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ABSTRACT

The modelling of open problems, i.e., with an exterior domain of infinite
extent, requires special techniques in order to keep the size of the problem
limited. Among the most interesting ones are the boundary element (BE)
method and the finite element (FE) transformation method. In this paper the
two methods are compared as well from the computational efficiency point of
view as from the accuracy (inside the problem and for the far field) point of
view.

INTRODUCTION

Because of the propagation of electromagnetic fields in free space (or in the
air), electromagnetic problems are often open i.e. characterised by the decay of
the fields at infinity, the opposite to closed problems with boundary conditions
at finite distance. As the numerical computations can only involve a finite
number of degrees of freedom, various methods have been proposed to
overcome this difficulty. Among the most interesting ones are the boundary
element (BE) method and the finite element (FE) transformation method.

In a current free domain, the equation of the two-dimensional
magnetostatics is the Laplace equation (1) :

AA=0 )

where A is the vector potential which has only one component. To solve open
problems, it is therefore necessary to find a solution to (1) in an infinite region.

BOUNDARY ELEMENT METHOD



To solve the equation (1), the direct boundary element method (Brebbial) is
based on the following relation :
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where :
- G is the free space Green function of the two-dimensional Laplace operator;
- ¢ = 0.5 on a smooth boundary;

- 0./0n is for the normal derivative.

Integrals are taken on the boundary I' of the subdomains and the
method involves only A and dA/dn (tangential flux density) on the boundaries.
Therefore neither meshing nor unknown need to be considered in the exterior
domain. The boundary element method is based on the concept of Green's
function which expresses in electromagnetism the remote action of sources. It
takes into account naturally open problems because the way fields decrease at
infinity is in a certain way contained in the Green's function.

FINITE ELEMENTS AND TRANSFORMATION METHOD

Some attempts have been made to use an a priori decrease of the field as shape
functions in domain elements of infinite extent. Unfortunately the so called
'infinite elements' have never been successful in modelling open problems.
Nevertheless the modelling of infinite regions by the finite element method is
possible using the finite element transformation method (Imhoff3).

In order to set up the finite element method (Silvester?), a variational
form is introduced. The magnetostatic Lagrangian is given by the integration

of the magnetostatic Lagrangian density on the domain M (the coefficient v is
the magnetic reluctivity):

[ L(A)aM =] (-12vgrad A.grad A)dM 3)
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The finite element method consists of approximating A by A =X A; o;

where A; are parameters and o; are shape functions obtained by assuming a
simple behaviour on elements from a meshing of M. The equations for the
parameters are found by expressing the extremum conditions for the
discretised Lagrangian. The terms in the finite element equations are products
of the unknowns A;with the coefficients a;; which are the following integrals
on the elements E:

[ -vgrad o;. grad oy dE 4)
E

If a domain M* is mapped on the domain M, the differential operator
and the integration undergo transformations involving the Jacobian matrix. The
mapping of a domain M* with coordinates {X,Y} on the original domain M



with coordinates {x,y} 1is given by two functions such that
{X,Y} = {x,y} = {i(X,Y), f2(X,Y)}. The integrand of (4) transforms as:

3.0 9 %% g -
E—V( x 04 yoci) Byocj =
50X, Y)
11 =T YX%™j *
L*—v [(oxeu(X,Y) 3y (X, V) J ][J (aYaj (X’Y)H dtm(J) dE*=

Ox0L; "
J —v(Ox0oy dyey) T (ax Jj dE )
B* Y%

with the following Jacobian and transformation matrices:
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and where dy, dy, dx , and dy indicate the partial derivative with respect to x, y,
X, and Y respectively. E and E* are the physical and the transformed element

respectively. 0;(X,Y), 0;(X,Y) are the shape functions on the transformed
element.

This contribution of the transformed element is equal to the non
transformed one up to the central matrix. If the transformation is trivial
f1X,Y)=X, £2(X,Y)=Y) or corresponds to a conformal transformation
(f1(X,Y) +1(X,Y) is analytic i.e. dxf; = dyfp and dxfy = -dyfy), this matrix
reduces to the unit matrix.

The transformation method is thus the following one: map the
'transformed domain' M* on the original domain M and apply the finite
element method with the elements obtained by meshing M* and using formula
(5) . This is in fact very similar to the process of mapping a reference element
on an actual element of the problem (figure 1). The direction of the mapping is
noteworthy. It is different from the classical one adopted in finite element



theory but it is much more coherent and is similar to the one used in algebraic
topology (Bossavit#). For a justification of the relevance of the direction of the
mappings in the finite element transformation method, see NicoletS . This
choice implies that only the direct functions f; and f; are involved and not their
inverses. On figure 1, two transformations are chained. In fact, the number of
chained transformations is arbitrary. In this case, the global Jacobian matrix is
the product of the individual Jacobian matrices (the matrix of the
transformation from the initial domain is the rightmost factor, each new
transformation adds a left factor) and the transformation matrix is computed
with this global transformation.

reference transformed physical
element domain M* domain M

Figure 1: the operation of mapping the transformed domain M* on the
original domain M is similar to the mapping of the reference finite element on
an element of the meshing.

