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Abstract

Edge elements have been previously used to study electromagnetic waves conically propagating through a
%nite stack of arrays of %bres [(IEEE Trans. Magn. 38(2)(2002))]. This paper presents a new extension of
this technique to the analysis of the propagation of such waves in a doubly periodic array of %bres. In the
proposed approach, only the unit cell of the periodic material has to be meshed, thanks to Floquet–Bloch
theory.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Photonic crystal research has renewed the interest for electromagnetic wave propagation in periodic
structures. Though real structures are %nite and one is often interested in the study of defects [3], the
determination of modes in ideal periodic structures is of foremost importance. The Floquet–Bloch
theory reduces the problem to the study of a single cell [5,6]. The purpose of this paper is to show
how to combine this feature with %nite element modelling in order to obtain numerical solutions for
propagating modes in periodic structures.
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2. Spectral problem for conically propagating electromagnetic waves in doubly periodic structures

Let Y be the unit square cell ]0; 1[ × ]0; 1[. We consider a dielectric waveguide of constant
cross section � in Y , invariant along the z-axis and whose permittivity pro%le � is supposed to be
a known function (e.g., a piecewise constant function). This unit cell is repeated periodically in
the xy-plane (Fig. 1). We are looking for electromagnetic %elds (E;H) solutions of the following
Maxwell equations:

curlH= �
@E
@t
;

curlE=−
0 @H@t ; (2.1)


0 being the permeability of vacuum. Furthermore, choosing a time dependence in e−i!t , and taking
into account the invariance of the guide along its z-axis, we de%ne time-harmonic two-dimensional
electric and magnetic %elds E and H by

E(x; y; z; t) =Re(E(x; y)e−i(!t−
z));

H(x; y; z; t) =Re(H(x; y)e−i(!t−
z)); (2.2)

where ! is the angular frequency in the vacuum and where 
 denotes the propagating constant of the
guided mode. Note that E and H are complex valued %elds depending on two variables (coordinates
x and y) but still having three components (along the three axes). The structure being periodic in
the xy-plane, our problem reduces to looking for Bloch waves solutions which are the solutions Uk

that have the form (Bloch theorem [5])

Uk(x; y) = eik·rU(x; y) = ei(kxx+kyy)U(x; y) for a:e: (x; y) in R2; (2.3)

Fig. 1. A system with a translational invariance along the z-axis together with a two-dimensional periodicity in the xy-plane
and the general form of propagating modes Uk(x; y; z; t).



A. Nicolet et al. / Journal of Computational and Applied Mathematics 168 (2004) 321–329 323

where k= (kx; ky)∈R2 is a parameter (the so-called Bloch vector or quasi-momentum in solid-state
physics) and U(x; y) is a Y -periodic function, i.e., U(x+1; y)=U(x; y+1)=U(x; y). Such solutions
are said to be (k; Y )-periodic in the sequel. To specify the class of solutions of our spectral problem,
we introduce the Hilbert space [L2](k; Y )]

3 of (k; Y )-periodic square integrable functions on Y ⊂ R2
with values in C3. We say that the couple (Ek;Hk) associated with the Bloch vector k is an
electromagnetic Bloch wave if (Ek;Hk) veri%es (2.1) and is of the form speci%ed by (2.2) and
(2.3), with

(
; !; k)∈R+ × R+ × R2;
(Ek;Hk) �= (0; 0);
Ek;Hk ∈ [L2](k; Y )]3: (2.4)

The Bloch wave can actually be thought of being born out of the interaction between the plane waves
and the periodic medium. Looking for solutions that are Bloch functions in [L2](k; Y )]

3 ensures the
well-posedness of our spectral problem, as a replacement of the Sommerfeld radiation condition (or
other decaying conditions for the far %eld) which is usually imposed in the presence of compact
obstacles in the medium. The following operators are de%ned:

∇
’(x; y) =∇(’(x; y)ei
z)e−i
z;
curl
U(x; y) = curl(U(x; y)ei
z)e−i
z;

div
U(x; y) = div(U(x; y)ei
z)e−i
z: (2.5)

The solutions (Ek;Hk) of the spectral problem then satisfy

curl
Hk =−i!�0�r(x; y)Ek;

curl
 Ek = i!
0Hk ; (2.6)

where �r denotes the relative permittivity (bounded and coercive function on Y ). Note that curl
 ∇
’=
0 for smooth scalar %elds ’ and that div
 curl
U = 0 for smooth vector %elds U.

