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Comparison of various methods for the modeling of thin magnetlc platesa)
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Computation of the magnetic field in thin plates is particularly difficult because nodes on
opposite sides of the plate are very close together and because the elements inside the plate are
very flat. Three different methods, together with corresponding variations and
combinations were used to compute the magnetic field in the plate: the boundary element
method, the finite element method, and use of thin plate transmission conditions.

With classical methods, the results are good for all cases, provided the computation of
coefficients is sufficiently accurate. For very thin plates, a fine meshing is required to avoid
failure of the computation. A new method that avoids those problems was designed.

Since the vector potential varies very steeply across the plate, the idea is to replace the real
plate by an equivalent double layer of current. The result is a special transmission

condition, relating the values of the vector potential and of the tangential magnetic field on
both sides of the plate. This condition does not depend on the kind of numerical

method used and has been introduced in finite element and boundary element methods.
Comparison with previous results shows that this highly economical method is both accurate
and valid. This is the case even for very thin plates, where other methods fail, particularly

if the meshing is too coarse.

I. INTRODUCTION

Computation of the magnetic field in thin steel plates is
particularly difficult because the nodes on opposite sides of
the plate are very close together.' In numerical computa-
tions, the ccefficients associated with the nodes are very
similar and lead to an ill-conditioned system. The most
common methods used in magnetic-field numerical com-
putation are the finite element method and the boundary
element method. To provide the desired level of accuracy
for the coefficients we used adaptative integration methods
and required a relative precision of 10~ *, '

As those methods are quite costly in computation time,
a new method which avoids those problems was designed.
Since the vector potential varies very steeply across the
plate, the idea is to replace the real plate by an equivalent
double layer of current.

Accordingly, the steep variation of the vector potential
is replaced by a discontinuity depending on the character-
istics of the plate and on the tangential field. The result is
a special transmission condition, relating the values of the
vector potential and of the tangential magnetic field on
both sides of the plate. This condition does not depend on
the kind of numerical method used and has been intro-
duced in finite element and boundary element methods.

In this paper, we restrict ourselves to the two-dimen-
sional case where the potential vector has only one com-
ponent. -

Il. NUMERICAL METHODS

The direct boundary element method (BEM) is based
on the Green’s function and the Green’s identity.? In two-
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dimensional magnetostatics the vector potential has only
one component and we use

§ A 3G/dn dT" — é G 0A4/dn dr, (1
(s :

where G is the free-space Green’s function of the two-
dimensional laplacian; ¢=0.5 on a smooth boundary; 4 is
the vector potential; and d/dn is the normal derivative.
Integrals are taken on the boundary I of the domains and
the method involves no internal nodes.

The finite element method (FEM) is based on the
Galerkin method? and uses, for a domain Q of boundary I,

J- (v grad 4 grad w — Jw)dQ
Q

_ 35 w v 34/3n dT =0, )
f |

with 4 the unknown vector potential, v the magnetic re-
luctivity, J the current density, and w the weighting func-
tion. This method involves internal points.

The boundary term allows us to take 4 and d4/9n as
unknown on the boundary. This can be used to couple the
boundary element method and the finite element method.
At a boundary point between two domains, 4 and dA4/dn
are supposed unknown in each domain. BEM or FEM give
an equation for each domain.

Two more equations are necessary to close the system.
In the interface between two magnetic media those condi-
tions are the continuity of the potential vector 4 and of the
tangential magnetic field v d4/dn = H,.
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lll. TRANSMISSION CONDITIONS FOR THIN
MAGNETIC PLATES

A thin magnetic plate of thickness e and permeability
M3 separating two media of permeability respectively Uy
and p, is considered (see Fig. 1). In the indirect boundary
element method the interface between two media is re-
placed by a surface current. If this technique is applied to
the thin plate it is replaced by equivalent surface currents,
K on one side and K, on the other, which are very close
together. ;

The approximation is to consider those two layers as a
superposition of a single layer of current X and a double
layer of current K at the middle of the plate. Using the
indirect boundary element formulation we find

K=K, — K)=2(u — ) [(B/110) /(111 + p2) 1, (3)
Ki=(K,+K3)/2

= (11 + p2 — 2u3) [(B/uo) /(11 + 1) 1, (4)

where B, is the magnetic field tangential to the middle axis
of the plate and given by

B,=(04/3n, + 34/3n,) /2. (5)

Subscripts 1 and 2 are for media 1 and 2, respectively, and
Ko is the free-space permeability.