Common transformations

In the following transformations M is the physical domain with the Cartesian
coordinates x and y and M* is the transformed domain with coordinates X and
Y.

Kelvin transformation: A fictitious circular boundary of radius A is defined
around the problem and the outside of this circle constitutes an infinite domain
M. The method consists of mapping the inside M* of the circle on M. The
transformation used is the Kelvin transformation given by the two functions

(with R = VX2 +Y2):

x=f1(X,Y)= A2X/R2 (8)

y=£X,Y)= A2 Y /R2 ©))

This transformation is known to map harmonic functions in M on harmonic
functions in M*. Therefore the transformation matrix reduces to (minus) the
unit matrix. No special treatment is necessary to use this method except to
manage the fact that there are several elements at the same place because the
transformed exterior elements are mapped inside the circle where the interior
elements are. The minus sign introduced by the transformation matrix is taken
into account by restoring the orientation of the elements changed by the
geometric transformation.

Cylindrical shell: A fictitious circular boundary of radius A is defined around
the problem and the outside of this circle constitutes an infinite domain M. The



method consists of mapping a corona M* on M. The corona, a finite domain,
has an inner radius A and an outer radius B, all the circles considered here
having the same centre. The transformation is given by the two functions (with

R=VX%+Y?):

x=£(X,Y) =X [A (B-A)] / [R (B-R)] (10)

y =£2X,Y) =Y [A (B-A)] / [R (B-R)] (11

There are no restrictions on B and for B = 0 one finds the Kelvin
transformation. The interest of this method is to transform the open domain in
a finite domain contiguous but separate from the interior domain. This leads to

a more familiar situation for FE codes and B is generally chosen greater than
A.

Other methods: ellipsoidal and rectangular shells are also used to match more
efficiently geometries with a large aspect ratio.

NUMERICAL EXAMPLES

As an application, two problems are considered. The first one has an
analytical solution: four circular wires placed symmetrically and fed by
balanced currents (figures 2 and 3).

Figure 2: mapped domain with Kelvin Figure 3 : the four wires.
transformation

Consider a wire of section a crossed by a current I. The potential A is
calculated as follows :

A, (0= (12)



where r is the radius calculated from the centre of a wire. The entire solution is
the superposition of the four wires contributions. The magnetic flux density is
derived from (12). The solution is calculated by all the methods described
above. The next figures compare the magnetic flux density calculated along C

(figure 3).

All the methods give much better results than only applying a boundary
condition at a finite distance (figure 4). FE-BE coupling method gives the best

results.

The Kelvin transformation is quite equivalent but needs less

computing time and does not implies any additional code to an existent F.E.M

solver.
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figure 4 : comparative results

The next table sums up the pros and the cons of each method :

Method Arguments for Arguments against
FE-BE. High precision. High C.P.U time.
No domain mesh. High complexity.
Kelvin. High precision. Only for 2-D.
No additional code.
Shell. Easy to code. 111 conditioned matrices
Problems with large aspect especially for high order
ratios. elements.
Boundary Satisfactory if the field is Poor precision if the boundary
condition at enclosed. is not taken far enough.
finite Large number of d.o.f. if the
distance. boundary is far.




The second example is an industrial open problem : calculation of the
magnetic field in an induction furnace. The furnace is composed of ten
inductors that are heating a thin plate. It is obviously the kind of problem

frequiring the computation of the exterior field.
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Figure 5: the furnace calculated by Figure 6 : the furnace calculated
BEM method with a rectangular infinite shell

Using the rectangular shell allows to take into account the large aspect
ratio of the problem and therefore limit the number of degrees of freedom. The
BEM model contains 1080 degrees of freedom and 160 seconds are needed to
invert the system by a direct method. The FEM model with the rectangular
infinite shell contains 3556 degrees of freedom but the system is symmetric
positive definite and can be solved by an iterative method in 17 seconds.

CONCLUSION

Both the FE-BE coupling and the finite element transformation method give
excellent results. The boundary element method gives an excellent accuracy
even for far field. With a fine meshing of the boundary, the exterior solution is
in fact very close to exact solution. If only the interior solution is of interest a
pure FE solution may be as accurate and faster than the FE-BE coupling.
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