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This paper describes a model of the magnetostriction by a finite element scheme for
magnetostatic cases. Given a structure, the magnetic field is first computed taking into account
the ferromagnetic saturation. Magnetic induction over elements is then used to compute

the magnetoelastic energy and the minimization of the mechanical functional leads to the
determination of displacement, strain, etc., due to the magnetostriction process.

INTRODUCTION

Magnetostriction is the phenomenon where the shape
of a ferromagnetic specimen changes during the process of
magnetization."> The deformation di// due to magneto-
striction is as small as 10~ 6105, Nevertheless, it is re-
sponsible for vibrations, noise, and mechanical losses in
magnetic circuits. It also has important applications such
as high-frequency oscillators and ultrasound generators.
However, magnetostriction is usually studied experimen-
tally because of the difficulties arising from the magnetic
field computation and the coupling between magnetic and
mechanical problems.

MAGNETOSTRICTION

When a magnetic field is applied to a ferromagnetic
material it has its dimensions changed during the process
of magnetization. The strain tensor due to magnetostric-
tion €; can be divided into two distinct parts:

€;=e"6;+ 'é‘ij, (D
where 6,~j is the Kronecker tensor,

e'=1¢; | (2)
is the volume dilatation, and

’e\,~j=e,-,-—e"5,-j. (3)

The kind of magnetostriction responsible for e’ is called the
volume magnetostriction, while the other components

e i of the strain tensor come from the Joule magnetostric-

tion. ' .

The volume magnetostriction appears in very high
magnetic fields far above magnetic saturation of the mate-
rial. On the other hand, the Joule magnetostriction (i.e.,
incompressible part of magnetostriction) takes its maxi-
mum value at saturation. The behavior of volume magne-
tostriction can be linearized by taking

e’=0 for H<H, (4)
and
"=a(H—H,) for H>H, (5)

For Joule magnetostriction the strain is supposed to be a
function of the magnetization M
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For an isotropic material, at saturation, we admit that the
strain takes its maximum value A The tensor becomes

A0 0
0 0 —A/2

for a magnetization along the x axis. A, represents the
relative change of dimension of the material at saturation
and is easily measured by experiment. If the materia] is
assumed to be linear between the demagnetizated state and
saturation, then there is a strict proportionality between
magnetization and deformation:

e =A=A)M|/|M}, (8)

where M, is the magnetization at saturation.

MECHANICAL PROBLEM

A body V is taken with internal forces S and with
prescribed stress 7 on a part of its surface S, while the
other part S, is subject to prescribed displacement U,. The
solution of the linear elasticity problem is given by the
principle of minimum of energy.® The exact solution min-
imizes the classical functional (i.e., annulation of the first
variation).

](U[)=J‘ W"dV—f f,.U,-dV—f TU;dS. (9)
|4 14 S,

The first term represents the elastic energy stored in the
body, and the others are, respectively, the work of the
internal and external forces. The density of elastic energy
W* is a quadratic form of the strain tensor (using the
Einstein summation convention)

We=1Ciukei€rs i (10)

where Cyy, is called Hooke’s tensor (of order 4) but which
can be reduced to only two independent components Cii
and C); for an isotropic material.

The components C,;; and Cy, are related to the
Young’s modulus £ and the Poisson’s ratio o by*

E(1-0)
R S By

and

(11)
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=i —20" (12)
In this case, the density of energy becomes _
We=3(Cy; — Clz)Eijfij“l'%ClZEj/fii- : (13)

COUPLED PROBLEM

A new term can be added to the functional represent-
ing the magnetoelastic energy associated to the magneto-
striction effect :

,(U,.)=f WedV—f f,U,.dV—’f T,U;dS
v v S; :

— f wmdy. (14)
14

Note that this functional supposes that the external forces
are not depending on the displacement. In the following,
only the magnetostrictive effect is considered and other
kinds of forces are neglected.

In this case, the functional becomes

I(Ui)=f _W’a’V—-f wmdv. (15)
v 14

The density of magnetoelastic energy is
Wm=s€; (16)

where s;; are the stresses due to magnetostriction. Utiliza-
tion of Hooke’s law and mathematical developments lead
to

Wm=3(Cy; — Cpy)
X e [611(0‘% -+ 622(0‘% -3+ 633(a§ -]
+ 3(Cyy — Cp) @ (€010, + €330 + €3011@3)
+ (Cy1 +2C)e%(€q + €3 + €33), (17)

where C;, and Cj, are the elastic coefficients taken from
Hooke’s tensor and the a; are the unit vectors of the direc-
tion of the magnetization M.

