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The design of metamaterials for microwave devices with new properties is an active field of research.
Various kinds of structures such as the ‘Swiss roll’ are proposed as candidates with innovative prop-
erties. In order to model such structures, we consider the out-of-plane propagation of electromagnetic
waves in a lattice with arbitrary dielectric or perfectly conducting inclusions. The problem is reduced
to finding Bloch modes characterized by a transverse Bloch propagation vector, a longitudinal prop-
agation constant, and a pulsation. The dispersion curves obtained give the relevant information on
the physical properties of the equivalent material. Eventually, an asymptotic approach is given which
allows us not only to foresee the first dispersion curves but also to determine precisely enough the
main characteristics of the map of the corresponding modes.

1. Introduction

In this paper, we consider the out-of-plane propagation of electromagnetic waves in lattices
with Swiss roll inclusions. The problem is reduced to finding Bloch modes characterized
by a transverse Bloch propagation vector kT, a longitudinal propagation constant β, and a
pulsation ω. These modes also have to satisfy both the Maxwell equations and the Floquet–
Bloch theorem. Because of the non-vanishing β, a full wavevector model involving the three
components of the electric field (or magnetic field) is necessary. The numerical model is a
finite element method (edge elements for the transverse component and node elements for the
longitudinal component) together with Bloch boundary conditions [1]. Given k = (kT, β), a
numerical matrix eigenvalue problem is solved to find the corresponding ω’s.

2. Periodic waveguides

We consider a structure invariant along the z-axis and also periodic in the xy-plane, as shown
in figure 1.

2.1 Invariance along the z-axis: Propagation

Choosing a time dependence in e−iωt , and taking into account the invariance of the guide
along its z-axis, we define time-harmonic two-dimensional electric and magnetic fields E and
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572 F. Zolla et al.

Figure 1. A system with a continuous translational invariance along the z-axis together with a two-dimensional
periodicity in the xy-plane and the general form of propagating Bloch modes U(x, y, z, t), U(x, y) being a periodic
function.

H by:

E(x, y, z, t) = �e(E(x, y) e−i(ωt−βz))

H(x, y, z, t) = �e(H(x, y) e−i(ωt−βz)) (2.1)

where ω is the angular frequency and β is the propagating constant of the guided mode (β
is supposed to be a non-negative real number). Note that E and H are complex valued fields
depending on two variables (coordinates x and y) but still with three components (along the
three axes). Moreover, the following operator is used in the sequel:

curlβU(x, y) = curl(U(x, y)eiβz)e−iβz . (2.2)

2.2 Periodicity in the xy-plane: Floquet–Bloch theory

Given two linearly independent vectors a and b in the xy-plane, the set of points {na +
mb, n, m ∈ Z} is called the lattice. The primitive cell Y is a subset of R

2 such that for any
point r′ of R

2 there exist unique r = xex + yey ∈ Y and n, m ∈ Z such that r′ = r+na+mb,
as shown in figure 2(a). A function U (r) is Y -periodic if U (r + na + mb) = U (r) for any
n, m ∈ Z.

The waveguide is Y -periodic if εr (x, y) and µr (x, y) are Y -periodic functions. The problem
reduces then to looking for Bloch wave solutions UkT that have the form:

UkT (r) = eikT·rU(r) = ei(kx x+ky y)U(x, y) , ∀ (x, y) in R
2 (2.3)

where U(x, y) is a Y -periodic function and kT = kx ex + kyey ∈ Y ∗ ⊂ R
2 is a parameter

(the Bloch vector or quasi-momentum in solid state physics). Y ∗ ⊂ R
2 is the dual cell (first

Brillouin zone), i.e. the primitive cell of the reciprocal lattice determined by the two vectors
a∗ and b∗ such that a∗ · a = 2π , a∗ · b = 0, b∗ · a = 0, b∗ · b = 2π , as shown in figure 2(b).
Such solutions UkT are said to be (kT, Y )-periodic in the sequel (though they are not periodic
but almost-periodic). The pair (EkT , HkT ) associated with the Bloch vector kT is called an
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Swiss roll lattices 573

Figure 2. An example of a two-dimensional periodic structure (the basic cell is a square with a side length �): a
representation of some lattice cells with the lattice vectors a = �ex and b = �ey (a) and a representation of some
cells of the reciprocal lattice with the lattice vectors a∗ = 2π

�
ex and b∗ = 2π

�
ey (b).

electromagnetic propagating Bloch mode if EkT and HkT are (kT, Y )-periodic fields satisfying
the spectral problem:

εr (x, y)−1curlβHkT = −iωε0EkT

µr (x, y)−1curlβEkT = iωµ0HkT (2.4)

with (ω, kT) ∈ R+ × Y ∗ and (EkT , HkT ) �= (0, 0). The point is that any solution of Maxwell’s
equations in the considered periodic structure can be expressed in terms of linear combinations
of Bloch waves (Bloch theorem, see e.g. [1]).

