε
( x
η

) in the ’bounded
periodic’ structure.

For convenience in the following calculations, we denote by Rη the operator of restriction
onto the hyperplane {y = x

η
}:

Rη : f (x, y) �−→ f

(
x,

x
η

)
,

where f (x, y) and f (x, x
η
) are respectively locally square integrable functions of � f ×R

3 �−→
C

3 and � f �−→ C
3 of finite energy. It is worth noting that Rη obeys the following rules of

calculation:

PROPOSITION A.1 (Properties of Rη)

(i) Rη is a ‘distributive operator’, that is to say that

Rη( f )Rη(g) = Rη( f g).
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(ii) Furthermore, we can define the action of the differential operator on the projector Rη by:

∂

∂xi

(
Rη f (x, y)

) = Rη

(
∂

∂xi
f (x, y)

)
+ 1

η
Rη

(
∂

∂yi
f (x, y)

)

that is to say that
[ ∂

∂xi
, Rη

] = 1

η
Rη

∂

∂yi
.

Assuming that the expansion (A1) is relevant, we can state the following lemma:

LEMMA A.2 The Maxwell operator Aη = curl ε̃−1
η curl associated to the problem Pη satisfies

the following operator expansion Aη = Rη{η−2 Ayy + η−1 Axy + η0 Axx} + o(1), where Aµ,ν

denotes the operator curlµ ε̃−1(x, y) curlν , the couple (µ, ν) being in {x, y} × {x, y}. Besides,
the asymptotic terms of Aη are solutions of:

(S0)




AyyH0 = 0 (A2a)

AyyH1 + AxyH0 + AyxH0 = 0 (A2b)

AyyH2 + AxyH1 + AyxH1 + AxxH0 − k2
0µ̃(x, y)H0 = 0 (A2c)

Proof With the help of the operator Rη, the equation (A1) can be rewritten in the form:

Hη(x) = Rη

{
N∑

j=0

η j H j (x, y)

}
+ o(ηN ). (A3)

Thus, the partial differential operator ∂
∂xi

acting on Hη(x) satisfies the following equality:

∂

∂xi
Hη(x) =

(
Rη

∂

∂xi
+ 1

η
Rη

∂

∂yi

) {
N∑

j=0

η j H j (x, y)

}
+ o(ηN−1). (A4)

We now want to deduce the action of the second order differential operator curl(ε̃−1
η curl)

involved in the problem (PH
η ), on the field Hη. Taking into account that [curlx, Rη] = 1

η
Rη curly,

we obtain that:

curlx((Rηε̃
−1(x, y))(curlx RηH j ))

= curlx

(
(Rηε̃

−1(x, y))

(
Rη curlx H j + 1

η
Rη curly H j

)) (A5)

Taking into account once more that curlx and Rη do not commute:

curlx((Rηε̃
−1(y))(curlx RηH j ))

= Rη

[
curlx(ε̃−1 curlx H j ) + 1

η
curly(ε̃−1 curlx H j

]

+ 1

η
Rη

[
curlx(ε̃−1 curly H j ) + 1

η
curly(ε̃−1 curly H j )

]
We then apply this two-scale second order operator in the expansion of the magnetic field

Hη. Assuming that the terms of the development of the powers higher than 2 are bounded, we
can write:

curlx(ε̃−1 curlx(H0 + ηH1)) + 1

η
curlx(ε̃−1 curly(H0 + ηH1))
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686 S. Guenneau et al.

+ 1

η
(curly ε̃−1 curlx(H0 + ηH1))

+ 1

η
curly(ε̃−1 curly(H0 + ηH1 + η2H2))

− k2
0µ̃(H0 + ηH1) + o(η) = 0

which leads to

η−2 AyyH0 + η−1(AyyH1 + AxyH0 + AyxH0) + η0(AyyH2 + AxyH1 + AyxH1 + AxxH0

− k2
0µ̃(x, y)H0) = o(η)

In a neighborhood of η = 0, we express the vanishing of the coefficients of successive powers
of 1

η
which leads to the system (S0).

Let us rewrite the equation (A2a) of the previous system (S0):

curly(ε̃−1(x, y) curly H0) = 0. (A6)

The next step in the asymptotic expansion is to show the link between (E0, H0)(x, y) and
the so-called homogenized electromagnetic field (Ehom, Hhom)(x).