HYPOTHESIS AND FINITE ELEMENT

~ Only the Joule magnetostriction is taken into account
In the finite element implementation because it is the more

(

S — %nZ(Cll - ClZ) ’é (a% bt 0/3) — 172(C” =+ 2C12)ae”+ %§2(Cl] — CIZ) ?alaz
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—%ﬂl(cu - Cyy) e (C‘% —a/3) —q(Cyy + 2012)0‘9”4'%51((:11-— Cp) ?alaz

%51(C11 —Cp) e (af —a/3) + £ (Cyy + 2Cyy)ae’ — %ﬂl(cll —Cp) ?alaz

2/S] #(Cp—Cp) @ (af —a/3) + &(Cyy + 2Cpy)ae’ — iy (Cyy — Cyy) Ca,
—m3(Cy—Cpp) @ (af —a/3) = 13(Cyy + 2Cyp)ae’ + 36;(Cyy — Cy) Caja,

g%gs(cu —-Cp)e (af —a/3) + £&(Cy + 2Cp)ae’ — 33(Cyy — Cyy) Caja,

v2

v3

u3

X

FIG. 1. First-order triangular element for elasticity.

usual kind of magnetostriction. In addition, although the
previous relations were three dimensional, we will restrict
ourselves to a two-dimensional model.

In the mechanical problem there are two different
points of view: plane strain or plane stress. The first case
corresponds to an infinite body in which the deformations
are the same in every perpendicular plane. Note that this
case is not incompressible which is incompatible with a
Joule magnetostriction. On the other hand, the plane stress
which corresponds to a thin body (for which all stresses
are in the plane of the body) is incompressible.

The magnetostatic state of the structure is first com-
puted and then the values of the magnetic induction are
used in the magnetoelastic computation. First-order trian-
gular elements (Fig. 1) are used for the finite element
implementation of the magnetoelastic model. Two compo-
nents of displacement are defined at each node. The ele-
ment has six degrees of freedom given by the vector of
displacement:

{g} 7= (uy,01,u5,0,u3,3). (18)

Linear variations of displacement are assumed on the ele-
ment. According to standard computations for this kind of
element in elasticity,5 the following contribution I¢ of the
element to the discretized functional is derived:

I'=3{g}"[K 1{q} — {g}"{g}, C(19)

where [K] is the classical element stiffness matrix’ and {g}
is a generalized force vector due to the magnetostriction.
This vector is given by

N\

, (20)
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FIG. 2. Field lines in an
electromagnet.

where

§1=x3—X3 Gr=x1—X3 E&=x,—1x

M=y —Y» M=V1—Yi» T=Yr—) (21)

S=E&m3—E3my a=1—(Cp/Cyy).

The element contribution to be assembled to the global
system is therefore '

[K1{g}={g}.

Geometry variations due to the magnetostriction can be
neglected from the magnetic field computation point of
view because deformations are very weak (relative defor-
mation =~ 10~7).

(22)

RESULTS

Figure 2 shows the field lines in an electromagnet. The
values of the induction are used to compute the magneto-
striction. The maximum induction in the electromagnet is
about 1.4 T. Its elastic constants are C;; = 2.75 X 10!!
J/m? and Cy, = 1.25 X 10" J/m? The width of the mag-
netic horseshoe is 1 m. The parameters of magnetostriction
are M, = 1.6 X 10A/mand A, = 10~5.

FIG. 3. Deformation of the electromagnet under a positive magnetostric-
tion.
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FIG. 4. Deformation of the electromagnet under a negative magnetostric.
tion.

Figure 3 shows the deformation of the structure under
positive magnetostriction and Fig. 4 illustrates that under 2
negative one. Displacements are amplified by a factor of
15000. The positive magnetostriction gives a dilatation
along the field lines and a contraction in the perpendicular
direction. The negative magnetostriction leads to the op-
posite behavior. '

CONCLUSION

- The integration of the magnetoelastic computation as a
part of the postprocessing of a magnetic field computation
software furnishes a very simple tool to take the magneto-
striction into account in the design of electrotechnical de-
vices. It allows the computation of the magnetostriction
with the same geometry as in the electromagnetic model.

Numerical computations provide coherent results but
an experimental confirmation is not yet available. The
plane strain hypothesis leads to better results. This case
corresponds to thin objects which is not so restrictive in
electrotechnics because most of the magnetic yokes are
constituted of thin sheets in order to limit eddy currents.
Further improvements will include dynamic problems. The
introduction of the inertial terms in the mechanical prob-
lem will allow the determination of the eigenmodes of vi-
brations of the structures.
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