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Summary

The paper addresses the issue of coupling between the electromagnetic and elastic vibrations
and deals with the following three classes of problems: vibration of thin bodies in an
electromagnetic field; a coupling that occurs due to perturbation of boundaries within a
deformed solid; and a coupling within regions of localized stress in a composite structure
with defects. It is shown that the coupling effect is negligibly small in the first case, while it
becomes important in the last two classes of problems. For vibrations of thin-walled conducting
solids placed in an electromagnetic field we present a systematic new asymptotic scheme. It is
observed that the magnetic field induces a ‘viscous force’, which is similar to certain problems
that occur in magnetic fluids flows. When we deal with electromagnetic waves propagating
through a thin-walled periodic structure subject to regular perturbation of the boundary, an
asymptotic method is applied to derive the effective boundary conditions for the perturbed
inclusion within the array. We examine the effect of this perturbation on the dispersion curves
for the corresponding spectral problem, and compare the asymptotic results with a finite element
modelling of the perturbed structure. Finally, we show exciting results describing coupling
between electromagnetic and elastic fields due to the localization associated with a defect mode
in a doubly periodic structure.

1. Introduction

It is known and well described in the classical literature that there is a coupling between
electromagnetic and elastic signals in elastic media. The famous example is Brillouin scattering,
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predicted in 1922 (1) and supported by experimental studies by Debye and Sears (2) in 1932. The
purpose of this paper is to analyse asymptotic models for isotropic media, where the coupling
between electromagnetic and elastic waves occurs, and to give appropriate classification. The
domains considered here are composite structures involving arrays of closely packed voids or
model thin-walled structures. This analytical study is motivated by important physical applications
associated with the design of photonic crystal fibres and described in the recent paper (3).

The classical sources describing the interaction between light and sound include monographs
(4 to 6), articles (7,8) and the recent monograph by Wolfe (9). These effects are extremely important
in the theory of photonic crystal fibres, as was confirmed by the studies (10 to 12).

Our structures have a common feature: they all contain thin elastic ligaments separating
inclusions/voids, and hence it seems natural to apply an asymptotic method to analyse coupled
fields within such domains. In this study we aim to conduct a comparative analysis of thin-walled
structures of different types and select the one where the coupling effects are most pronounced. It
will be shown in the text below that the defect modes associated with the highly localized strain are
the ones that bring the interesting and new effects. We consider three possible cases of coupling:
via the governing equations that involve the Lorentz force for an elastic conductor moving in the
electromagnetic field; via the boundary conditions posed on the boundary perturbed due to elastic
vibrations; and finally due to localization associated with the presence of the so-called defect modes
in composite structures. It will be shown that the last class (defect modes) dominates over the two
other types of coupling between elastic and electromagnetic waves.

The paper is organized as follows. We begin with the analysis of the model of a thin elastic
domain subject to time-harmonic motion in a constant magnetic field. An asymptotic approximation
shows that the transverse component of the magnetic field produces a ‘viscous force’ that would
supress longitudinal vibrations of the thin body. The conclusions of this section are consistent with
the analysis given by Maugin in (13, Chapter 5). It is also shown that the coupling effect is rather
small and becomes important only within the relativistic range of velocities. Despite the fact that
this physical effect is well known, the asymptotic procedure used to derive the lower-dimensional
model is original, and is included in Appendix A.

In section 3, we consider a thin-walled periodic structure whose boundaries are slightly perturbed,
due to an elastic deformation, for example. The motivation for this model comes from consideration
of an elastic composite structure vibrating in an electromagnetic field. Since the typical frequencies
of elastic and electromagnetic waves are of different orders of magnitude, one can take a ‘snap
shot’ of the deformed structure and analyse the corresponding spectral problem for equations of
electromagnetism. Assuming that the unperturbed structure consists of a doubly periodic array
of circular voids, we introduce a new perturbation problem where the contour of the void in
an elementary cell is regularly perturbed. We develop an asymptotic algorithm that produces a
correction of frequencies and analyse the dispersion diagrams. The results of the asymptotic analysis
are compared with the numerical test produced independently via the finite element algorithm.

Finally, in section 4 we again consider a thin-walled structure consisting of an infinite array of
circular voids, but on this occasion we introduce an array of periodically distributed defects. Of
course, the corresponding spectral problem will have new features, and in particular it exhibits
localized defect modes discussed in the main text of the paper. We speak about photoelastic
effects and interaction between electromagnetic and elastic waves associated with localization. In
addition to the key concept and numerical illustrations, we also propose a simple analytical formula
which provides an approximation for the frequency corresponding to the localized dilatational
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defect modes. We conclude by giving examples of multiple localization effects that can be used
in modelling optical switches and can stimulate further research.

2. Elastic displacements and electromagnetic fields within a thin domain

In the present section we analyse the problem of coupling between magnetic and elastic fields within
a thin conducting body. The asymptotic procedure used here has certain features in common with
the lubrication approximations for magnetic fluids.

2.1 Governing equations

Let us consider electromagnetic fields (E, H) and a thin domain

�ε = {(x1, x2) : |x1| < 1
2 , |x2| < ε/2}, (2.1)

where ε is a small non-dimensional parameter. Typically, it is common to use a characteristic length
l and width h and take the small parameter as the aspect ratio ε = h/ l ; here we certainly follow this
pattern but for the sake of simplifying the notation we introduce the normalization in such a way
that l = 1 and h = ε. The electric and magnetic fields E and H are divergence free,

∇ · E = 0 and ∇ · H = 0, (2.2)

and satisfy the system of Maxwell’s equations

∇ × H − 1

c

∂D
∂t

= J, ∇ × E + µ0

c

∂H
∂t

= 0,

where D is the electric displacement. We consider the vibrations of the thin body �ε characterized
by a displacement field u, which satisfies the equation of motion

µ∇2u + (λ + µ)∇(∇ · u) + µ0(J × H) = ρü, (2.3)

where λ and µ are the Lamé elastic moduli, µ0 is the permeability of the material in �ε and c is the
speed of light. Also, the electric current density J is related to E, H and u by Ohm’s law:

J = σ {E + µ0u̇ × H}, (2.4)

where σ is the electric conductivity of the thin body.