LEMMA A.3 Let, for fixed x ∈ � f , H0 be a Y periodic function in y solution of equation
(A2a), such that curly H0(x, .) ∈ H (curl, Y ). Then

curly H0(x, .) = 0, a.e. on Y .

Proof Multiplying equation (A2a) in S0 by the conjugate of H∗
0 of H0 and integrating over

Y leads to: ∫
Y

curly[ε̃−1(x, y)(curly H0(x, y))] · H∗
0(x, y) dy = 0.

From the anti-periodicity of the unit outgoing normal n to ∂Y and the periodicity in the y
variable of H0, we deduce that:∫

Y
ε̃−1(x, y)[curlyH0(x, y)]2 dy = 0.

Let us assume that the real or imaginary parts of ε−1 keep a constant sign. We deduce that:

a.e.y ∈ Y, curly H0(x, y) = 0. (A7)

From Lemma A.3, we can derive the following result.

LEMMA A.4 H0, solution of the system S0, is such that

For almost every y in Y, divy(µ̃(x, y)H0(x, y)) = 0.

Remark A1 In [24], we studied the homogenization of a 3D diffracting problem using the
same multi-scale expansion method in the magnetic field formulation. We also deduced that
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Homogenization of 3D magneto-dielectric crystals 687

curly H0(x, y) = 0. Noting that µ = µ0 (non magnetic medium) we knew that divy H0(x, y) =
0, which is obviously no more the case. We therefore deduced that �yH0(x, y) = 0, which
ensured us that H0 did not depend on the microscopic variable y. Consequently, H0 could be
seen as a homogenized magnetic field Hhom(x), i.e. H0(x, y) = Hhom(x). The main difference
with [24] is thus that the first term H0 of the ansatz is here dependent of the microscopic y
variable. The fact that in our current paper, the first order term H0 of the asymptotic expansion
depends on the microscopic variable can be explained in terms of a singularly perturbed
problem by writing (4a) as follows

µη
−1curl

(
εη

−1 curl Hη

) − k2
0Hη = 0 (A8)

and can be thereby regarded as a problem of non commuting limits (see e.g. [70] for similar
effects in high contrast doubly periodic structures).

Proof From equations (A2b) and (A7), we have:

curly(ε̃−1(x, y) curlx H0(x, y)) + curly(ε̃−1(x, y) curly H1(x, y)) = 0 (A9)

By applying divy to (A2c), we derive:

divy(curlx(ε̃−1 curlx H0)) + divy(curlx(ε̃−1 curly H1)) + divy(curly(ε̃−1 curlx H1))

+ divy(curly(ε̃−1 curly H2)) + k2
0 divy(µ̃(x, y)H0) = 0

Since divy curlx A(x, y) = − divx curly A(x, y), this expression reduces to:

− divx(curly(ε̃−1 curlx H0) + curly
(
ε̃−1 curly H1)) + k2

0 divy(µ̃(x, y)H0) = 0.

Taking (A9) into account, we finally get the following formulation:

divy(µ̃(x, y)H0(x, y)) = 0.

We want to show some analogous properties for E0.

LEMMA A.5 If we state E0 as follows:

E0(x, y) := i

ωε0
ε̃−1(x, y)(curlyH1(x, y) + curlxH0(x, y)), (A10)

then we have the two following equations:

curly(E0(x, y)) = 0, and divy(ε̃E0(x, y)) = 0. (A11)

Remark A2 The equation (A10) is just a definition, since it has not been proved that Eη were
converging towards E0.

Proof The curl equation in (A11) derives straightforwardly from equation (A9) and the
definition of E0. To prove the divergence equation in (A11), we start from the equation (A10)
and we take its divergence in the y variable. Noting once more that divy curlx A(x, y) =
− divx curly A(x, y), thanks to Lemma A.3 we get the desired equation.

The average of E0 on Y gives us a field independent of the microscopic variable, hence it
seems legitimate to denote by Ehom the following quantity:

Ehom(x) := 〈E0〉Y =
∫

Y
E0(x, y) dy. (A12)
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688 S. Guenneau et al.