3. Finite element modelling of the eigenvalue problem

3.1. The magnetic formulation for a dielectric inclusion

Eliminating the electric %eld from (2.6), one %nds

curl

1
�r
curl
Hk = k20Hk; (3.7)

where k20 = �0
0!2 = !2=c2. The weak form of this equation together with the constraint
div
Hk=0 corresponds to the problem of annulling the following residues ( IH denotes the complex



324 A. Nicolet et al. / Journal of Computational and Applied Mathematics 168 (2004) 321–329

conjugate of H):

R(
;Hk;H′
k) =

∫
Y

1
�r
curl
Hk · curl
H′

k dx dy

+s
∫
Y

div
Hk div
H′
k dx dy − k20

∫
Y

Hk · H′
k dx dy: (3.8)

Here H′
k is the weight vector %eld chosen in the same space as Hk, the unknown magnetic %eld.

This problem of minimization admits a unique solution thanks to the penalty term s
∫
Y
div
Hk div
H′

k

dx dy (where s is an arbitrary multiplier) which acts as a constraint forcing the nullity of div
Hk

in Y . The numerical formulation is given by the following residue [4,7]

R(
;Hk;H′
k) =

∫
Y

�−1r (curltHt;k · curltH′
t;k +∇tHl;k · ∇t IH

′
l;k

−i
(Ht;k · ∇tH ′
l;k − ∇tHl;k · H′

t;k) + 

2Ht;k · H′

t;k) dx dy

−k20
∫
Y

(Ht;k · H′
t;k + Hl;kH

′
l;k) dx dy; (3.9)

where the unknown %eld now belongs to a discrete Hilbert space (i.e., with a %nite dimension
equal to the number of numerical parameters to be determined). This formulation involves both a
transverse %eld Ht;k in the section of the guide and a longitudinal %eld Hl;k along its axis such that

Hk =Ht;k + Hl;kez (3.10)

and curl
 has been developed in its transverse and longitudinal components

curl
Hk = curltHt;kez + (∇tHl;k − i
Ht;k)× ez: (3.11)

The section of the guide is meshed with triangles and Whitney %nite elements [1] are used, i.e.,
edge elements for the transverse %eld and node elements for the longitudinal %eld:

Hk =




Ht;k =
∑
edges i

�iwe
i (x; y);

Hl;k =
∑
nodes j

�jwnj (x; y);
(3.12)

where �i denotes the line integral of the transverse component Ht;k on the edges, and �j denotes
the line integral of the longitudinal component Hl;k along one unit of length of the axis of the
guide (what is equivalent to a nodal value). Besides, wnj (x; y)=�j(x; y) and we

i =�k(x; y)∇�l(x; y)−
�l(x; y)∇�k(x; y) (where �i is the barycentric coordinate of node i and the edge i has nodes (k and
l as extremities) are, respectively, the basis functions of Whitney 1-forms (edge element discrete
space W 1) and Whitney 0-forms (nodal element discrete space W 0). The use of the Whitney elements
solves the spurious mode problem in a way similar to the one of the cavities [1]. To see that, it
has to be noticed that the penalty term involving the divergence is not introduced in the discrete
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formulation because the use of Whitney elements guarantees the nullity of the divergence in a weak
sense. One of the main properties of the edge element space (Whitney 1-forms) is that it includes
exactly the gradients of the node element approximation functions (gradients of Whitney 0-forms).
It is therefore possible to choose

H′
k =∇
’: (3.13)

Taking s = 0 (i.e., neglecting the penalty term for the divergence) and introducing (3.13) in (3.8),
one obtains, since curl
∇
’= 0:∫

Y

Hk · ∇
’ dx dy = 0; ∀’∈W 0 (3.14)

for all ! �= 0. Eq. (3.14) is indeed a weak form of div
Hk=0. As the eigenvalue problem involves,
on the one side, k20 only and, on the other side, both 
 and 


2, a more classical (though generalized)
eigenvalue problem is obtained by %xing 
∈R+ for a given Bloch vector k and looking for (k20 ;Hk)
satisfying the discrete spectral problem.