The initial boundary-value problem.Taking the curl in the first Maxwell’s equation

c∇ × (∇ × H) − ∇ × Ḋ = c∇ × J

and applying Ohm’s law (2.4) in the second Maxwell’s equation we obtain

c∇ × (∇ × H) − ∇ × Ḋ = µ0σ {−Ḣ + ∇ × (u̇ × H)}.
Since H is divergence free, ∇ × (∇ × H) = −∇2H. Therefore

−∇2H = c−1∇ × Ḋ + µ0σ {−Ḣ + ∇ × (u̇ × H)}. (2.5)



410 S. GUENNEAU et al.

Taking into account (2.4), we represent the equation of motion (2.3) in the form

µ∇2u + (λ + µ)∇(∇ · u) + µ0σE × H + µ2
0σ(u̇ × H) × H = ρü. (2.6)

Hence, E, H and u satisfy (2.2), (2.5) and (2.6) in �ε. It is assumed that in the exterior of �ε

there exists a constant electromagnetic field

E(e) = (E(e)
1 , E(e)

2 ), H(e) = (H (e)
1 , H (e)

2 ). (2.7)

The boundary conditions are set as

E|∂�ε = E(e), H|∂�ε = H(e) (2.8)

and

σi j (u)n j |∂�ε = 0, j is the index of summation, (2.9)

where n j are components of the unit outward normal, σi j = µ(∂ui /∂xj +∂u j /∂xi )+λδi j ∇ ·u. The
system is supplied with appropriate initial conditions; for example, we can assume that the inital
displacement and velocity fields are specified.

2.2 Longitudinal elastic vibrations in a transverse magnetic field

The asymptotic algorithm outlined in Appendix A shows a sequence of auxiliary model problems
on the scaled cross-section of the thin body. In particular, the solvability conditions of the problem
(A.9), (A.10) give a lower-dimensional model involving x1 and t derivatives of the leading-order
approximation u(0)(x1, t) of the displacement field. The illustration is then related to a particular
simple example when the ‘thin beam’ vibrates along the x1-axis, and the ambient magnetic field is
parallel to the x2-axis. In this case the longitudinal and transverse displacement modes in (A.9),
(A.10) decouple, and one can set u(0)

2 = 0. Also, we have H(0) = H (0)
2 e(2) and E(0) = E(0)

2 e(2) as
given vector functions. The boundary-value problem (A.9), (A.10) for u(2)

1 is solvable, provided

E

1 − ν2

∂2u(0)
1

∂x2
1

− ρü(0)
1 + µ2

0σ u̇(0)
1 (H (0)

2 )2 = 0, (2.10)

where E is the Young’s modulus, ρ the density, σ the conductivity, and ν is the Poisson ratio of the
thin elastic body. When σ = 0, (2.10) becomes the wave equation, as expected. On the other hand,
in the presence of a transverse magnetic field the equation contains the ‘viscous force’ term and the
elastic vibrations in the conducting beam attenuate.

We would like to refer to the lubrication type algorithms that were used in magneto-
hydrodynamics; see (14, Chapter 8). In this case the magnetic field will also produce a viscous
force which will flatten the velocity profile for a magnetic fluid flow in a channel. The model
problem associated with this effect is known in the literature as the Hartmann flow problem; see (15,
Chapter 4). Similar models describing coupling of elastic and electromagnetic fields were discussed
in (13). In particular, it is important to mention that the ‘viscous force’ term in (2.10) is very small.
It becomes significant only for fairly large values of the velocity or a large magnitude of the exterior
magnetic field: µ0 = 4π × 10−7N A−2 and the typical value of electrical conductivity for silver
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is σ = 0·62 × 108A2s3m−3kg−1, which implies that µ2
0σ = 9·791 × 10−5N s A−2m−2. This

coefficient is indeed much smaller than the coefficients near the second-order derivatives of u(0)
1

in (2.10). On the other hand, one may think of high-magnetic-field Tokamak experiments described
in (16): in this particular case, the ‘viscous force’ term in (2.10) becomes important.

In addition to the above analysis, one can think about a perturbation of the boundary of a thin body
due to an elastic deformation, and this may also bring a contribution towards the electromagnetic
fields. This effect may be amplified even further if we consider an infinite array (a network) of thin
ligaments associated with a doubly periodic array of closely located voids. In the following section,
we shall consider such a perturbation problem, which outlines more pronounced coupling between
elastic and electromagnetic fields through a regular perturbation of boundary conditions within a
composite structure.

3. A perturbation problem for an array of quasi-circular inclusions

In this section we show that a regular perturbation of the boundary is associated with the change of
eigenvalues for a certain spectral problem. The model considered in this section involves a scalar
spectral problem for the Helmholtz operator. In this particular case, we can think of a regular
perturbation associated with a deformation of an elastic body, and the perturbed geometry shows a
‘snap shot’ of a vibrating elastic structure. We use the fact that the ranges of frequencies for elastic
and electromagnetic waves are very different: the electromagnetic frequencies are much higher
compared with those in the acoustic range. The spectral problem considered here is associated with
the transverse electromagnetic field (TE polarization). The asymptotic analysis given below yields
an explicit analytical formula for the new perturbed eigenfrequencies.

3.1 A spectral problem

We consider a doubly periodic array of cylindrical inclusions; C denotes the boundary of the
crosss-section of a single cylinder, which is not necessarily circular. A transverse time-harmonic
electromagnetic wave propagating through this material can be represented by a scalar function
u(r, θ), which obeys the Helmholtz equation in the exterior of inclusions

(∇2 + k2)u = 0, (3.1)

where k = ω/c is the spectral parameter, with ω, c being the radian frequency and the wave speed,
respectively. On the boundary of the elementary cell, the function u satisfies the Bloch–Floquet
condition (see (5))

u(x + d) = u(x) exp(i kBloch · d), (3.2)

where x = (r, θ) and d is any vector that can be drawn from the centre of one elementary cell to the
centre of another cell within the array. The vector kBloch is commonly known as the Bloch vector.
We assume that on the boundary C of the inclusions

∂u/∂n|∂C = 0; (3.3)

for a TE polarization, this corresponds to perfectly conducting inclusions. The relationship between
k and kBloch is known as the dispersion relation for the array. The choice of perfectly conducting
inclusions is made for the sake of simplicity. The asymptotic algorithm, presented below, allows
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Fig. 1 The geometry for the unperturbed problem

for a straightforward generalization to the case of dielectric inclusions with transmission conditions
prescribed at their boundaries.

