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ABSTRACT

This paper presents an adaptative extension of the Gaussian integration method.
It is well known that the Gaussian integration method is optimal for sufficiently
smooth functions (i.e. which may be approximated by a polynomial) in the
sense that it gives the maximum accuracy for a given number of nodes.
Unfortunately it is not always possible to choose a priori the number of nodes
for the integration. One alternative is to try successive Gaussian formulae with
an increasing number of points until they agree with the required accuracy. In
this case, most of the advantages of the method are lost. A less accurate but
naturally adaptative method such as the Romberg method may become a better
solution.

The idea of the optimal adaptative method is to find a series of integration
formulae with an increasing number of nodes in order that the set of abscissae of
lower order formulae is a subset of abscissae of higher order formulae. Then,
the sequential evaluation of formulae of increasing order only requires the
addition of new points. Under this constraint, the remaining degrees of freedom
(the new abscissae and all the weight factors) are used to obtain formulae of
maximum order.

INTRODUCTION

Some well-known and classical methods [1] are reviewed in order to situate the
new method. Those methods are valid for sufficiently smooth integrands.

Trapezoidal method
Amongst the simplest, this method consists in choosing equally-spaced points

between the endpoints and to approximate the function by piecewise linear
functions. The trapezoidal rule is :

b
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a ()

with: h=(b-2)/N and f;=fa+ih)



Romberg method ‘
The basic idea is to use the results from successive refinements of the trapezoidal

rule :
Ip=Ib-a), 1 =I((b-a)/2),..,=I{(b-a)/2}), .. @)

The Richardson extrapolation is applied to this sequence in order to
eliminate high order error terms|[2].

This method is naturally adaptative. For each refinement, a new
trapezoidal approximation is computed with the number of points multiplied by
two and reusing the previously computed values of the function. Then the
Richardson extrapolation is applied to the new sequence. This process is
repeated until the required accuracy is reached. The number of function
evaluations is not known a priori and depends on the integrand.

General rule

Most of the integration rules to integrate the following expression :

b
f K(x) f(x) dx
a 3
have the form :
>, wi f(x)
i=1 4

The approximation is a linear combination, with weight factors wj;, of
values of the function f(x), for n absissae x;.

In the rest of the paper, the integral (3), i.e. the integral on the interval
[a,b] of the product of the function f(x) with the kernel K(x), will be referred as
“the integral of f(x)”. Formulae (4) are tabulated in the litterature for some
kernels K(x) and an associated interval [a,b].

Orthogonal polynomials [3] associated to the set 'kernel K(x) - interval
[a,b]' play an important role in the theory (table 1).



" Kernel Interval Associated orthogonal
K(x) a b polynomials
1. -1. 1. Legendre
eX 0. o Laguerre
ex -00 0 Hermite
1.
UV¥1-x2 -1 Tschebychev (first kind)
In(x) 0. 1. Orthogonal polynomials
associated to In(x) on [0,1]
(Berthod-Zaborowski formulae)

Table 1. Orthogonal polynomials [4]

The orthogonality of polynomials Pj(x), is expressed by [3] :

b [ 0 ifin]
FOROOBO &) o)
-  if 1= 3

A numerical integration rule is characterized by an integer p such that all
the polynomials Qg(x) of order k less than or equal to p are exactly integrated :

b
n
f K(x) Qu(x) dx = > w; Qi(x)
a i=1 ©
Gaussian_method
Gaussian integration rules are optimal in the sense that p is maximal. An n point
rule that has 2n degrees of freedom (n abscissae and n weight factors) can

integrate exactly all the polynomials up to the order 2n-1 (i.e. polynomials that
have up to 2n coefficients).

The necessary and sufficient condition is that all the powers of x up to the
order 2n-1 are correctly integrated on the considered interval :

b
n
f K(x) xkdx=mg = D> wjxK k=0,..,2n-1
a i=1 (7)



The relations (7) constitute a system of 2n equations with 2n unknowns
(the x; and the w;) whose solution gives the parameters of the integration rule.
This system is unfortunately non linear and difficult to solve in this form. The

classical approach is to introduce an auxiliary polynomial t(x) whose roots are
the abscissae x; :

n n
n0) =] xx) =2 cix (ca=1.)
i=1 i=0 ®)
Sums of equations (7) weighted by the coefficients c; are constructed, in
order to do appear n(x;) :

n n n
> cimip =Y. o (‘2 wj x;ﬂ’) =2 wj (Z ¢; X}”’)
i=0 i=0 j=1 j=1 i=0

®

n

=) win(x;))x'=0 for p=0,..,n-1
~ J i |
=

Relations (9) constitute a system of n equations with n unknowns that
gives the coefficients c; -

n-1
z Ci Mjyp = Mpyp for p=0,..,n-1
i=0 (10)

The solution of the system (10) determines the polynomial 7t(x) whose
roots are the abscissae xj of the integration rule.