Returning to the direct formulation, the expressions
for K; and K, can be used to express the discontinuity of 4
and d4/dn (tangential induction) due, respectively, to the
equivalent double layer and single layer of current:

[Cey = p12)/ (g + 12) 1(34/3ny + 3A4/3n,)
=dA4/0n; — 3A4/0n,, (6)

Qe+ pa — 2u3)/(py + 1) 1(84/0ny + 3A/3ny)e/2
=A, — 4. (7)

Equation (6) can be rewritten as

v, 04/3n,=v, 04/0n,y. ‘ (8

These conditions can be used as transmission conditions at
the boundary between two domains to take into account a
thin magnetic plate. They can be used without regard to
the numerical method and need no addition of mesh
points. For instance, the transmission conditions can be
used in the finite element method as follows.

- The thin steel plate to be modeled must be defined as a
part of the boundary between two subdomains (named
domain 1 and domain 2). At each node of this boundary,
four degrees of freedom are assumed: the vector potential
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FIG. 2. Test problem: a coil above a thin magnetic plate.

values 4; in domain 1 and 4, in domain 2 and the tangen-
tial induction values d4/dn, in domain 1 and 0A4/dn, in
domain 2. -

Equation (2) leads in each domain to a finite element
equation involving the vector potential and the tangential
induction in this domain. So we have two finite element
equations: one for domain 1 and one for domain 2. Two
equations are missing and therefore the transmission con-
ditions (7) and (8) complete the system.

IV. RESULTS

As a test computation the simple case of a “2D” coil
0.1 m above a thin magnetic plate of length 0.5 m, thick-
ness e=1 mm (aspect ratio 1/500), and relative perme-
ability 10 000 (Fig. 2) is taken. The “coil”’ consists of wires
carrying equal and opposite currents of 1 A, separated by
0.2 m. The field lines in this structure are shown in Fig. 3.
This computation has been made with second-order finite
element and special transmission conditions. The disconti-
nuity of the potential vector and the screening effect of the

- plate are obvious.

FIG. 3. Field lines around
~ the thin magnetic plate.
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FIG. 4. Induction variation 1 mm above the thin magnetic piate.

Figure 4 shows the variation of the magnetic induction
just above the plate (line 1 of Fig. 2). Here the computa-
tion has been made with first-order classical boundary el-
ements. At the ends of the plate there are high peaks due to
a kind of point effect.

Figure 5 shows the variations of the magnetic induc-
tion through the plate (line 2 of Fig. 2). A discontinuity
occurs across the plate, and the screening effect appears
clearly. As a comparison of various numerical methods,
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FIG. 5. Induction through the thin magnetic plate.
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TABLE I. Comparison of B(uT) for various methods.

Point X(m) Y(m) BEM FEM FEMBEM TCFEM TCBEM
A 0 02 270 218 2.18 2.44 2.19

B 0 0.1 471 450 4.50 459 - 452
C 0 0 3.69 3.59 359 . 361 3.67
D 0 —0.003 0.324 0.422 0.422 0.346 0.327
E 0.1 0 0.974 0.599  0.599 0.741 0.628
F 0.25 0 3.39  3.06 3.06 3.50 3.68

Table I gives the values of the induction at various char-
acteristic points (Fig. 2). The methods compared are: the
finite element method (FEM); the boundary element

" method (BEM); the coupling of the boundary element

method outside the plate and the finite element inside
(FEMBEM); the transmission conditions used with the
finite element method (TCFEM); and the transmission
conditions used with boundary element method
(TCBEM).

The length of the plate is divided in 50 elements and all
the elements are of the first order. The quality of the var-
ious methods is very similar, with a small advantage to the
boundary element methods only due to the fact that finite
element methods assume a constant induction on each el-
ement.

V. CONCLUSION

The modeling of a thin magnetic plate is very difficult
and care is necessary in the numerical integration and in
the algebraic system resolution. Finite elements and
boundary elements with adaptative numerical integrations
give good results but are time-consuming. The method pro-
posed is much more economical. The inside of the plate is
not explicitly taken into account. The meshing of very thin
plates is often cumbersome but can be completely avoided
with this method. Moreover there is no theoretical limita-
tion to the lower limit of the thickness; the thinner the
better. Numerical results confirmed the validity of the
method.
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