2.3 Finite elements

The finite element formulation is completely identical to the non-periodic one for waveguides:
it is a full wave model where the electric field EkT is the unknown, with edge elements for
the transverse component and node elements for the longitudinal component [1, 3, 4]. The
study is now reduced to the primitive cell Y which is meshed and in which the integrations
are performed. Some technique must be found to ensure that the solution is a (kT, Y )-periodic
Bloch mode. This can be imposed by using special boundary conditions as explained in [1, 3].

3. Geometry of Swiss rolls

In this paper, we only deal with Swiss rolls as ideal structures which can be considered as
infinitely thin sheets made of perfectly conducting metal and therefore these ideal structures
can be represented by a curved line where the tangential electric field is forced to zero. The
aforementioned curved lines are built as a juxtaposition of quarters of circles (C1, C2. . . , CN ,
in figure 3) of different radii and different centers (four in our model) in such a way that the
curved line � is a spiral of class C1.
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574 F. Zolla et al.

Figure 3. Swiss rolls: A perfectly conducting, infinitely thin rolled sheet within a dielectric bulk with εr = 1. and
µr = 1. (a) The Swiss rolls are considered as a juxtaposition of quarters of circle. The radii and the centers (four in
our model) of these quarters of circle are chosen in such a way that the spiral � is of class C1. (b) The Swiss rolls are
ideal structures; both infinitely thin and made of perfectly conducting metal.

4. A square lattice of Swiss rolls

In this paragraph, some results concerning lattices of Swiss rolls are presented. The structure
considered here is a unit square lattice (the Brillouin zone is then a square with a side length
equal to 2π ) with inclusions that are wrapped metallic sheets (figure 3).

Figure 4 shows an example of dispersion curves for some conical incidence. Although
the structure is not strictly isotropic we disregard this fact and consider the irreducible Bril-
louin zone of a circular inclusion. This is only for the sake of simplicity of the graphical

Figure 4. Band diagram of a triple loop Swiss roll lattice for β = 2 m−1 versus ω
c on the boundary of the irreducible

Brillouin zone depicted by the points ‘·’ together with the propagating modes corresponding to the ‘obstructed’ Swiss
roll depicted by the points ‘◦’. Note that although the obstructed Swiss rolls were a good approximation for the
propagative modes, some significant discrepancies may appear. See, for instance, the points within the dashed box.
As a result, band diagrams have to be computed accurately enough.
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Swiss roll lattices 575

Figure 5. A twisted sheet is unrolled to an equivalent rectangular waveguide.

representations. Moreover, for the sake of clarity, in our numerical experiments, we only deal
with εr = 1 and µr = 1. The most striking fact are the almost perfectly flat lines crossing the
diagram. In order to understand their origin, the dispersion diagram is first compared with
the dispersion diagram of closed cylinders: the outer boundary is the same as the one of the
open Swiss roll but the outer opening is closed by a perfectly conducting segment so that
the electromagnetic field is considered only in the intersticial space between the cylinders.
It appears that this diagram matches more or less the curved parts of the Swiss roll diagram
(figure 4). This suggests that the remaining curves correspond to localized modes ‘inside’ the
rolls i.e. inside the interstices of the Swiss roll or within the interior cavity (see figure 5).

5. Computation of internal localized modes

5.1 Interstitial localized modes

To confirm the hypothesis made above, these interstitial localized propagation are computed.
For such a mode, the curvature of the roll is probably negligible and, in order to obtain an
analytical estimation, the structure is unrolled (figure 5) to an equivalent rectangular waveg-
uide (length L , height h 
 L) with perfectly conducting boundaries on the long sides (ho-
mogeneous Dirichlet condition) and no current on the small sides (homogeneous Neumann
condition). The eigenfrequencies for propagating modes in such a structure are given by:

k2
0,n,m =

(
β2 + m2 π2

L2
+ n2 π2

h2

)
/εr m, n ∈ N

where εr is the relative permittivity inside the interstices of the Swiss roll. As h is much smaller
than L , the lower frequencies correspond to n = 0 and are indexed by m and therefore the
corresponding normalized eigenfrequencies are approximately given by

k0,m =
√(

β2 + m2
π2

L2

)
/εr

Figure 6 and table 1 show that this is obviously a good estimation for the flat curves.
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576 F. Zolla et al.