A relationship between this polynomial and the orthogonal polynomials
associated to the problem may be found.

Py(x) is the orthogonal polynomial of degree n associated to the problem.
Any polynomial f5,.1(x) of degree 2n-1 may be expressed as:

fon-1(x) = g(x) Pa(x) + 1(x) 639

with a quotient polynomial g(x) and a rest polynomial r(x), both of degree at
most equal to n-1.

The polynomial f5,.1(x) is integrated exactly :

b

b n n
f K(x) g(x) Pp(x) dx +] Kx) r(x) dx = Z w;i g(x;) Pn(xp) + z wi 1(X;)

a i=1 i=1

(12)



The polynomial Pp(x) being orthogonal to all the polynomials of degree
less or equal to n , the first term of the left hand member is equal to zero. The
relation (12) is always true only if the first term of the right hand member is
cancelled, what is assured if Py(x;) is equal to zero fori =1, ..., n. Thus P,(x)

is equal to 7(x) apart from a constant factor.

The theory of the orthogonal polynomials assure that their roots are
simple, real and situated in the interval [a , b]. The abscissae being determined,
the w; must be computed in order that any polynomial of order less than or equal
to n-1 is exactly integrated. This problem is solved in the next paragraph
independently of the Gaussian method. ‘

If the number of points required to compute an integral with the
satisfactory accuracy is known a priori, the Gaussian rule is the best method.
Unfortunately, this is not the case in most practical problems. A possiblity is to
try a sequence of Gaussian rules of increasing order until the difference between
two approximations is less than the required accuracy. But, as the abscissae
differ from one rule to the other, the advantages are lost and a naturally
adaptative method such as the Romberg method becomes more relevant.

WEIGHT COEFFICIENT DETERMINATION

The problem of determining the 'optimal’ weighting factors w; associated to any
given n abscissae x; may be solved in a general way [5]. The n factors w; are
computed in order that any polynomial up to order n-1 is integrated exactly.

A polynomial f;.1(x) of order n-1 is integrated by the rule :

b n
f K(x) fp1(x) dx = O, W; 1 (x))
a i=1 13)

The Lagrange interpolation polynomials L;(x) are defined by :

n

Lo =[] (x - x5

j=1 (Xi-Xj)

j#1 (14)

Any polynomial f, ;(x) may be written

Fa1(%) = 3 Li(x) fa1(x1)
i=1 (15)

Introducing expression (15) in (13), gives, for any set of f,.1(x;) :

b n n
f K(x) (Z Li(x) -1<xo) dx =D wi fn1(x)

i=1 i=1 (16)



Identifying the coefficients of f,.1(x;) in the two members gives :

b
wi = f K(x) Li(x) dx
a 17

In the particular case of the Gaussian method, it can be shown that this
determination of the wj is equivalent to the solution of the n first equations of
(7), linear with respect to wj, with the x; given. The w; obtained for the
Gaussian rules are always positive if K(x) is positive on the interval [a,b].

Indeed, the polynomial Liz(x) of degree 2(n-1) ( the square of a Lagrange
interpolating polynomial) may be integrated exactly by the Gaussian rule :

b n
f K(x) LI(x) dx = Y LA(x)) w;
a j=1 (18)

The first member is positive because K(x) >0 on [a, b] and Li2 (x) > 0.
The right hand member terms are all equal to zero except for i=j and then :

b
f K(x) L2(x) dx

wi = 5 >0
Li(x;) (19)

This property assures a good response to Gaussian rules from the
rounding error point of view.