Given kBloch one can determine ω and u for a fixed geometry. However, if the boundary ∂C is
perturbed we shall see the change in the eigenfrequencies. This section gives analytical estimates
for such small perturbations.

3.2 Unperturbed model problem

We begin with a single, unperturbed, cell of the array, as shown in Fig. 1, and consider the exterior
region �0, with a boundary ∂C0∪B, where C0 = {(r, θ) : r � a} is the circular region which
corresponds to the body of the central inclusion, and B is the outer boundary of the central unit cell.
Within �0 we introduce the unperturbed field u0(r, θ), which satisfies

(∇2 + k2
0)u0 = 0, (3.4)

where k0 is the unperturbed spectral parameter. On the boundary of the inclusion we specify (as in
(3.3)) a homogeneous Neumann condition, ∂u0/∂n|∂C0

= 0. As mentioned above, the periodicity
of the problem requires that the Bloch–Floquet condition be satisfied throughout the unit cell: u0
satisfies (3.2). The solution u0 can be normalized with∫

�0

|u0|2d A = 1. (3.5)

We now note that this problem for circular cylinders is very well studied, and there are at least
three different methods available by which the solution can be constructed. These methods are
known as plane wave, multipole and transfer matrix methods (17 to 19).

3.3 Perturbation of the boundary

We now perturb the boundary, so that ∂C0 → ∂C1. The new boundary of the inclusion can be
described by the curve

r = a + εh(θ), (3.6)
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Fig. 2 Left: the geometry for the perturbed problem. The dashed line shows the unperturbed circular
boundary. Right: the contour to be used for the application of Green’s theorem

where h(θ) is a smooth function and ε is a small parameter such that εh(θ) � a. The region of
the perturbed inclusion is C1 = {(r, θ) : r � a + εh(θ)} and the region �1 is the remaining region
within the unit cell. Without loss of generality, we specify that h(θ) � 0, so that the unperturbed
inclusion C0 lies entirely within C1; see Fig. 2.

The solution to the perturbed problem is denoted by u1, and it satisfies

(∇2 + k2
1)u1 = 0, (3.7)

with the boundary condition

∂u1/∂n|∂C1
= 0. (3.8)

The function u1 also satisfies the Bloch–Floquet condition (3.2).

3.4 First-order correction for the eigenvalues

We would like to examine the effect of the perturbation of the boundary on the spectral parameter
k0. To do this, we apply Green’s theorem within the region �1, using the perturbed field u1 and a
function which is the complex conjugate of u0, which we designate u0. Using the contour depicted
in Fig. 2, we obtain∫

�1

(u0u1 − u1u0) d A =
∫

∂C1∪B

(
u1

∂u0

∂n
− u0

∂u1

∂n

)
d�. (3.9)

We now take into account the fact that the function u0 satisfies a conjugate quasiperiodicity
condition to (3.2), u0(x + d) = u0(x) exp(−i kBloch · d). This causes the integral around the
outer boundary B to be zero in (3.9). In addition, we know that u0 and u1 satisfy (3.4) and (3.7),
respectively, and so we deduce that

(−k2
1 + k2

0)

∫
�1

u1u0 d A =
∫

∂C1

(
u1

∂u0

∂n
− u0

∂u1

∂n

)
d�. (3.10)
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The problem is regularly perturbed, and hence the field will behave ‘reasonably’ in response to the
smooth perturbation of the boundary (20,21). Specifically,

u1 = u0 + O(ε) and
∂u1

∂n
= ∂u0

∂n
+ O(ε) in �1. (3.11)

In this case the eigenvalues will also behave reasonably, and we can write k1 = k0 + δk, where δk
is O(ε). With this in mind, we can write (3.10) as

−2k0δk
∫

�1

|u0|2 d A =
∫

∂C1

(
u1

∂u0

∂n
− u0

∂u1

∂n

)
d� + O(ε2).

Thanks to (3.5) and (3.11), we also know that∫
�1

|u0|2 d A =
∫

�0

|u0|2 d A+ O(ε) = 1 + O(ε),

and hence

δk=− 1

2k0

∫
∂C1

(
u1

∂u0

∂n
− u0

∂u1

∂n

)
d� + O(ε2)

=− 1

2k0

∫
∂C1

u1
∂u0

∂n
d� + O(ε2), (3.12)

using the boundary condition (3.8).

3.5 Further simplification

Next, we want a representation of ∂u0/∂n in terms of the values of the function u0 on the
unperturbed boundary. We represent the curve ∂C1 as being a level curve of �, where

�(r, θ) = r − εh(θ). (3.13)

The unit normal vector at each point is then given by n̂ = ∇�/|∇�|. The gradient of � is

∇�|∂C1
=

[
∂�

∂r
r̂ + 1

r

∂�

∂θ
θ̂

]
∂C1

= r̂ − εh′(θ)

a
θ̂ + O(ε2),

and so n̂|∂C1
= r̂ − (ε/a)h′(θ)θ̂ + O(ε2). Now

∂u0

∂n

∣∣∣∣
∂C1

= ∂u0

∂r

∣∣∣∣
∂C1

− εh′(θ)

a2

∂u0

∂θ

∣∣∣∣
∂C1

+ O(ε2).