With this definition we can state the following lemma:

LEMMA A.6 E0 and Ehom are linked by the following relation:

E0 = (I − ∇yVY )Ehom, (A13)

with VY = (V1, V2, V3), where Vj , j ∈ {1, 2, 3} are the unique solutions in H 1

 (Y )/R of one

of the three following problems (K j ) of electrostatic type:

(K j ) : −divy
[
εB

r (y)(∇y(Vj (y) − y j ))
] = 0, j ∈ {1, 2, 3}.

Proof We firstly remark that curly(E0 − Ehom) = 0. In general, this merely implies that
E0 = Ehom(x) − ∇y V (x, y) + Ecohom(x), where Ecohom belongs to the so called cohomology
space whose dimension depends upon the number of cuts made in the complex plane to obtain
a simply connected open set Ỹ . In our case, 〈E0〉Y = 〈Ehom〉Y and 〈∇y V 〉Y = 0 which implies
that Ecohom = 0. Then, E0 − Ehom derives from a scalar potential denoted by V . That is to say
that there exists a Y-periodic function V (x, y) such as:

E0 = Ehom − ∇y V . (A14)

It is worth noting that this deduction would not hold necessarily if there were currents in the
scattering-box. This would be the case for a domain � f filled up by diffracting objects of
infinite conductivity [19].

Injecting (A14) in (A11), leads us to:

divy(ε̃(Ehom − ∇y V )) = 0. (A15)

By linearity of the divergence, we can write that:

− divy(ε̃(∇y V )) = − divy(ε̃Ehom) = − divy

(
ε̃

3∑
j=1

Ehom, j e j

)
= − ∑3

j=1 divy(ε̃(x, y)e j )Ehom, j (x).

(A16)

We thus have to solve an annex problem of electrostatic type K j :

(K j ) : − divy(ε̃(x, y)(∇y Vj − e j )) = 0, j ∈ {1, 2, 3}, (A17)

The variational form associated with this problem is sesquilinear, continue and coercive in the
Hilbert space H 1


 (Y )/R, hence the Lax–Milgram lemma ensures the existence and uniqueness
of the solution of this problem in H 1


 (Y )/R, that is, up to an additive constant. Let us remark
that ε̃(x, y) being a data of the problem (Pη), divy(ε̃(x, y)e j ) is a known function. Therefore,
we have to solve an annex problem where the unknowns are the three components of the
potential Vj . The solutions of (A15) are given by the functions:

V (x, y) =
3∑

j=1

Vj (y)Ehom, j (x) = VY · Ehom, (A18)

where VY = (V1, V2, V3) and Vj respectively denote the multi-scalar potential of the basic cell
and one of the scalar potentials associated with the density of charges divy(ε(y)e j ). Before
going further, it is worth noting that the problem (K j ) is of interest by itself. In the section
4, we solve it thanks to a finite element modeling with periodic conditions. We also solve the
annex problem in the scalar case thanks to a method of fictitious charges, whose corresponding
algorithm in the dynamic case is called method of fictitious sources [64].
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Homogenization of 3D magneto-dielectric crystals 689

From (A14) and (A18) we get that:

E0 = (I − ∇yVY )Ehom (A19)

where I denotes the identity matrix and ∇yVY denotes the jacobian of VY . That is to say that:

E0 =




I −




∂V1

∂y1

∂V2

∂y1

∂V3

∂y1

∂V1

∂y2

∂V2

∂y2

∂V3

∂y2

∂V1

∂y3

∂V2

∂y3

∂V3

∂y3







Ehom (A20)

We want now to precise the link between Ehom and the average Hhom of H0(x, y) over the
basic cell Y .

More precisely, we will prove the lemma

LEMMA A.7 If we state Hhom(x) = 〈H0〉Y = ∫
Y H0(x, y) dy then we have

k2
0

∫
Y

µ̃(x, y)H0(x, y) dy + iωε0 curl Ehom = 0, (A21)

where Hhom and Ehom satisfy a homogenized Maxwell equation associated to an effective
matrix of permittivity [εhom] given as{

curlxHhom(x) = −iωε0[εhom]Ehom

[εhom] = 〈ε̃(I − ∇yVY )〉Y .
(A22)

Proof From (A19) and (A10), we deduce that:

(I − ∇yVY )Ehom = i

ωε0
ε̃−1(curlyH1 + curlxH0(x, y)).

