Finite element analysis of helicoidal waveguides

A. Nicolet and F. Zolla

Abstract: The purpose of the paper is to propose an efficient method to compute propagation
modes in helicoidal waveguides. An helicoidal system of co-ordinates is introduced to define the
structure and to set up the problem. These co-ordinates, albeit non-orthogonal, preserve the transla-
tional invariance in a way that allows a two-dimensional finite element model similar to that of

classical straight waveguides.

1 Introduction

The modelling of ideal electromagnetic waveguides relies
on their translational invariance to reduce it to a two-
dimensional computation. In the case of helicoidal
waveguides, this invariance is lost. The helicoidal geometry
sometimes arises in an unwanted way, for example, during
the production process of microstructured optical fibres, an
uncontrolled twist can appear. The proposed method pre-
sents a technique to preserve the two-dimensional character
of the computation of the modes of such waveguides. The
method is an exact (in the framework of classical electro-
magnetism) vector formulation together with a general
numerical finite element analysis.

2 Helicoidal waveguides

Let us introduce a twisted co-ordinate system (&, &, &)
[1-5] deduced from rectangular Cartesian co-ordinates
(x1, X2, x3) in the following way

x) = & cos(ags) + & sin(ady)
xy = =& sin(ag;) + & cos(ady) 1
x3 =&

where « is a parameter that characterises the torsion of the
structure. A twisted structure is a structure for which both
geometrical and physical characteristics (here, the permit-
tivity e, the permeability u and the geometry of the
perfect conductors) only depend on £ and &.

Note that such a structure is invariant along & but
(27/ &)-periodic along xs.

This general co-ordinate system is characterised by the
Jacobian of the transformation (1)

9(xy, x5, X3)

J(§, 6. 6)= AEL 6, 8)
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ag, cos(a&;)
—af; sin(a&;)
—af; cos(aé;)

—sin(aé;) cos(ag;) —ag, sin(ag;)

0 0 1

cos(agy)  sin(ag;)

which does depend on the three variables &, & and &.
In contrast, the transformation matrix 7 [4]

: 10 g,
T &) = quicr = 1 e
ab, —af 1+ (E+8)

@
which describes the change in the material properties, only
depends on the first two variables & and &. The inverse
matrix is
1+ a2§§ —azflfz —aé,
—dgg 1+ af | O)
—af, ag, 1

A more compact way to write these matrices is

I —aR
T= (—aRT 1+ azRTR) @

T7'(4, &) =

and

)

71— I+ o’RR" aR
aR” 1

where 1 is the 2x 2 unit matrix, and

()
&
is the /2 counterclockwise rotation of & the position
vector in the cross-section with respect to the axis of
rotation.

From a geometric point of view, the matrix T plays the
role of the metric tensor [3]. Another way to see it, is that
the change of co-ordinates amounts to replacement of the
different materials (often homogeneous and isotropic)
by equivalent, inhomogeneous anisotropic materials.
The twisted problem is set up by the actual material
characteristics € and u being replaced by new tensorial
ones given by & =&T~! and w' = uT~!. Note that the

permittivity  and permeabili@ undergo the same
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transformation, so that the impedances of the media remain
unchanged. It allows for a simple setting of the finite
element method for twisted structures [4—6].

Our goal is to obtain numerically the propagation modes
in an electromagnetic waveguide twisted along the &;-axis
and therefore described by its cross-section in the
&1&-plane. We choose to formulate the problem in terms
of the electric field £ with homegeneous boundary con-
ditions, that is for a guide with perfectly conducting metallic
walls. (A formulation of the problem in terms of the mag-
netic field could be handled in the same way.)