We can expand both partial derivatives in Taylor series about r = a:

∂u0

∂n

∣∣∣∣
∂C1

= ∂u0

∂r

∣∣∣∣
∂C0

+ εh(θ)
∂2u0

∂r 2

∣∣∣∣∣
∂C0

− εh′(θ)

a2

∂u0

∂θ

∣∣∣∣
∂C0

+ O(ε2)

= εh(θ)
∂2u0

∂r 2

∣∣∣∣∣
∂C0

− εh′(θ)

a2

∂u0

∂θ

∣∣∣∣
∂C0

+ O(ε2). (3.14)
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Now we note that, due to the Helmholtz equation (3.4),

∂2u0

∂r 2
= −k2

0u0 − 1

r

∂u0

∂r
− 1

r 2

∂2u0

∂θ2
. (3.15)

We obtain

∂u0

∂n

∣∣∣∣
∂C1

= − εh(θ)k2
0u0

∣∣∣
∂C0

− εh(θ)

a2

∂2u0

∂θ2

∣∣∣∣∣
∂C0

− εh′(θ)

a2

∂u0

∂θ

∣∣∣∣
∂C0

+ O(ε2). (3.16)

Noting that u1|∂C1
= u0|∂C0

+ O(ε), we then substitute (3.16) into (3.12) to yield

δk=− 1

2k0

∫
∂C0

u0

(
−εh(θ)k2

0u0 − εh(θ)

a2

∂2u0

∂θ2
− εh′(θ)

a2

∂u0

∂θ

)
d� + O(ε2)

= εk0

2

∫
∂C0

(
h(θ)|u0|2 + h(θ)

(k0a)2
u0

∂2u0

∂θ2
+ h′(θ)

(k0a)2
u0

∂u0

∂θ

)
d� + O(ε2). (3.17)

This can be evaluated if the function u0 and its derivative on the boundary are known. Let us now
expand the function u0 on the boundary in a Fourier series, so that

u0|∂C0
=

∞∑
�=−∞

α�e
i �θ , (3.18)

where the coefficients αm are known. We will also specify that the function h(θ) which controls the
perturbation can be written in a similar manner, so that

h(θ) =
∞∑

n=−∞
hneinθ . (3.19)

The expression for the perturbation δk can then be written explicitly in terms of coefficients of the
above expansion. Substituting into (3.17),

δk= εk0a

2

∫ 2π

0

∞∑
�,m,n=∞

(
1 + m2

(k0a)2
− nm

(k0a)2

)
α�hnαm ei (�+n−m)θdθ

=επk0a
∞∑

�,n=−∞

(
1 − (n + �)2

(k0a)2
+ n(n + �)

(k0a)2

)
α�hnα�+n. (3.20)

Here the complex conjugate is denoted by the overline. Rearranging the series in (3.20), we obtain
the formula

δk = επk0a
∞∑

�,m=−∞
hm−�α�αm

(
1 − �m

(k0a)2

)
. (3.21)
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Fig. 3 (a) Dispersion curves for a TE wave moving through an array of perfectly conducting cylinders. The
crosses represent the dispersion diagram for an ellipse elongated in the y-direction, with minor (x) axis 0·20d
and major (y) axis 0·25d. Also shown is the curve for the unperturbed problem, which is an array of circular

cylinders of radius 0·20d. (b) The path traversed by kBloch within the first irreducible segment of the
Brillouin zone

3.6 Analysis of dispersion curves

Using the generalized method of Rayleigh (22, 23), we solved the unperturbed problem for u0 and
directly extracted the coefficients α� from the Fourier expansion of the boundary. Using the formula
(3.21) we calculated the correction δk for an arbitrary perturbation.

In the numerical example, the square array has an elementary cell of the unit area and circular
inclusions of radius 0·2. In Fig. 3(a) we can see the dispersion curves for an array of elliptical
inclusions, whose x and y semi-axes are 0·20 and 0·25 respectively (the ellipses are oriented along
the coordinate axes). A diagram showing the path taken within the Brillouin zone in the reciprocal
space is included in Fig. 3(b). It is noted that, for waves travelling in the y-direction, the elliptical
array behaves almost identically to an array of circular cylinders with the same cross-section in x.
The difference in the dispersion relation for waves travelling in the x-direction is more apparent.

It is remarked that the algorithm presented above would work well for the case of inclusions,
where transmission boundary conditions would have to be posed at the interface. The outline of this
generalization is presented in Appendix B.

3.7 Finite element modelling

In order to compare our asymptotic approximation with independent benchmark results, we use
an accurate finite element model for direct computation of eigenvalues for an elementary cell
containing an elliptical void. In the text below we outline the numerical algorithm and further
show that asymptotic approximation agrees well with the numerical finite element model within the
range of frequencies chosen for our analysis. Let us reformulate (3.1) as

−∇ · (∇ u) = k2u in Y \ C̄ with ∂u/∂n = 0 on ∂C, (3.22)
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where C is the metallic inclusion and Y = ]0; 1[2 denotes the elementary cell of the previous
section (for the sake of simplicity, we take d = 1 in this section). As for the weak formulation,
the homogeneous Neumann boundary condition for u on the metallic boundary is naturally fulfilled
and one just has to exclude C̄ from the basic cell Y:

R(u, u′) =
∫

Y\C̄
∇u · ∇u′ dx dy− k2

0

∫
Y\C̄

uu′ dx dy.

Existence and uniqueness of the solution is ensured by the Lax–Milgram lemma (see (24,
Chapter 8)) applied to the bilinear form R(·, ·) which is continuous and coercive on H1

� (kBloch, Y)×
H1

� (kBloch, Y). Here H1
� (kBloch, Y) denotes the Hilbert space

H1
� (kBloch, Y) =

{
u ∈ H1

loc(R
2, C), u is (kBloch, Y)-periodic

}
(3.23)

of (kBloch, Y)-periodic functions (that satisfy (3.2)) which are square integrable on every compact
subset of R

2, with values in C and with locally square integrable gradients.
The discrete formulation is set up with nodal elements (first-order triangular elements where the

unknowns are the values of the scalar field on the tips of the triangles and the interpolated field is
piecewise linear on the triangles). In order to find Bloch modes with the finite element method,
some changes have to be performed with respect to classical boundary-value problems that will
be named discrete Bloch conditions(25, 26). A scalar discrete field U (x, y) on the square cell Y
with Bloch conditions relates the left and the right sides. The set of nodes is separated into three
subsets: the nodes on the left (with x = 0), corresponding to the column vector of unknowns ul ;
the nodes on the right (with x = 1), corresponding to the column vector of unknowns ur ; and the
internal nodes (with 0 < x < 1), corresponding to the column vector of unknowns u. One has the
following structure for the matrix problem (corresponding in fact to natural boundary conditions,
namely, Neumann homogeneous boundary conditions):

A

 u
ul
ur

 = b, (3.24)

where A is the (square Hermitian) matrix of the system and b is a column vector. The
solution to be approximated by the numerical method is a discrete Bloch function U (x, y) =
U�(x, y) exp{i (kx

Blochx + ky
Blochy)}, U� being Y-periodic and in particular U�(x + 1, y) = U�(x, y).