OPTIMAL ADDITION OF POINTS

Starting from a given integration rule, it is possible to add points in an optimal
way [5,6], i.e. to combine the already computed values of the function with new
values in order to integrate exactly polynomials of degree as high as possible.
An existing integration rule may be extended without wasting any integrand
computation. This is particularly important for an adaptative integration. If a n
point formula is extended with p new points, n+2p degrees of freedom are
available (the p new abscissae and the n+p weighting factors for all the
abscissae). A new formula may be found that integrates exactly all the
polynomials up to the order n+2p-1 and, for Fp2p.1(x), such a polynomial of
this order :

b n+p
f K(x) Fns2p-1(%) dx = D, w; Fna2p-1(X3)
a i=1 (20)



A polynomial Gy4p(x) is introduced whose roots are the abscissae of the
extended rule (The new ones as well as the old ones) :

n+p
Grip() = [ T (x-x)
i=1 21
the polynomial Fy,p.1(x) may be expressed :
Fn+2p-1(x) = Rn+p-l(x) + Gn+p(x) Qp-l(x) 22)

where Ry.p.1(x) is the rest polynomial of degree at most equal to n+p-1 and Qp-
1(x) the quotient polynomial of degree p-1.

The equality (20) is then :

b b
f K(x) Rp4p-1(x) dx +[ K(x) Gntp(x) Qp-1(x) dx
a a 23)

n+p n+p

= D Wi Rnip1(xi) + 2, Wi Grap(xi) Qpo1(x0)
i=1 i

i=1

By definition of G4y, the second term of the right hand member is equal
to zero. Moreover, if the n+p weight factors w; have been computed in order to
integrate exactly all the polynomials up to degree n+p-1 (see above), the first
term of both members of (23) are equal.

Thus :

b
f K(x) Gnip(x) Qp-1(x) dx =0
a 24)

for any polynomial Qp.1(x) of order less or equal to p-1.

As a particular case, the associated orthogonal polynomials Py(n) may be
introduced in (24) :

b
] K(x) Gpuap(X) Pk(x) dx =0  pourk =0, ..., p-1
a (25)



The polynomial Gp,.p(x) may be expressed as a linear combination of
associated orthogonal polynomials : )

n+p

Grip(X) = D t Pi(x)
i=0 (26)

By introduci‘ng expression (26) in equation (25) , the orthogonality
property of polynomials P; gives directly ty =0 fork =0, ..., p-1. Then :

n+p

Grip(®) = Y, t; Pi(x)
i=p 27)

The coefficient ty4p is chosen equal to 1 and the n remaining coefficients

are determined by expressing that the n initial abscissae x;- are already known
roots of Gpp.

n+p-1
Gnip(x) = D, tP(X) +Prp(x) =0  j=1,.,n
i=p 28)

The relations (28) constitute a linear system of n equations with n
unknowns whose solution yield the expression of Gp.p as a function of
orthogonal polynomials. The finding of the p supplementary roots of Gp.p
yields the p new abscissae x;. Finally , all the abscissae being known, the
weighting factors may be determined in a classical way (see above). It may not
be guaranteed, in a general way, that the obtained rule has practicable
characteristics (simple roots, real and all situated in the interval of integration,
positive weighting factors). It may be shown that a n point Gaussian rule must
be extended with at least n+1 points [6]. In this case, the interpolant polynomial
in (17) is the product of an orthogonal polynomial of degree n corresponding to
the initial abscissae by a polynomial of order p-1 corresponding to the added
abscissae. If p-1 is less than n, the expression (17) gives a weighting factor
equal to zero because the an orthogonal polynomial is orthogonal to all the
polynomials of inferior degree .

In the case of a kernel K(x) and of an interval [a,b] both symmetrical with
respect to the origin (i.e. K(x) = K(-x) and a = -b), the equalities w;=wp.j+1
and Xx; = -Xn-j+1 are true for any n point rule.

Thanks to the symmetry of abscissae and to the parity of the involved
polynomials (26) is reduced to [5]:
[n/2]+1

Grip(x) = z Ci P2i24piq(%)
i=1 (29)



with :
q=n-2[n/2]
[n/2] = integer part of n/2

and the system (28) is simplified to a system of [n/2] equations with [n/2]
unknowns :

| [n/2]
Y CiPrigipig() =-Prip(x)  j=1,..,[/2]
i=1 (30)

Only the first [n/2] supplementary roots of Gp.p have to be determined, the
remaining ones are obtained directly by symmetry.