Making the sum over Y of this expression leads us to:∫
Y

curlyH1(x, y) dy + curlxHhom(x) = −iωε0〈ε̃(I − ∇yVY )〉Y Ehom.

Thanks to the periodicity of H1 and due to the anti-periodicity of the outer normal n to ∂Y ,
by virtue of the Green formula, we have:∫

Y
curly H1(x, y)dy =

∫
∂Y

n ∧ H1ds = 0.

Then, we are led to the homogenized Maxwell equation and its associated effective matrix of
permittivity (A22).

It remains to give the equation verified by Hhom(x). Summing the equation (A2c) in the
system (S0) over Y , we derive that:

− k2
0

∫
Y

µ̃(x, y)H0(x, y) dy +
∫

Y
curlx(ε̃−1(curlx H0(x, y))) dy

+
∫

Y
curlx(ε̃−1(curly H1)) dy = 0

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
L
i
v
e
r
p
o
o
l
]
 
A
t
:
 
1
0
:
2
3
 
2
0
 
A
u
g
u
s
t
 
2
0
0
8



690 S. Guenneau et al.

Taking into account (A10) and using the definition of Ehom, we obtain:

k2
0

∫
Y

µ̃(x, y)H0(x, y) dy + iωε0 curl Ehom = 0

To conclude the proof of the theorem, we must express the first integrand in terms of [µhom]
and Hhom. From Lemmas A.3 and A.4, we know that:{

curly
(
H0(x, y)

) = 0

divy
(
µ̃(x, y)H0(x, y)

) = 0,

which is the counterpart of (A11) for the leading order term in the ansatz of the magnetic field.
Therefore we can state the lemma

LEMMA A.8 H0 and Hhom are linked by the following relation:

H0 = (I − ∇yWY )Hhom, (A23)

with WY = (W1, W2, W3), where W j , j ∈ {1, 2, 3} are the unique solutions in H 1

 (Y )/R of

one of the three following problems (M j ) of electrostatic type:

(M j ) : −divy
[
µB

r (y)
(
∇y(W j (y) − y j ))

] = 0, j ∈ {1, 2, 3}.

From (A23) and Lemma A.7, we deduce that:

k2
0

( ∫
Y

µ(x, y)(I − ∇yWY ) dy
)

Hhom + iωε0 curl Ehom = 0. (27)

The homogenized equation then clearly follows from the system (A22):

curl
([

ε−1
hom

]
(curl Hhom(x))

) − k2
0[µhom]Hhom(x) = 0.

with the effective permittivity defined by:

[εhom] = 〈ε̃(x, y)(I − ∇yVY )〉Y ,

and the effective permeability defined by:

[µhom] = 〈µ̃(x, y)(I − ∇yWY )〉Y .

Appendix B: Convergence of the diffracted field

LEMMA B.1 Let � be a smooth bounded open subset in R
3, (uη) a bounded sequence in

[L2(�)]
3

such that for a given sequence of coercive and bounded symmetric matrices µη


div(µηuη) = 0

sup
η

∫
�

(
| uη |2 + | curl uη |2

)
dx < +∞

uη ∧ n is bounded in [H
1
2 (∂�)]

3
.
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Then ∃u0 ∈ H (curl, �), ∃u1 ∈ L2(�, H 1

 (curl, Y )) and a subsequence (still denoted by (uη))

such that: 


uη ⇀⇀ u0(x, y)

curl uη ⇀⇀ curlx u0(x, y) + curly u1(x, y)

div(µηuη) ⇀⇀ divx (µ0(x, y)u0(x, y)) + divy(u1(x, y)) = 0

η div(uη) ⇀⇀ divy(u0(x, y))

(for the sake of simplicity we denote by µ0(x, y) the limit of µη, assuming that there is no
confusion in the present mathematical section with the value µ0 = 4.10−7π N · A−2 of the
permeability of vacuum).