Therefore,

U (1, y) = U�(1, y) exp{i (kx
Bloch + ky

Blochy)} = U (0, y) exp (ikx
Bloch) (3.25)

and the relation between the left and the right side is

ur = ul exp (ikx
Bloch). (3.26)

Consequently, the set of unknowns can be expressed via the reduced set u and ul , u
ul
ur

 = P
(

u
ul

)
with P =

 I 0
0 I
0 I exp (ikx

Bloch)

 , (3.27)
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where I and 0 are identity and null matrices respectively with suitable dimensions. The finite
element equations related to the eliminated nodes have now to be taken into account. Thanks to
periodicity of the structure, the Bloch–Floquet conditions should be maintained on the boundary
of the basic cell. Therefore their contributions (the equations corresponding to ur ) must be added
to the equations corresponding to ul with the correct phase factor exp (−ikx

Bloch). This amounts to
multiplying the matrix system by P∗, the Hermitian conjugate of P. Finally, the linear system to be
solved is

P∗AP
(

u
ul

)
= P∗b, (3.28)

where it is worth noting that the matrix is still Hermitian, which is important for numerical
computation. Now a generalized eigenvalue problem (with natural boundary conditions) Au = λBu
is transformed to an eigenvalue problem with Bloch–Floquet boundary conditions according to
P∗APu′ = λP∗BPu′. Such problems involving large sparse Hermitian matrices can be solved using
the Lanczos algorithm, which gives the largest eigenvalues (27). Physically we are in fact interested
in the smallest eigenvalues and therefore A−1, the inverse of A, instead of A itself must be used in
the iterations. Of course, the inverse is never computed explicitly but the matrix-vector products are
replaced by system solutions thanks to a Generalized Minimal Residual (GMRES) method (27). It
is therefore obvious that the numerical efficiency of the process relies strongly on Krylov subspace
techniques and the Arnoldi iteration algorithm (28). The practical implementation of the model has
been performed with the GETDP software (29).

3.8 Comparison of analytical and numerical algorithms

In Fig. 4 we can see the dispersion curves for an array of elliptical inclusions, with major and
minor axes 0·2d and 0·3d respectively. Here we have compared the results with the finite element
calculation. One can see that the asymptotic formula gives quite good results even when the
perturbation is no longer small: in this case, ε = 0·5. In the case when the eccentricity is higher
(for example, elongated ellipses of major and minor axes 0·1d and 0·4d), we have numerically
checked that the asymptotic approximation fails. It is also apparent on Fig. 4 that the asymptotic
formula breaks down for higher values of ω. For higher frequencies the second-order approximation
(involving terms of order ε2) would be required to obtain an accurate solution.

In the next section, we develop further the concept of mutual interaction between elements
of the periodic structure. Rather than assuming that an elementary cell includes just a single
void/inclusion, we look at the case of a macro-cell containing a defect (or several defects). It is
observed in this case that the system may exhibit localization of eigenfields in a neighbourhood of
the defect and this in turn contributes towards the coupling phenomenon.

4. Photoelastic effects. Localized modes

Finally, we would like to analyse the coupling between electromagnetic and elastic waves where
the photoelastic effect occurs in periodic structures with defects. One important feature of such
structures is that they possess localized defect modes for certain frequencies of elastic vibrations.
As explained below, the optical properties of photoelastic material change significantly within
the regions subject to large dilatation. Our model enables us to give accurate estimates for such
frequencies and to describe the localized defect states.
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Fig. 4 Sample dispersion curves for a TE wave moving through an array of elliptical voids, with major and
minor axes 0·2d and 0·3d. A comparison with the results from a finite element method is shown. This

diagram illustrates good agreement between the numerical and asymptotic results: it is noted that only the
dispersion curves corresponding to the contour �XK are shown here

4.1 Finite element modelling

For an isotropic medium the relation between stress and strain is written down in the form σ11
σ22√
2σ12

 = A

 e11
e22√
2e12

 , (4.1)

where ei j = (∂ui /∂xj + ∂u j /∂ui )/2,

A = E

(1 + ν)(1 − ν)

 1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/

√
2

 , (4.2)

E = µ(3λ + 2µ)/(λ + µ) and ν = λ/[2(λ + µ)]. Hence, the equations of motion yield

σi j , j + ρω2u j = 0. (4.3)

Introducing the matrix differential operator

D =
(

∂/∂x1 0 2−1/2∂/∂x2

0 ∂/∂x2 2−1/2∂/∂x1

)
(4.4)

we note that  e11
e22√
2 e12

 = DT
(

u1
u2

)
· (4.5)
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We obtain the self-adjoint form

DADT
(

u1
u2

)
+ ρω2

(
u1
u2

)
= 0. (4.6)

As for the weak formulation, the traction free boundary conditions on the boundary of the void
are naturally fulfilled and one just has to exclude C from the basic cell Y:

R(u, u′) =
∫

Y\C̄

(
−ADTu · DTū + ρω2u · ū

)
dx dy. (4.7)

Existence and uniqueness of the solution is ensured by the Lax–Milgram lemma applied to the

bilinear form R(·, ·) which is continuous and coercive on [H1
� (kBloch, Y)]2 × [H1

� (kBloch, Y)]2
.