Figure 6. Band diagram of a three loop Swiss roll lattice for β = 2 m−1 versus ω
c on the boundary of the irreducible

Brillouin zone depicted by the points ‘·’ together with the localized modes depicted by the straight-lines ‘--------�--------’
(Interstitial localized modes) , ‘--------◦--------’ (internal localized T.E. modes) and ‘--------•--------’ (internal T.M. localized modes).

5.2 Internal localized modes

The second kind of localized modes concerns the modes which are concentrated within the
core of the Swiss roll. Once again, in order to obtain estimations in closed form, we assume
that the core of the Swiss roll is pretty well approximated by a closed circular cavity, the radius
of this circular cavity being the mean radius Rint of the four most internal quarters of circle
(C1, C2, C3 and C4 on figure 3a). The computation of the constants of propagation associated
with such modes is well known and depends on the polarization and are linked with the zeroes
of Bessel functions, namely:

J′
n(κn,m Rint) = 0 (T.E. modes) Jn(κn,m Rint) = 0 (T.M. modes),

Table 1. Detail for the first 23 modes for a Bloch vector kT = πex + 2ez (corresponding to the point X ). The
points (·) represent the the propagative modes whereas �, ◦ and • represent the internal localized modes

corresponding respectively to interstitial and cavity (with Dirichlet and Neumann conditions) modes. Moreover,
ωn/c (resp. ω∗

n/c) represent exact (resp. approximative) normalized eigenfrequencies.

ωn/c ω∗
n/c Nature of modes ωn/c ω∗

n/c Nature of modes

2.1497 2.1487 � 6.5190 6.6561 ·
2.5356 2.5431 � 6.5847 6.5938 �
2.9239 2.9259 · 6.8852 6.8886 ·
3.0721 3.0906 � 7.2871 7.3461 �
3.6902 3.7242 � 7.9267 8.3174 ·
4.2225 4.2901 · 8.0781 8.0821 �
4.4087 4.4070 � 8.0886 8.1046 •
5.0784 5.1192 � 8.3332 8.4380 ·
5.7837 5.8503 � 8.7357 9.0014 ·
5.8533 5.8567 · 8.7811 8.8679 �
6.2776 6.3202 ◦ 9.0322 9.0374 ·
6.3391 6.3202 ◦
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Swiss roll lattices 577

Figure 7. Maps of the total electromagnetic energy density of the first 15 modes together with their exact (resp.
approximated) normalized eigenfrequencies ωn/c (resp. ω∗

n/c) (see table 1).
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578 F. Zolla et al.

which leads to resonant normalized eigenfrequencies:

k ′
0,n,m =

√(
β2 + κ2

n,m

)
/ε′

r .

Figure 6 and table 1 show that the approximation is relevant even for high frequencies (ω
c ≈ 10).

6. Parametrizable Swill rolls: Dressed dispersion curves

As explained in the previous paragraph, the band diagram associated with the Swiss rolls
can be seen as the juxtaposition of a ‘classical’ band diagram associated with propagating
modes and flat curves associated with internal localized modes. Besides, it is worth noting
that, for a given β, the eigenfrequencies associated with interstitial modes only depend on
L and this length is independent of the external size of of the Swiss roll. If, for any reason,

an eigenfrequency k0,1 =
√(

β2 + π2

L2

)
/εr is required, several loops are necessary for a small

Swiss roll whereas a quarter of loop may be sufficient for a Swiss roll which almost entirely
fills the basic cell of the lattice. As a result, a classical band diagram can be dressed ad libitum
by an independent band diagram associated with localized modes. By way of example, figures
7 and 8 show various maps of eigenfields for a large and a small Swiss roll. The distinction
between localized and propagative modes is manifest. As claimed above, note, in figure 8,
that the intersticial mode associated with the twelfth mode which lies within the interstices

Figure 8. Four consecutive different modes associated with a small sextuple loop Swiss roll corresponding to the
point X .
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Swiss roll lattices 579

corresponds to a pretty small eigenfrequency ω12/c = 9.5088. This fairly surprising result is
due to the six loops of the Swiss roll in question.

7. Conclusion

Optical and microwave metamaterials are expected to allow the development of innovative
devices. The versatility of the finite element method allows a fast and easy exploration of the
properties of such composite materials involving quite complicated geometries.

In the case of the Swiss roll lattice, for instance, it gives hints to fully explain the physical
behavior of the structure. The metallic cylinder lattice has a large forbidden gap where the
localized modes of the rolls can lie. The rolled structure gives a large equivalent length that
allows us to reach frequencies that are low enough to lie inside the gap. The obtained flat
curves correspond to null transverse group velocity that guarantees the extreme anisotropy of
this material required by some applications [2].
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