Remark B1 If µη is constant, divx (u0(x, y)) = 0 in L2

(� × Y ), i.e.

a.e.x ∈ �, divy u1(x, y) = 0 (B1)

This implies

∇ uη ⇀⇀ ∇x u0(x, y) + ∇y u1(x, y) (B2)

Noting that there is a constant C > 0 (which only depends upon the measure of �) such
that [51]

‖uη‖[H 1(�)]3 ≤ C
{‖uη‖[L2(�)]3 + ‖curl uη‖[L2(�)]3 + ‖div uη‖[L2(�)]3 + ‖uη ∧ n‖

[H 1
2 (∂�)]

3

}
(B3)

we get

sup
η

‖uη‖[H 1(�)]3 < +∞ (B4)

and Rellich’s lemma ensures us that uη → u0(x) strongly in [L2(�)]
3
, thus (B2) implies that

∇ uη ⇀⇀ ∇ u0(x) + ∇y u1(x, y) (which is the classical result of G. Allaire [23]).

B.1 Proof of Lemma B.1, first step: uη ⇀⇀ u0(x, y) such that divy(µ0(x, y)u0(x, y)) = 0
and curly(u0(x, y)) = 0

(i) uη and div(µηuη) are bounded in [L2(�)]
3

and L2(�) and are therefore two-scale converging

(up to a subsequence) to u0(x, y) ∈ [L2(� × Y )]
3

and χ0 ∈ L2(�×Y ). Let ϕ ∈ D(�; C∞

 (Y ))

then

lim
η �−→0

∫
�

div(µηuη)ϕ

(
x,

x

η

)
dx =

∫∫
�×Y

χ0(x, y) · ϕ(x, y) dxdy (B5)

Using the Green’s formula, (B5) can be rewritten as
∫∫

�×Y χ0(x, y)ϕ (x, y) dxdy =
limη �−→0 Iη with

Iη =
[
−

∫
�

µηuη · (∇x ϕ)

(
x,

x

η

)
dx − 1

η

∫
�

µηuη · (∇y ϕ)

(
x,

x

η

)
dx

]
(B6)

Since Iη is bounded, we deduce from (B6) that

0 = lim
η �−→0

ηIη = lim
η �−→0

[
−

∫
�

µηuη · (∇y ϕ)

(
x,

x

η

)
dx

]
. (B7)
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Taking the two-scale limit of µηuη which is bounded in L2(�), we get:∫∫
�×Y

µ0(x, y)u0(x, y) · (∇y ϕ)(x, y) dxdy = 0. (B8)

In (B8) we choose the particular test function ϕ(x, y) = θ (x)ψ(y) where θ ∈ D(�) and ψ ∈
C∞


 (Y ). We obtain the equation (valid for almost all x ∈ �):

divy(µ0(x, y)u0(x, y)) = 0 dans D′(Y ). (B9)

(ii) Similarly to (i), let uη and curl(uη) be bounded in [L2(�)]
3

and therefore two-scale

converge (up to a subsequence) to u0(x, y) ∈ [L2(� × Y )]
3

and χ1 ∈ [L2(� × Y )]
3
. Let ϕ ∈

[D(�; C∞

 (Y ))]3 then

lim
η �−→0

∫
�

curl(uη) · ϕ

(
x,

x

η

)
dx =

∫∫
�×Y

χ1(x, y) · ϕ(x, y) dxdy. (B10)

Applying the Green’s formula, and taking the two scale-limit in the rescaled rotational
curl ϕ(x, x

η
) = (curlx ϕ)(x, x

η
) + 1

η
(curly ϕ)(x, x

η
), we obtain∫∫

�×Y
u0(x, y) · (curly ϕ)(x, y) dxdy = 0, ∀ϕ ∈ [D(�; C∞


 (Y ))]3
. (B11)

Hence, the equation (valid for almost all x ∈ �)

curly(u0(x, y)) = 0 in [D′(Y )]3
. (B12)

B.2 Proof of Lemma B.1, second step: Identification of χ0 given by (B5)

Let ϕ ∈ D(�; C∞

 (Y )) be such that ∇y ϕ = 0 and let us take the limit when η → 0 in (B6).