Here [H1
� (kBloch, Y)]2

denotes the Hilbert space

[H1
� (kBloch, Y)]2 =

{
u ∈ H1

loc(R
2, C

2), u is (kBloch, Y)-periodic
}

(4.8)

of (kBloch, Y)-periodic functions (that satisfy (3.2)) which are square integrable on every compact
subset of R

2, with vector values in C
2 and with locally square integrable gradients. The discrete

formulation is set up with nodal elements (see section 3.7). Our finite element formulation has been
implemented in the software FEMLAB with a macro-cell containing 48 voids. This allows us to
model a defect within a macro-cell in a periodic structure. In Fig. 5, we show a localized pressure
mode at the normalized radian frequency

†
ω = 7·7 placed within the stop gap corresponding to the

periodic structure with periodic defects (Fig. 6). The existence of this stop band is not predicted by
the spectral problem associated with the corresponding periodic structure without defect (23). The
mechanism leading to the appearance of this high-frequency localized pressure mode is new. It is
induced by the multi-scale geometry of the structure. The defects are indeed arranged on an array
of larger period than that of the lattice (which corresponds to the size of the macro-cell). Addition
or removal of other defects within the macro-cell will change the number of scales associated with
the structure, and hence the nature of the Bloch spectrum.

4.2 Photoelastic interaction

Brillouin predicted in 1922 the diffraction of light by an acoustically perturbed medium: this is the
so-called Brillouin scattering. When an elastic wave propagates in a medium, there is an associated
strain field which results in a change of the index of refraction. This is referred to as the photoelastic
effect. The photoelastic effect in a material couples the mechanical strain tensor ekl to the optical
index of refraction n. This effect is described by the change in the so-called optical impermeability
tensor (see, for example, (30, Chapter 9)),

∇2(n−2)i j = pi jkl ekl , i, j, k, l = 1, 2, (4.9)

†
The normalization is introduced in such a way that a frequency is divided by the shear wave speed and further multiplied

by the distance between centres of neighbouring inclusions/voids within the array. The displacement eigenfield, obtained as
a result of the computation, is also normalized in such a way that its L2 norm over the macro-cell is equal to one.
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Fig. 5 Dilatation mode in a macro-cell of normalized size 7 × 7 with 48 voids of normalized radius 0·4 in a
silica matrix. The central void has been removed to create a defect

Normalized

Fig. 6 Dispersion curves corresponding to in-plane elastic waves within a macro-cell shown in Fig. 5. Here,
we represent the normalized frequency ω (introduced in such a way that it is divided by the distance d

between centres of neighbouring voids and multiplied by the velocity of shear waves) versus the normalized
modulus of Bloch vector kBlochd , for a normalized radius of voids 0·4. On the horizontal semi-axis we show

the values of −kBlochd when kBloch represents points of the part K� of the contour �MK. Note that here
� = (0, 0), M= (0, π/7) and K= (π/7, π/7)

where p is the rank four strain-optic tensor. Thanks to the symmetry of the optical impermeability
and strain tensors, we can rewrite (4.9) in contracted form

∇2(n−2)i = pi j S j , i, j = 1, 2, 3, (4.10)

where S1 = e11, S2 = e22 and S3 = e33.
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In the case of a two-dimensional isotropic photoelastic material, p is given by

p =
 p11 p12 0

p12 p11 0
0 0 (p11 − p12)/2

 . (4.11)

We note that if p11 = p12 then the contribution to shear strain is cancelled and only pressure modes
are important. As an example, consider glass (Ge33Se55As12) where p11 = p12 = 0·21 for the
wavelength λ = 1·06 µm. In the other example, for fused silica p11 = 0·121, p12 = 0·270 for
the wavelength λ = 0·63 µm; in this case the optical properties would change within the region of
localized strain, both in pressure and shear modes.

The numerical simulation was conducted for a spectral problem of two-dimensional elasticity
(plane strain), with the Bloch–Floquet boundary conditions posed on the contour of a macro-cell
(the elementary cell of the doubly periodic structure is shown in Fig. 5). As Fig. 5 shows, the macro-
cell contains a defect, right at the centre, and in this particular case there exist eigenmodes that give
a localized dilatational deformation in the region of the defect. Also, in Fig. 6, we depict the band
diagram corresponding to the macro-cell of Fig. 5. This numerically demonstrates the mechanism
leading to existence of a localized pressure eigenstate when we remove the central hole within the
macro-cell. It is indeed clear from Fig. 6 that the eigenfrequency associated with the localized state
is on the edge of the stop band shown on the dispersion diagram.

In Fig. 5 we show such a localized eigenmode corresponding to a high intensity of dilatation
within a defect region in a doubly periodic array of circular voids. This diagram was constructed
for fused silica and it corresponds to the zero Bloch vector which implies periodicity at the edges
of the macro-cell. Compared with results of sections 2 and 3 the change in the optical properties is
not small and the mechanism of localization within periodic structures with defects dominates over
two remaining cases discussed earlier. It is noted that the effect of Brillouin scattering will exist for
other frequencies, corresponding to non-localized eigenmodes, but the effect of coupling between
the elastic and electromagnetic fields will be greatly reduced compared to the configuration shown
in Fig. 5.

4.3 Analytical estimate for the eigenfrequency corresponding to a localized mode

The results of finite element numerical modelling presented in Fig. 5 are useful if we would like
to see the shape of the region of localized dilatation; by dilatation we mean ∇ · u, where the
displacement eigenfield u is normalized in such a way that its L2 norm over the macro-cell is equal
to unity. If we are interested in the frequency corresponding to this localized mode, an estimate
can be given in a simple analytical form. Here we give an estimate of frequencies of localized
axisymmetric dilatational modes. Taking into account that the displacement on the boundary of the
‘defect region’ is very small (the eigenmode is highly localized, as shown in Fig. 5), we consider
just the defect region itself and fix its boundary. In the present example the defect region is taken as
a disk of radius a = 0·1. The dispacement field U(x) = U(x, y) satisfies the Navier equations

(λ + 2µ)∇∇ · U(x) − µ∇ × ∇ × U(x) + ρω2U(x) = 0, |x| < a, (4.12)

where ω is the radian frequency of vibration. Now, we assume that U|r =a = 0 and U =
f (r, ω) x/|x|; U is bounded at r = 0. Noting that U is irrotational, it follows that