Choosing a time dependence in e, and taking into
account the invariance of the structure in the local
co-ordinates (&), &, &) along the &;-axis, we define the
time-harmonic two-dimensional electric field E

E(E, &, .0 = Re(E(&, )™ )  (6)

where w = koc = ko/+/(poe0) is the angular frequency, and
B is the propagating constant of the guided mode. Note that
E is a complex-valued field depending on two variables
(co-ordinates & and &), but still with three components

(along the three axes €, €% and e%). The two-dimensional
electric field is separated into a transverse component E, in
the & &-plane and a longitudinal field E, along the &-axis
(unit vector e§3) of invariance, so that E = E, +Ege§3,
with E,-e®=0. Note that the fact that the twisted
co-ordinate system is not orthogonal does not lead to any
ambiguity about this scalar product, as e® is clearly
always orthogonal to the &, &-plane.
Writing Maxwell’s equations in terms of E, we obtain

curly(u; ' curlgE) = ke, E (7
where the operator curls is defined as
curlU(4), &) = curl(U(¢,, &)eP5)e ™%

with curl having the same formal definition in terms of
partial derivatives as in the case of rectangular Cartesian
co-ordinates. The following transverse operators are
defined for a scalar function ¢(&;, &) and a transverse

field v = ve (&1, &)e8 + ve (&1, &)e™

a a
grad,p = R + 2P o

0¢, 08,
av av
£ &) &
curlv={———2]e%
' (362 ¢, )

and are used to separate curls into its transverse and
longitudinal components

curlg(v + pe®) = curl,v + (grad,p — ifv) x &5

To summarise, the setting of the equations is exactly the
same as for the case of straight guides in rectangular
Cartesian co-ordinates, but for the introduction of equival-
ent inhomogeneous material properties involving the T
matrix.

3 Finite element modelling

The discretisation of Maxwell’s equations (together with
the equivalent material properties €.(&;, &), u(éi, &) is
obtained with finite elements [4]. The cross-section of the
guide is meshed with triangles, and Whitney finite elements
are used, i.e. edge elements for the transverse field and

2

nodal elements for the longitudinal field

edges nodes

E, = Z ejwé(fl7 &) and Ey = Z efwj;,(&, &)
= :

J=1

where ¢; denotes the line integral of the transverse com-
ponent E, on the edges, ef denotes the line integral of the
longitudinal component E, along one unit of length of the
&-axis (which is equivalent to the nodal value), and w7,
and W/, are, respectively, the basis functions of Whitney
1-forms and O-forms on triangles. On a triangle, if A;
denotes the barycentric co-ordinate associated with the
node i, w, = A;grad \; — A; grad A; for the edge going
from node i to node j, and w, = A; for the node i.

As the electric field satisfies a homogeneous Dirichlet
boundary condition (n x E = 0) on the boundary of the
guide, the weak formulation of (7) gives

R(E,E) = JQ(M;_IcurlﬁE) -eurlgE’ d¢,dé, — K
X J (,E) - Ed¢,dg, =0 VE' € H(curly, Q)
Q

®)

where ), = u T and &/ = &,T~" are the equivalent (ani-
sotropic and inhomogeneous) material properties. The w,
and &, are the original material properties that are
commonly (but not necessarily) isotropic piecewise
homogeneous. The space H(curlg, Q) of curl-conforming
fields is defined as H(curlg, Q) = {v € [L*(Q)T, curlgy €
[L2QF).

In terms of transverse and longitudinal components, this
weighted residual corresponding to the propagative mode
problem for helicoidal waveguides is [4]

R(E,E')

= J W (curLE, + (grad,E, — iBE,) x &%)
Q

x (curl,E; + (grad,E;, — iBE}) x e5) d£,d&,

| ei(E,+ Bl BB dds
Q

= J ((,u'r_lcurltE,) - curl,E,
QO
+ (,U«/,_lcurltE,) . (grath_/e X e§3)
+ iB(M;_lc“rltEt) : (E x e§3)
+ (5 (grad E, x €)) - curlE]
+ (1 (grad,E, x e)) - (grad E, x %)
+iB(w (grad,E, x e%)) - (E] x €®)
— iB(p, (E, x €%)) - curlE]
— BT (E, x €9)) - (grad,E} x &%)
;1 N o
+ B, (E, x ) - (B, x &) d &,
~ i | (1) B+ GiE) et
+ (e} Eee®) - E, + (e)E,e®) - Fre® ) d dg, = 0
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Fig. 1 Geometry of rectangular waveguide with triangular finite
element mesh
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Fig.2 Variation of ky (m™') with respect to torsion a(m™") of
guide with B=1.0m™"

If we introduce the finite element approximation in the
weighted residual and take the basis of the discrete spaces
as weights E; and E, (Galerkin method), the problem
reduces to a matrix system.