Integrating by parts, we deduce that ∀ϕ ∈ D(�; C∞

 (Y )):∫∫

�×Y
[χ0(x, y) − divx (µ0(x, y)u0(x, y))]ϕ(x, y) dxdy = 0. (B13)

Now, we localize in x : taking ϕ such that ϕ(x, y) = θ (x)ψ(y) with ψ ∈ C∞

 (Y ) such that

∇y ψ = 0 and θ ∈ D(�) in (B13), we get:

a.e. x ∈ �,

∫
Y

(
χ0(x, y) − divx (µ0(x, y)u0(x, y))

)
ψ(y) dy = 0. (B14)

We extend (B14) by density to every function ψ ∈ L2

(Y ) such that ∇y ψ = 0. To characterize

the set of functions �, we consider the following set

M = {w ∈ L2

(Y ) | ∃v ∈ [H 1


 (Y )]
3

divy v = w},

which is a closed subset of L2

(Y ) and with an orthogonal characterized by

M⊥ = {ψ ∈ L2

(Y )

∣∣ ∇y ψ = 0}.

From (B14) we deduce that χ0(x, .) − divx (µ0(x, .)u0(x, .)) ∈ M⊥⊥ = M (M is closed).
Therefore, there exists u1(x, .) ∈ [H 1


 (Y )]3 such that χ0(x, .) = divx (µ0(x, .)u0(x, .)) +
divy u1(x, .).
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B.3 Proof of Lemma B.1, third step: The singularly perturbed limit divy(u0(x, y)) of
η div(uη)

uη and η div(uη) are bounded in [L2(�)]
3

and L2(�) and are therefore two-scale converging

(up to a subsequence) to u0(x, y) ∈ [L2(� × Y )]
3

and χ1 ∈ L2(�×Y ). Let ϕ ∈ D(�; C∞

 (Y ))

then

lim
η �−→0

∫
�

η div(uη)ϕ

(
x,

x

η

)
dx =

∫∫
�×Y

χ1(x, y) · ϕ(x, y) dxdy, (B15)

(B15) can be rewritten as
∫∫

�×Y χ1(x, y)ϕ(x, y) dxdy = limη �−→0 Iη with

Iη =
[

−
∫

�

ηuη · (∇x ϕ)

(
x,

x

η

)
dx −

∫
�

uη · (∇y ϕ)

(
x,

x

η

)
dx

]
. (B16)

Taking the two-scale limit of uη which is bounded in L2(�), we get:∫∫
�×Y

χ1(x, y) · ϕ(x, y) dxdy = −
∫∫

�×Y
u0(x, y) · (∇y ϕ)(x, y) dxdy. (B17)

B.4 L2 bounds on (Eη, Hη) and its curl

We now consider a radius R > 0 and a bounded subset � of R
3 such that � := {| x |< R}

satisfies �̄ ⊂ �.

LEMMA B.2 Let (Eη, Hη) be a solution of P (E,H )
η such that supη

∫
�

| Hη |2dx < +∞. If εη

and µη are lower and upper bounded on �, the sequences (Eη), (curl Eη) and (curl Hη) are

bounded in [L2(�)]
3
.

Proof Thanks to (1a) and (1b) inPη, we just have to show that supη

∫
�

| curl Hη |2dx < +∞.

Assuming that (Hη) is bounded in [L2(�)]
3
, the equation (4a) of PH

η ensures us that

(curl( 1
εη(x) curl Hη)) is also bounded in [L2(�)]

3
. Multiplying (4a) by the test function ϕη

in [D(R3)]3 and integrating over � leads us to:∫
�

curl

(
1

εη(x)
curl Hη

)
· ϕη dx − k2

0

∫
�

µη Hη · ϕη dx = 0, ∀ϕη ∈ [D(R3)]3 (B18)

Now, the Poynting identity ensures that for every test function ϕη in [D(R3)]3:∫
�

curl

(
1

εη(x)
curlHη

)
· ϕη dx =

∫
�

1

εη(x)
curlHη · curlϕη dx

+
∫

�

div

(
1

εη(x)
curlHη ∧ ϕη

)
dx . (B19)

Green’s theorem applied to the sequence of functions ψη(x) = 1
εη(x) curlHη ∧ ϕη in [L2(�)]3

whose divergence belongs to L2(�) tells us that there exists a sequence (ψη · n) in H− 1
2 (∂�)

such that: ∫
�

div ψη dx = 〈ψη · n , 1〉
H− 1

2 (∂�),H
1
2 (∂�)