(λ + 2µ)∇∇ · U(x) + ρω2U(x) = 0, r = |x| < a. (4.13)
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Fig. 7 Dilatation modes in a macro-cell with 45 voids in silica. Four central voids have been removed to
create quadrupole core defect

Finally, by writingU = ∇φ, we deduce thatφ is a solution of the Helmhlotz equation

∇2φ(r) + (ω/v)2φ(r) = 0, r < a, (4.14)

wherev = √
(λ + 2µ)/ρ. Also, φ satisfies a Neumann condition∂φ/∂r = 0 on the circular

boundaryr = a. Hence, it follows thatφ = J0(rω/v), and

(ω/v)J ′
0(ωa/v) = 0. (4.15)

Solutions of this equation approximate eigenfrequencies of the localized pressure modes (see
Fig. 5). If we take a normalized radiusa = 1·0 (diameter of the defect) and normalized Lamé
coefficientsλ = 2·3, µ = 1·0 and densityρ = 1·0 (the corresponding Poisson ratio is close to 0·35
which is the same as for silica), then the estimate for the normalized frequency isω = 8 whereas the
finite element software providesω = 7·7, and indeed the asymptotic approximation is reasonable.

5. Concluding remarks and further developments

In this paper, we have shown that the mechanism which dominates the interactions between elastic
and electromagnetic waves is associated with localized defect modes in photoelastic materials. We
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have also given a simple illustration for a single defect and have shown an analytical estimate for the
frequency corresponding to this localized mode. This idea allows for substantial development. For
example, our model enables us to describe multiple localized modes of different types of symmetry,
as shown in Fig. 7. Assuming that the structure shown in Fig. 7 represents a cross-section of a
photonic crystal fibre, we can change the properties of the transmitted optical signal by initiating
localized elastic vibrations at certain frequencies. Hence, this kind of structure can be used in the
design of optical switches and this study certainly has a wide range of practical applications.

We have demonstrated an asymptotic approach described in sections 2 and 3 to evaluate the
effect of coupling between elastic and electromagnetic waves in thin-walled structures and doubly
periodic structures. In both cases, the effect was small. Nevertheless for a doubly periodic array of
quasi-circular voids we have derived a useful analytical representation, which can be used to extend
the Rayleigh method to non-circular geometries. In addition, these analytical results can be used in
optimization algorithms to find an optimal shape of voids and consequently maximize the width of
the stop bands on the dispersion diagrams.
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APPENDIX A

Asymptotic procedure for a thin body vibrating in an electromagnetic field

This Appendix gives the details of the asymptotic algorithm used in the derivation of the lower-dimensional
model of section 2.
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An asymptotic algorithm in the middle part of the thin region�ε

Introduce the scaled variable ζ = x2/ε, so that ζ ∈ (−1/2, 1/2) within �ε; ∂/∂x2 = ε−1∂/∂ζ . The fields E,
H and u are approximated in the form

E∼E(0)(x1, ζ, t) + εE(1)(x1, ζ, t) + ε2E(2)(x1, ζ, t),

H ∼H(0)(x1, ζ, t) + εH(1)(x1, ζ, t) + ε2H(2)(x1, ζ, t),

u∼u(0)(x1, ζ, t) + εu(1)(x1, ζ, t) + ε2u(2)(x1, ζ, t).

It follows from (2.2) that

∂

∂ζ
E( j ) + ∂

∂x1
E( j −1) = 0 and

∂

∂ζ
H( j ) + ∂

∂x1
H( j −1) = 0, (A.1)

where the quantities with negative indices are replaced by zero; hence

∂

∂ζ

(
E(0)

H(0)

)
= 0 as ζ ∈ (−1/2, 1/2), (A.2)

which yields that E(0) and H(0) are ζ -independent. Taking into account the boundary condition (2.8) we
deduce E(0) = E(e)|x2=0 and H(0) = H(e)|x2=0. It will be shown that only E(0) and H(0) will be required in
the equations of motion for the displacement components. Next, consider the system of Navier equations (see
(2.6))

L(∂/∂x, ∂/∂ζ )u + µ0σE × H + µ2
0σ(u̇ × H) × H = ρü, (A.3)

where the differential operator L is given by

Lu = ε−2
(

µ 0
0 2µ + λ

)
∂2u

∂ζ 2
+ ε−1

(
0 λ + µ

λ + µ 0

)
∂2u

∂x1∂ζ
+

(
2µ + λ 0

0 µ

)
∂2u

∂x2
. (A.4)

The traction boundary condition (2.9) at the upper and lower parts of the boundary ∂�ε has the matrix
representation T(∂/∂x1, ∂/∂ζ )u|ζ=±1/2 = 0, where

T
(

∂

∂x1
,

∂

∂ζ

)
u = ε−1

(
µ 0
0 2µ + λ

)
∂u
∂ζ

+
(

0 µ

λ 0

)
∂u
∂x1

. (A.5)

Model problems on the scaled cross-section

For the vector function u(0) we obtain (by collecting terms of order O(ε−2) in (A.4) and terms of order
O(ε−1)in (A.5))

(∂2/∂ζ 2)u(0) = 0, |ζ | < 1
2 , with (∂/∂ζ )u(0)|ζ=±1/2 = 0. (A.6)

Hence u(0) = u(0)(x1, t) (it is ζ -independent). In a similar way, it is derived that the vector function u(1)

satisfies the following model problem on the scaled cross-section:

∂2u(1)

∂ζ 2
= 0, |ζ | < 1

2 , with

(
µ 0
0 2µ + λ

)
∂u(1)

∂ζ

∣∣∣∣∣
ζ=±1/2

= −
(

0 µ

λ 0

)
∂u(0)

∂x1
. (A.7)

The constant of integration is chosen in such a way that the solution of (A.7) possesses a zero average across
the interval (−1/2, 1/2):

u(1) = −ζ

(
0 1

λ(2µ + λ)−1 0

)
∂

∂ζ
u(0). (A.8)
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The next model problem is for the function u(2):

∂2u(2)

∂ζ 2
= −

(
µ−1 0

0 (2µ + λ)−1

) {(
2µ + λ 0

0 µ

)
∂2u(0)

∂x2
1

− (λ + µ)

(
λ(2µ + λ)−1 0

0 1

)
∂2u(0)

∂x2
1

+ µ2
0σ

{
((H (0)

1 )2 + (H (0)
2 )2)u̇(0) − (u̇(0)

1 H (0)
1 + u̇(0)

2 H (0)
2 )H(0)

}
+ µ0σE(0) × H(0) − ρü(0)

}
(A.9)

for ζ ∈ (−1/2, 1/2), with

∂u(2)

∂ζ

∣∣∣∣∣
ζ=±1/2

= ±1

2

(
µ−1 0

0 (2µ + λ)−1

) (
µλ(2µ + λ)−1 0

0 λ

)
∂2u(0)

∂x2
1

. (A.10)

The solvability condition of the above problem takes the form (2.10).