PATTERSON METHOD

A practical problem is to find a particular sequence of practicable rules by
applying the preceding theory. The Patterson method [7] is an example: the
starting point is a one point formula (the value of the function at the center of the
interval multiplied by the length of the interval), two points are optimally added
to obtain a 3 point formula (which is the 3 point Gaussian rule), then 4 points
are added to obtain a 7 point formula (which is not a Gaussian rule), and so on.
At step n, n+1 points interlaced with the previous ones (figure 1) are added.
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Figure 1. Optimal addition of points

A sequence of rules with 1, 3, 7, 15, 31, 63, 127, .. points is obtained,
where each rule reuses the previous computed values of the integrand. An n
point rule, obtained by optimal addition of points, integrate exactly the
polynomials up to degree (3n-1)/2, what is not so far from the n point Gaussian
rule which is exact up to degree 2n-1. The comparison between successive
approximations gives an error estimate. This method is naturally adaptative and a
Fortran program may be found in annex. Another Fortran program with 20
figure coefficients and formulae up to 255 points may be found in [7].

SINGULAR AND QUASI-SINGULAR INTEGRALS

The boundary element method involves the integration of singular and quasi-
singular kernels. For the numerical integration method, the integrands were
supposed to be smooth enough functions to be well approximated by
polynomials.



Nevertheless, the Patterson method may be efficiently applied if a change
of variable is made in order to even out peaks or singularities [8,9].

For instance, the integral of a function f(t) with a singularity or a peak at t
= tmin 1S considered (in practice, this occurs when an influenced point is close to
an influencing element, tp;, corresponds to the parametric coordinate of the
point of the influencing element at a minimum distance of or the same as the
influenced point ) :

1 .
I= f f(t) dt '
o (31)

The following change of variable is performed :

t- tmin = 03 | (32)
The integral (31) becomes :
+3V 1-tmin
I=3 f f(u3 + tmiy) u? du
Yt (33)

In expression (33), the point corresponding to t = ty, is u = 0. Thus the
singularity or the peak is eliminated by the term u2 in (33).

The practical algorithm is :

- Check if the influenced point is on or close enough to the influencing element
(The proximity criterion has been empirically chosen: a point is close enough
to an element if its distance is less than one tenth of the length of the element);

- If the point is close enough, choose the expression (33), otherwise, choose
expression (31);

- Apply the adaptative Patterson method on the chosen expression. The
criterion for stopping the process is to have two successive approximations
with a relative difference less than 104.

CONCLUSION

One of the characteristics of the boundary element method is that it involves the
computations of integrals ranging from very easy to singular. The proposed
algorithm allows for the use of an efficient method with an adaptative order, and
workable for the whole set of integrations. This provides accuracy and security
(error is controlled) for a rather low computationnal cost.
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Integrate the function F between A and B

using the adaptative Patterson method.
The required relative accuracy is EPS
and the obtained relative accuracy is ERR

written by A. Nicolet

IMPLICIT NONE

REAL C(63),CO(189),F, INTEG,A,B,F0
REAL EPS,ERR,VAL,VAL1,ABS0,ABS1,ABS2
INTEGER I,N,N1,N2,IP,NLIM

EXTERNAL F

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA

Co(
CO(
Co(
Co(
CO(
COo(
Co(
COo(
Co(
Co(

1) ,Co(
3),CO(
5),CO(
7) ,CO(
9),CO(
11),Co(
13),Co(
15),Co(
17),CO(
19),CO(

2)/.
4) /.
6)/.
8)/.
10) /.
12)/.
14)/.
16)/.
18)/.
20)/

7745966692414834,
5555555555555556,
9604912687080203,
4013974147759622,
1046562260264673,
6211029467372264,
9938319632127550,
2191568584015875,
1715119091363914,

.8888888888888889/
.4342437493468026/
.4509165386584741/
.2684880898683334/
.2233866864289669/
.8884592328722570/
.2255104997982067/
.2006285293769890/
.1344152552437842/

9.2927195315124535E-02,5.1603282997079735E-02/
CO( 21),CcO0( 22)/
1.7001719629940262E-02, .1124889431331866/

Co(
Co(
CO(
Co(
Co(
CO(
CO(

9.3627109981264474E-02, 8.

23) ,CO(
25) ,Co(
27) ,CO(
29),Co(
31),CoO(
33),Co(
35),Co(

24) /.
26)/.
28)/.
30) /.
32)/.
34)/.
36)/

Co( 37),CO( 38)/

7.6879620499003530E-02, 6.