3.2. The electric formulation for a metallic inclusion

If we consider a (perfectly conducting) metallic inclusion �m in the basic cell Y , the presence
of metallic walls introduces unknown surface currents equal to the tangential component of the
magnetic %eld. The magnetic formulation is not well suited to take into account such metallic
boundary conditions and therefore we choose now an electric %eld formulation (dual to the magnetic
one) to get simple boundary conditions because the tangential component of the electric %eld is null.
The magnetic %eld is %rst eliminated from (2.6) to give

curl
 curl
 Ek = �
0!2Ek: (3.15)

The weak form of this equation together with the constraint div
�Ek = 0 corresponds to minimizing
the following functional in the weighted Hilbert space [H](Y \�m; dL)]3, where dL is the Lebesgue
measure �−1r dx dy:

R(
;Ek;E′
k) =

∫
Y\�m

curl
 Ek · curl
 E′
k dL

+s
∫

Y\�m

div
 Ekdiv
 E′
k dL − !2

c2

∫
Y\�m

Ek · E′
k dL: (3.16)

We introduce %nite elements in a way similar to the magnetic formulation. Whitney %nite elements
are used for the electric %eld, i.e., edge elements for the transverse %eld and nodal elements for the
longitudinal %eld:

Ek =




Et;k =
∑
edges i

�iwe
i (x; y);

El;k =
∑
nodes j

�jwnj (x; y);
(3.17)
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where �j denotes the line integral of the transverse component Et;k on the edges, and �j denotes the
line integral of the longitudinal component El;k along one unit of length of the axis of the guide.
The operator curl
 is again developed in its transverse and longitudinal components and the %nal
expression of the functional to minimize can be written as

R(
;Ek;E′
k) =

∫
Y\�m

(curlt Et;k · curlt E′
t;k +∇tEl;k · ∇t IE

′
l;k

−i
(Et;k · ∇tE′
l;k − ∇tEl;k · E′

t;k) + 

2Et;k · E′

t;k) dL

−
0!2
∫

Y\�m

(Et;k · E′
t;k + El;kE

′
l;k) dL: (3.18)

As in the case of the magnetic %eld formulation, it is interesting to notice that the penalty term
involving the divergence is not introduced in the discrete formulation because the use of Whitney
elements guarantees the nullity of the divergence in a weak sense i.e.,

∫
Y\�m

Ek ·∇
’ dL=0, for all

’∈W 0 and for all ! �= 0.

3.3. The Bloch conditions

In order to %nd Bloch modes with the %nite element method, some changes have to be performed
with respect to classical boundary value problems that will be named Bloch conditions [6]. To
avoid tedious notations, let us consider the case of a scalar %eld Uk(x; y) (time and z dependence
are irrelevant here and there is no particular problem to extend this method to vector quantities
and edge elements) on the square cell Y with Bloch conditions relating the left and the right side
(Fig. 2). The set of nodes is separated in three subsets: the nodes on the left side, i.e., with x = 0,
corresponding to the column array of unknowns ul, the nodes on the right side, i.e., with x = 1,

Fig. 2. Bloch theorem and virtual periodic meshing.
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corresponding to the column array of unknowns ur, and the internal nodes, i.e., with x∈ ]0; 1[,
corresponding to the column array of unknowns u. One has the following structure for the matrix
problem (corresponding in fact to natural boundary conditions, i.e., Neumann homogeneous boundary
conditions):

A




u

ul

ur


= b; (3.19)

where A is the (square Hermitian) matrix of the system and b the right-hand side. The solution to
be approximated by the numerical method is a Bloch function Uk(x; y) = U (x; y)ei(kxx+kyy) with U
being Y -periodic and in particular U (x+1; y)=U (x; y). Therefore, the relation between the left and
the right side is:

Uk(1; y) = U (1; y)ei(kx+kyy) = Uk(0; y)eikx ⇒ ur = uleikx :