(B20)
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From (B19), we derive that for every test function ϕη in [D(R3)]3:∫
�

curl

(
1

εη(x)
curlHη

)
· ϕη dx =

∫
�

1

εη

curlHη · curlϕη dx

−
〈
(n ∧ ϕη) ·

(
1

εη

curlHη

)
, 1

〉
H− 1

2 (∂�),H
1
2 (∂�)

(B21)

From (B18) it follows that for all ϕη in [D(R3)]
3
:∫

�

1

εη(x)
curl Hη · curl ϕηdx − k2

0

∫
�

µη Hη · ϕηdx

= 〈(n ∧ ϕη

) · ( 1

εη

curl Hη

)
, 1〉

H− 1
2 (∂�),H

1
2 (∂�)

(B22)

We now note that εη = 1 on ∂�. Thanks to the density of [D(R3)]
3

in [L2(R3)]3, we can
choose ϕη = Hη, and we are thus led to:∫

�

1

εη(x)
| curl Hη |2dx − k2

0

∫
�

µη| Hη |2dx

= 〈(n ∧ Hη

) · curl Hη, 1〉
H− 1

2 (∂�),H
1
2 (∂�)

(B23)

Since (Hη) converges weakly in [L2(�)]3 and satisfies �Hη + k2
0 Hη = 0 in R

3 \ �̄, from
the hypo-ellipticity of the Helmholtz operator, (Hη) extended to [L2(R3)]3 via Stratton–Chu
formula

(SC)




Ed
η (x) = iωµ0

∫
|y|=r

G(x − y)

(
y

r
∧ H d

η (y)

)
ds

+
∫

|y|=r
∇ G(x − y)

(
y

r
∧ Ed

η (y)

)
ds (B24a)

H d
η (x) = −iωε0

∫
|y|=r

G(x − y)

(
y

r
∧ Ed

η (y)

)
ds

+
∫

|y|=r
∇ G(x − y)

(
y

r
∧ H d

η (y)

)
ds (B24b)

where G is the Green’s function G(x) = 1
4π

eik0 |x |
|x | and |x | > R. The sequence (Hη) thus uni-

formly converges (as well as all its derivatives) on every compact K ⊂ R
3 \ �̄. Therefore, we

deduce that:

lim
η→0

〈(n ∧ Hη) · curl Hη, 1〉
H− 1

2 (∂�),H
1
2 (∂�)

= 〈(n ∧ H0) · curl H0, 1〉
H− 1

2 (∂�),H
1
2 (∂�)

(B25)

Also, the integral k2
0

∫
�

µη(x)| Hη |2dx is bounded by hypothesis (µη is upper bounded).
Taking the limit in (B23), we conclude that

∫
�

1
εη(x) | curl Hη |2dx remains bounded. Besides,

1
εη(x) is lower bounded in �, hence the conclusion.
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[9] Bouchitté, G., Felbacq, D. and Zolla, F., 2005, Do Fresnel coefficients exist?. Wave Motion, 42, 75–95.

[10] Yablonovitch, E., 1987, Inhibited spontaneous emission in solid-state physics and electronics. Physical Review
Letters, 58, 2059–2062.

[11] Datta, S., Chan, C.T., Ho, K.M. and Soukoulis, C.M., 1993, Effective dielectric constant of periodic composite
structures. Physical Review B, 48, 14936–14943.

[12] Halevi, P., Krokhin, A.A. and Arriaga, J., 1999, Photonic crystal optics and homogenization of 2D periodic
composites. Physical Review Letters, 82, 719–722.

[13] Krokhin, A.A., Halevi, P. and Arriaga, J., 2002, Long-wavelength limit (homogenization) for two-dimensional
photonic crystals. Physical Review B, 65, 1551.

[14] McPhedran, R.C., 1986, Transport properties of cylinder pairs and of the square array of cylinders. Proceedings
of the Royal Society A-Mathematical Physical and Engineering Sciences, 408, 31–43.

[15] Bensoussan, A., Lions, J.L. and Papanicolaou, G., 1978, Asymptotic Analysis for Periodic Structures (Amster-
dam: North-Holland).
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