CO( 39),CO( 40)/

5.6979509494123357E-02, 4.

CO( 41),Co( 42)/

3.5957103307129322E-02,2.

CO( 43),CO( 44)/

1.6446049854387805E~02, 8.

CO( 45),CO( 46)/

2.5447807915618750E-03, 5.

3311353932579768,
7024962064915271,
9296548574297401,
9990981249676676,

1119568730209535, .
.1003142786117956/

1056698935802348,

5313197436443756/

.8367259381688687/
.9815311495537401/
.1127552567207687/

1095784210559246/

5755920049990352E-02/
7207754295990704E-02/
6462893261757987E-02/
5807598096176654E-02/
4345657393211071E-03/

6344313046592790E-02/

CO( 47),CO( 48)/.1682352515522075,.2777498220218243/
CO( 49),CO( 50)/.3833593241987303,.4836180269458410/
Co( 51),CO( 52)/.5771957100520458, .6629096600247806/
CO( 53),CO( 54)/.7397560443526948, .8069405319502176/



DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

CO( 55),CO( 56)/.8639079381936905,

CO( 57),CO( 58)/.9463428583734029,

CO( 59),CO( 60)/.9886847575474295,
CO( 61),CO( 62)/

.9103711569570043/
.9721828747485818/
.9972062593722220/

-9998728881203576,5.6377628360384718E-02/

CO( 63),CO( 64)/

5.6277699831254301E-02,5.5978436510476320E-02/

CO( 65),CO( 66)/

5.5481404356559364E-02,5.4789210527962865E~02/

Co( 67),CO( 68)/

5.3905499335266064E-02,5.2834946790116520E-02/

Co( 69),co( 70)/

5.1583253952048459E-02,5.0157139305899537E-02/

co( 71),co( 72)/

4.8564330406673199E-02,4.6813554990628012E-02/

Co( 73),CO( 74)/

4.4914531653632198E-02,4.2877960025007734E-02/

Co( 75),Co( 76)/

4.0715510116944319E-02,3.8439810249455532E~02/

Co( 77),CO( 78)/

3.6064432780782573E~-02,3.3603877148207731E-02/

COo( 79),CO( 80)/

3.1073551111687965E-02,2.8489754745833549E-02/

CO( 81),CO( 82)/

2.5869679327214747E-02,2.3231446639910270E-02/

Co( 83),COo( 84)/

2.0594233915912711E-02,1.7978551568128270E-02/

CO( 85),CO( 86)/

1.5406750466559498E-02,1.2903800100351266E~02/

CO( 87),CcO( 88)/

1.0498246909621322E-02,8.2230079572359297E-03/

Co( 89),co( 90)/

6.1155068221172465E-03,4.2176304415588542E-03/

Co( 91),co( 92)/

2.5790497946856862E-03,1.2651565562300700E-03/

CO( 93),Cco( 94)/

3.6322148184553001E~04,2.8184648949745694E-02/

Co( 95),CO( 96)/

8.4454040083710883E-02, .1404242331525602/

COo( 97),CO( 98)/.1958975027111002,
CO( 99),C0(100)/.3045764415567140,
C0(101),C0(102)/.4089798212298887,
C0(103),C0(104)/.5076877575337166,
CO(105),C0O(106)/.5994039302422429,

