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Abstract

In this paper, we present a high order asymptotic approximation of the operator arising in the two-dimensional setting of a scalar

helicoidal (electrostatic) problem.
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1. Introduction

We investigate the asymptotic analysis of twisted
structures. Our aim is to understand the effect of a weak
twist on waveguides such as microstructured optical fibers.
At this early stage of the study, a simple scalar problem is
considered.
2. Twisted electrostatics

The electrostatic problem of interest consists in the
computation of the scalar potential u satisfying
div � grad u ¼ 0 for a given space distribution of dielectric
permittivity � and known values of u on given metallic
surfaces. The problem is twisted if � and the metallic
surfaces are independent of x3 in the following helicoidal
co-ordinate system [1–3]:

x1 ¼ x1 cosðax3Þ � x2 sinðax3Þ,

x2 ¼ x1 sinðax3Þ þ x2 cosðax3Þ,

x3 ¼ x3, ð1Þ

where a is a parameter which characterizes the torsion.
This co-ordinate system is characterized by the Jacobian of
e front matter r 2007 Elsevier B.V. All rights reserved.
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the transformation:

J ¼
qðx1; x2; x3Þ

qðx1; x2; x3Þ
.

When the electrostatic problem is expressed in this co-
ordinate system, only the matrix

Tðx1; x2Þ ¼
JTJ

detðJÞ

is involved in the equation with the remarkable property
that it is independent of x3, which allows the setting of the
twisted problems as two-dimensional problems. The
equation to be solved is then:

divð�T�1 grad uÞ ¼ divð� grad uÞ þ a2Lð�LðuÞÞ ¼ 0, (2)

where div and grad involve now partial derivatives with
respect to x1 and x2 as if they were rectangular co-ordinates,
the third component of the gradient being equal to zero in

the helicoidal co-ordinate system. We have

T�1 ¼
Iþ a2RRT aR

aRT 1

 !
, (3)

with R ¼
�x2
x1

 !
, and

Lð:Þ ¼ x1
q:
qx2
� x2

q:
qx1

� �
, (4)
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the ‘‘twisted’’ derivation operator. This operator can be
expressed as:

LðuÞ ¼ R � grad u ¼ divðRuÞ. (5)

This problem is easily solved numerically via a finite
element analysis but we would like to obtain a simple
asymptotic formula in order to understand the effect of
very weak twists (small values of a).

3. Asymptotic analysis

Given the twisted electrostatic problem on a domain of
cross-section O (with prescribed non-homogeneous Dirich-
let conditions on its boundary qO), the rigorous setting of
the asymptotic analysis requires the introduction of scaled
variables in the cross-section

ðy1; y2;x3Þ ¼
x1

Z
;
x2

Z
;x3

� �
,

where Z is a small parameter representing a ratio between
the diameter of the cross-section O of the structure to the
period 2p=a of the twist along the x3-axis.

The field u is then approximated by the asymptotic
development ~uZ given by the following Ansatz [4]:

~uZ ¼
X1
i¼0

Z2i ~ui

x1

Z
;
x2

Z
;x3

� �
. (6)

Nevertheless, a convenient way to deal with the
numerical computation of the various terms of the
asymptotic development is to work in unscaled two-
Table 1

Comparison of the values of the potential at point ðx1 ¼ 0:175; x2 ¼ 0Þ (the or

a u exact u asymptotic

0 0.4323075525521577

0.1 0.4323010126383421 0.43230101219

0.5 0.4321443225126496 0.43214404353

2 0.4297611380445051 0.42969140820

8 0.403178325558716 0.39044924296

On this point U1 ¼ �6:54036087e� 004 and U0 ¼ 0:4323075525521577.

R=0.2m

a=0.05m
u=0

u=1

(0.175, 0.0)

Fig. 1. Geometry of the simple test problem.
dimensional co-ordinates. Let us introduce the auxiliary
functions ui independent of Z:

uiðx1;x2Þ ¼ Z2i ~uiðx1=Z;x2=Z; 0Þ ¼ Z2i ~uiðy1; y2; 0Þ,

for iX0.
In this case, the asymptotic model reduces to a sum of

the auxiliary functions ui [4]:

~uZjx3¼0 ¼ uðx1;x2Þ ¼ u0ðx1;x2Þ þ
X1
i¼1

uiðx1;x2Þ (7)

with u0jqO ¼ ujqO (the prescribed boundary conditions) and
uijqO ¼ 0, for i40. The u0 term is given by the solution of
the untwisted problem divð� grad u0Þ ¼ 0 with u0jqO ¼ ujqO
while the higher order terms ui, for i40, are given by
Poisson problems where the charge density depends on the
previous term:

divð� grad uiÞ ¼ �a2Lð�Lðui�1ÞÞ (8)

with uijqO ¼ 0. The corresponding weak formulation
necessary for the finite element model isZ
O
� grad ui � gradwdS ¼ �a2

Z
O
�L ðui�1ÞLðwÞdS, (9)

for any admissible weight function w with uijqO ¼ 0: It is
noteworthy that the problem is linear and that ui is
proportional to a2ui�1. It is then sufficient to solve the
problem for a ¼ 1 to find Ui such that ui ¼ a2iUi and
therefore the practical computation of the asymptotic
model reduces to the introduction of a development in
powers of a:

u ¼ u0 þ
X1
i¼1

a2iUi. (10)

4. A numerical example

We consider the structure depicted in Fig. 1, whose
cross-section is a hollow disk. The outer circle (of radius
R ¼ 0:2m) is centered on the rotation axis of the twisted
structure ðx1 ¼ 0; x2 ¼ 0Þ and the inner circle (of radius
a ¼ 0:05m) is centered at 0.1m from the rotation axis.
Table 1 presents the results of comparison of asymptotic
approximations and finite element numerical data; it gives
the variation of the error at a given point within the
domain for the asymptotic prediction as a function of the
igin is on the rotation axis) where the error is the most important

abs. error a2U1 correction

128 4:4706e� 010 �6:5404e� 006

032 2:7898e� 007 �1:6351e� 004

282 6:9730e� 005 �2:6161e� 003

276 1:2729e� 002 �4:1858e� 002
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Fig. 2. The untwisted term u0.

Table 2

Second order: comparison of the values of the potential at point ðx1 ¼ 0:175; x2 ¼ 0Þ (the origin is on the rotation axis) where the error is the most

important

a u exact u asymptotic abs. error a4U2 correction

0.1 0.4323010126383421 0.43230101263837 �2:7978e� 014 4:4709e� 010

0.5 0.4321443225126496 0.43214432295890 �4:4625e� 010 2:7943e� 007

2 0.4297611380445051 0.42976294191724 �1:8039e� 006 7:1534e� 005

8 0.403178325558716 0.40876187385424 �5:5835e� 003 1:8313e� 002

On this point U2 ¼ 4:470857151240261e� 006.

-0.000692 0.000544 0.00178

v_1

Fig. 3. The a2 corrector U1.

-3.1e-06 4.56e-06-1.08e-05

v_2

Fig. 4. The a4 corrector U2.
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twist a. The first column is the value of the twist parameter a.
The second column corresponds to an ‘‘exact’’ model, i.e.
finite element solution of Eq. (2). The third column gives our
first-order asymptotic approximation u0 þ a2U1. The fourth
column gives the discrepancy between the two previous
columns. The fifth column gives the value of the asymptotic
correction a2U1 to be added to the untwisted case u0 to
obtain the third column. Table 2 presents similar results for
the second-order asymptotic approximation: the first two
columns are the same. The third column gives our second-
order asymptotic approximation u0 þ a2U1 þ a4U2. The
fourth column gives the discrepancy between the two
previous columns. The fifth column gives the value of the
asymptotic correction a4U2 to be added to the first-order
asymptotic approximation u0 þ a2U1 to obtain the third
column. This higher order correction leads clearly to more
accurate results as it improves the estimate and is not
negligible with respect to the residual error. Fig. 2 shows
the map of u0, Fig. 3 the one of the first corrector U1, and
Fig. 4 the one of the second corrector U2. The process
seems to be stable and the numerical solutions preserve
correctly the symmetry of the problem. It seems also
convergent since the values of the correctors decrease. The
range of values is [0.0, 1.0] for u0, ½�6:92� 10�4; 1:78�
10�3� for U1, ½�1:08� 10�5; 4:35� 10�6� for U2, ½�3:49�
10�8; 9:5� 10�8� for U3, ½�1:04� 10�9; 6:63� 10�10� for
U4, and ½�1:53� 10�11; 1:41� 10�11� for U5. Next steps of
this study will be the asymptotic estimation of the propaga-
tion modes and the extension to the vector case with the
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purpose of estimating the effect of a weak twist on the losses
of leaky modes of microstructured optical fibers.
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