For fixed B, this system is a generalised eigenvalue
problem

—kéMBu +Kgu=0

where Mg and Kz are N x N matrices (where N is the
number of unknowns) depending on B, and k3 and u are
the eigenvalue and eigenvector, respectively.

0.1t oz 03n

Fig. 3 Variation of B (m™') with respect to torsion a (m™") of
guide with ky = 4.84596 m™’
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Fig. 4 Transverse electric field (real part) of mode correspond—
ingtoa=0.05mm™’, B=1.0m"" and ky = 4.84596 m™

For fixed ky, this system is a generalised quadratic
eigenvalue problem of the form

—BMu+iBL u+ K, u=0

where M, , L, and K, are N x N matrices depending on
ko, and B and u are the eigenvalue and eigenvector, respect-
ively. This quadratic problem is then transformed to a linear
problem in § involving 2N x 2N matrices, but where all the
operations can be performed on N X N submatrices [7].

E ransverse (4.85)

Fig.5 Transverse electric field (imaginary part) of mode corres-
ponding to a = 0.05wm™, B=1.0m™" and ky = 4.84596 m™"
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Fig. 6 Longitudinal electric field (real part) of mode corres}pond—
ingtoa=0.05mm™", B=1.0m™", and kg = 4.84596 m
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Fig. 7 Longitudinal electric field (imaginary part) of mode corres-
ponding to @ = 0.057m™", B=10m"" and ky = 4.84596 m™"’

4  Numerical example

As a numerical example, a rectangular waveguide with a
width of 2m and a height of 1m is considered (the
results can, of course, be easily scaled to more realistic
dimensions), and Fig. 1 shows the triangular meshing
used for the numerical computation. The two approaches,
B fixed or k& fixed, are used to find the propagation modes.

Fig. 2 shows the evolution of the frequency of the modes for
a given value of 8= 1.0m™". The 2: I ratio of the width on
the height gives a twofold degeneracy of some modes in the
straight guide (« = 0) that is destroyed by the twist.

Fig. 3 shows the evolution of the frequency of the modes
for a given value of ky = 4.84596 m™!. The shape of the
curves is more dramatic, as some modes seem to disappear
for large values of a.

As a verification, for o = 0.0577 m™!, there is a mode
corresponding to B=1.0m™"' and k, = 4.84596 m ..
Another mode with the same values of 8 and % is found
for @ = 0.256mm™". As indicated on Figs. 2 and 3, these
two modes are found by the two approaches (B fixed or kg
fixed).

Figs. 4—7 show the real and imaginary parts of the trans-
verse and longitudinal electric fields of this mode. The twist
of the waveguide appears clearly in the loss of symmetry of
the field patterns with respect to the corresponding case of
the straight rectangular waveguide. Moreover, the presence
of the longitudinal electric field together with the transverse
one shows that the mode is not transverse electric. The
concept of transverse electric and transverse magnetic
modes only makes sense in non-twisted guides.

Moreover, the longitudinal component represented here
is E, = Eg, but, in the z = &=0 plane (for which & = x;,

forj =1, 2, 3), the relationship between electric field com-
ponents in the rectangular and twisted systems is given
by Ex = Egl, EV = Efz’ Ez = _Olngé:‘ + O£§1E§2 +E§3 =
aR - Et + Eg.

5 Conclusions

Helicoidal waveguides provide a good example to apply the
principle ‘change of co-ordinate system can be represented
by equivalent material properties’ [4]. In terms of
differential geometry, it means that the Maxwell equations
involve only topological and differential concepts that are
insensitive to smooth deformations of the space, whereas
all the metric aspects (the Hodge operator) are concentrated
in material properties, that is the dielectric and magnetic
relationships.

A possible application of the model is the study of the
effect of parasitic torsion in microstructured optical fibres.
Future work will include the estimation of the losses of
leaky modes in the twisted case.
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