C0(107),C0O(108)/.6829874310910792, .
C0(109),C0(110)/.7574839663805136, .
.8506444947683503/

CO(111),C0(112)/.8221562543649804,

C0(113),C0(114)/.8765134144847053, .
.9383203977795929/
.9666378515584166/
.9853714995985204/

CO(115),C0(116)/.9203400254700124,
CO0(117),C0O(118)/.9537300064257611,
CO0(119),C0(120)/.9771415146397057,

C0(121),C0(122)/.9914957211781061, .
.9995987996718457/

C0(123),C0(124)/.9983166353184119,
CO(125),Cc0(126)/

2506787303034832/

.3574038378315322/
.4591300119898323/
.5544951326319325/
.6422766425097595/

7214230853700989/
7910849337998484/

8997448997769400/

9957241046984070/

.9999824303550674,2.8188814180192359E-02/

C0o(127),Cc0(128)/

2.8176319033016602E-02,2.8138849915627151E-02/



DATA CO(129),C0O(130)/ _
2.8076455793817246E-02,2.7989218255238160E-02/
DATA CO(131),C0(132)/
2.7877251476613702E-02,2.7740702178279682E-02/
DATA CO(133),C0(134)/
2.7579749566481873E-02,2.7394605263981432E-02/
DATA CO(135),C0(136)/
2.7185513229624792E-02,2.6952749667633032E-02/
DATA CO(137),CO(138)/ ‘
2.6696622927450360E-02,2.6417473395058260E-02/
DATA CO(139),CO(140)/
2.6115673376706098E-02,2.5791626976024230E-02/
DATA CO(141),C0(142)/
2.5445769965464766E-02,2.5078569652949769E-02/
DATA CO(143),C0(144)/
2.4690524744487677E-02,2.4282165203336599E-02/
DATA CO(145),CO(146)/
2.3854052106038540E-02,2.3406777495314006E-02/
DATA CO(147),CO(148)/
2.2940964229387749E~02,2.2457265826816099E-02/
DATA CO(149),C0(150)/
2.1956366305317825E-02,2.1438980012503867E-02/
DATA CO(151),CO(152)/
2.0905851445812024E-02,2.0357755058472159E-02/
DATA CO(153),C0(154)/
1.9795495048097500E-02,1.9219905124727766E-02/
DATA CO(155),C0(156)/
1.8631848256138790E-02,1.8032216390391286E-02/
DATA CO(157),C0O(158)/
1.7421930159464174E-02,1.6801938574103865E-02/
DATA CO(159),CO(160)/
1.6173218729577720E-02,1.5536775555843982E-02/
DATA CO(161),C0(162)/
1.4893641664815182E-02,1.4244877372916774E~-02/
DATA CO(163),C0(164)/
1.3591571009765547E-02,1.2934839663607374E-02/
DATA CO(165),C0(166)/
1.2275830560082770E-02,1.1615723319955135E-02/
DATA CO(167),CO(168)/
1.0955733387837902E-02,1.0297116957956356E-02/
DATA CO(169),C0(170)/
9.6411777297025368E~-03,8.9892757840641358E-03/
DATA CO(171),C0(172)/
8.3428387539681576E-03,7.7033752332797418E-03/
DATA CO(173),C0(174)/
7.0724899954335555E-03,6.4519000501757369E-03/
DATA CO(175),C0(176)/
5.8434498758356395E-03,5.2491234548088592E-03/
DATA CO(177),C0O(178)/
4.6710503721143218E-03,4.1115039786546928E-03/
DATA CO(179),C0(180)/
3.5728927835172987E-03,3.0577534101755354E-03/
DATA CO(181),C0(182)/
2.5687649437940377E-03,2.1088152457265515E-03/
DATA CO(183),C0(184)/
1.6811428654211222E-03,1.2895240826120425E-03/
DATA CO(185),C0(186)/
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9.3836984854889166E-04,6.3260731933381262E-04/

DATA CO(187),C0(188)/

3.7774664625235091E-04,1.8073956470813311E-04/

DATA CO(189)/5.0536095040845502E-05/

IF (EPS.LE.0.) RETURN

initialization
N1 = 64

N2 = 32

NLIM = 63

N =0

IP =0

FO = F(.5%(A+B))
VALl = 2.*F0

N =N+ 1

computation of the new values of the integrand
DO 10 I=N2,NLIM,N1

Ip =1IP + 1
ABSO = CO(IP)
ABS1 = .5*((1.-ABS0) *A+(1.+ABS0) *B)
ABS2 = .5*((1.+ABS0) *A+(1.-ABS0) *B)
C(I) = F(ABS1l) + F(ABS2)

CONTINUE

weighted sum of old and new values

IP

VAL

= IP+1
= F0 *CO(IP)

DO 20 I=N2,NLIM,N2

N1
N2

I

P =1IP +1

VAL = VAL + C(I) *CO(IP)
CONTINUE

o

N2
N2 /2

error estimation
ERR
IF (VAL.NE.O.) ERR = ERR /ABS (VAL)
IF (ERR.GT.EPS) THEN

I

= ABS (VAL1-VAL)

F(N.EQ.6) GOTO 100

VALl = VAL

G

OTO 1000

ENDIF

INTEG = VAL * .5 *(B-3A)

RETURN

END