APPENDIX B
Perturbation for the TE mode, dielectric case

We now look at the case for which the solution is permitted to exist in two distinct regions. This corresponds to
the dielectric case in the context of electromagnetism, that is, when the central inclusion has a refractive index
n rather than being perfectly conducting as in section 3.

We assume that the unperturbed problem satisfies the following differential equations:

(∇2 + k2
0)u0 = 0 in �0 and (∇2 + n2k2

0)ui
0 = 0 in C0.

On the boundary of the inclusion we specify the conditions

u0|∂C0
= ui

0

∣∣∣
∂C0

and
∂u0

∂n

∣∣∣∣
∂C0

= 1

n2

∂ui
0

∂n

∣∣∣∣∣
∂C0

,

where n is the relative refractive index between the central region and the surrounding matrix material. The
boundary conditions are appropriate for a transverse electric wave in the context of electromagnetism; in this
case the potential u0 represents the out-of-plane component of the magnetic field. As in section 3 the periodicity
of the problem requires that the Bloch–Floquet condition (3.2) be satisfied throughout the unit cell as shown in
Fig. 1. Also, we normalize the energy stored in the field, so that∫

C0

|ui
0|2d A+

∫
�0

|u0|2d A = 1. (B.1)

We now perturb the boundary of the central inclusion so that ∂C0 → ∂C1 as described by (3.6) and Fig. 2.
The perturbed fields then satisfy the differential equations

(∇2 + k2
1)u1 = 0 in �1 and (∇2 + n2k2

1)ui
1 = 0 in C1,

while on the perturbed boundary we have the conditions

u1|∂C1
= ui

1

∣∣∣
∂C1

and
∂u1

∂n

∣∣∣∣
∂C1

= 1

n2

∂ui
1

∂n

∣∣∣∣∣
∂C1

.

We also require that the perturbed field u1 satisfy the quasiperiodicity condition (3.2).
We apply Green’s theorem in �1 to u1 and u0. Taking into account the quasiperiodicity of the fields, we

deduce that the integral around the outer boundary B is zero. Rearranging slightly we obtain

(k2
0 − k2

1)

∫
C1

ui
1ui

0 d A = 1

n2

∫
∂C1

(
ui

0

∂ui
1

∂n
− ui

1
∂ui

0
∂n

)
d�. (B.2)
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Adding (B.2) to (3.10) we obtain

(k2
0 − k2

1)

[∫
�1

u1u0 d A+
∫

C1

ui
1ui

0 d A

]
=

∫
∂C1

[
u1

(
∂u0

∂n
− 1

n2

∂ui
0

∂n

)
− ∂u1

∂n
(u0 − ui

0)

]
d�. (B.3)

We assume that the perturbation of the boundary is regular in character, so that k1 = k0 + O(ε),

u1 = u0 + O(ε)

∂u1/∂n = ∂u0/∂n + O(ε)

}
in �1 and

ui
1 = ui

0 + O(ε)

∂ui
1/∂n = ∂ui

0/∂n + O(ε)

}
in C1,

Here we have assumed that ui
0 can be analytically extended into the region C1. This is equivalent to the

assumption that the perturbed boundary does not exceed the limits of the central cell.
With this in mind then, we can write (B.3) in the form

−2k0δk

[∫
�1

|u0|2d A+
∫

C1

|ui
0|2d A

]
=

∫
∂C1

[
u0

(
∂u0

∂n
− 1

n2

∂ui
0

∂n

)
− ∂u0

∂n
(u0 − ui

0)

]
d� + O(ε2).

(B.4)

The integral on the left-hand side comes from the normalization (B.1), and so

δk = − 1

k0

∫
∂C1

[
u0

(
∂u0

∂n
− 1

n2

∂ui
0

∂n

)
− ∂u0

∂n
(u0 − ui

0)

]
d� + O(ε2).

We can deduce that

∂ui
0

∂n

∣∣∣∣∣
∂C1

=
[

∂ui
0

∂r
− n2k2

0εh(θ)ui
0 − εh(θ)

a

∂ui
0

∂r
− εh(θ)

a2

∂2ui
0

∂θ2
− εh′(θ)

a2

∂ui
0

∂θ

]∣∣∣∣∣
∂C0

+ O(ε2),

and furthermore(
∂u0

∂n
− 1

n2

∂ui
0

∂n

)∣∣∣∣∣
∂C1

= −
[

εh(θ)

a2

(
1 − 1

n2

)
∂2u0

∂θ2
+ εh′(θ)

a2

(
1 − 1

n2

)
∂u0

∂θ

]∣∣∣∣∣
∂C0

+ O(ε2).

We also deduce, using Taylor’s expansion, that(
u0 − ui

0

)∣∣∣
∂C1

= εh(θ)
(
∂u0/∂r − ∂ui

0/∂r
)∣∣∣

∂C0
+ O(ε2).

Thus, substituting into (B.4), we find the perturbation to k0 as

δk = − ε

2k0a2

(
1 − 1

n2

) ∫
∂C0

(
−u0

∂

∂θ

(
h(θ)

∂u0

∂θ

)
+n2a2h(θ)

∂u0

∂r

∂u0

∂r

)
d�.

This gives the generalization of the asymptotic formula (3.20) to the case of dielectric inclusions with the
transmission boundary conditions posed at the interface.