The set of unknowns can thus be expressed in function of the reduced set u and ul thanks to


u

ul

ur


= P

(
u

ul

)
with P=




1 0

0 1

0 1eikx


 ; (3.20)

where 1 and 0 are identity and null matrices, respectively, with suitable dimensions. The %nite
element equations related to the eliminated nodes have now to be taken into account. Thanks to the
periodicity of the structure, the elements on the left of the right side correspond to elements on the
left of the left side (Fig. 2). Therefore their contributions (i.e., equations corresponding to ur) must
be added to the equations corresponding to ul with the right phase factor, i.e., e−ikx , which amounts
to multiply the system matrix by P∗ (the Hermitian of P). Finally, the linear system to be solved is

P∗AP

(
u

ul

)
= P∗b; (3.21)

where it is worth noting that the system matrix is still Hermitian, which is important for numerical
computation. Now a generalized eigenvalue problem (with natural boundary conditions) Au = �Bu
is transformed to a Bloch mode problem according to P∗APu′= �P∗BPu′. Such problems involving
large sparse Hermitian matrices can be solved using a Lanczos algorithm, which permits to compute
their largest eigenvalues [7]. Since we are in fact interested in the smallest eigenvalues, the inverse
of A must be used in the iterations. Of course, the inverse is never computed explicitly but the
matrix-vector products are replaced by system solutions thanks to a GMRES method [8]. It is
therefore obvious that the numerical eKciency of the process relies strongly on Krylov subspace
techniques and the Arnoldi iteration algorithm [8]. The practical implementation of the model has
been performed thanks to the GetDP software [2].
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4. Numerical results

In order to avoid huge constants in numerical computations, normalized units have been chosen
where c =

√
�0
0 = 1 and the unit of length is the side length of the cell. For instance, if one

considers a real cell of size 1 �m; kx; ky and 
 must be multiplied by 106 to get their values and
! must be multiplied by about 3 · 1014. As an illustration, the case of a circular metallic inclusion
(radius = 0:4 m) in a unit square cell has been considered. Fig. 3 shows a particular mode. Using a
660 triangle mesh, the determination of the %rst half dozen of modes takes only a few seconds with
a 1 GHz processor. Though the solution is computed only on one cell, it has been reconstructed on
a 2×3 cell set by multiplying by the phase factor (ei(nkx+mky) for cell (n; m)). It has to be observed
that this non-periodic solution is continuous between cells, which is a clue showing that we are in
presence of a Bloch mode. (In this section, ‘continuous’ has not to be taken in its mathematical
acception but in the more intuitive sense that the graphical representation of the vector %eld is
likely to correspond to a continuous one.) Fig. 4 shows a band diagram for a given propagation

Fig. 3. Bloch mode (
 = 7 m−1; kx = 1:2 # m−1; ky = 0:2 # m−1; ! = 8 · 14 s−1) shown on 2× 3 cells (real part (on the
left) and imaginary part (on the right) of the transverse electric %eld).
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Fig. 4. Band diagram for 
 = 7 m−1 on the boundary of the irreducible part of the Brillouin zone of the reciprocal
square lattice.



A. Nicolet et al. / Journal of Computational and Applied Mathematics 168 (2004) 321–329 329

constant (
=7 m−1). The Bloch vector varies conventionally on the boundary of the irreducible part
of the %rst Brillouin zone (the momentum space dual of the Y -cell). A gap appears just above the
bottom curve indicating that interesting guiding properties for the given propagation constant may
be expected in this structure possibly modi%ed by the introduction of defects.

5. Conclusion

In this paper the application of the %nite element method to photonic crystal waveguides via the
implementation of Floquet–Bloch conditions has been presented. Although a very simple geometry
has been considered, one of the main advantages of this approach with respect to more usual methods
in the %eld is its extreme Pexibility with respect to the geometry and the material characteristics of
the problem. Reversing the optical index contrast, introducing one or several defects or disturbing
the shape or the pattern of the elements of the photonic crystal is not a problem. Future work will
concern the exploration of the eQect of a slight perturbation of the periodicity of the lattice (e.g.,
by considering a “random” or “quasi-periodic” set of %bres in a macrocell) on the band diagrams.
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