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We present a finite-element analysis of a diffraction problem involving a coated cylinder enabling the electromagnetic cloaking of a
finite conducting object with sharp wedges located within its core. The coating consists of a hollow cylinder with a circular cross section
made of heterogeneous anisotropic material deduced from a geometric transformation as first proposed by Pendry ef al. The shape of

the cloak is then generalized to elliptic cross sections.

Index Terms—Cloaking, electromagnetic scattering, finite elements, geometric transformation, invisibility.

1. INTRODUCTION

ECENTLY, it was suggested by Pendry et al. that an
Robject surrounded by a coating consisting of an exotic
material becomes invisible for electromagnetic waves [1].
The theoretical idea based on geometric transformations was
supplied with numerics performed with a software based on
geometrical optics. In the present paper, we provide a full
electromagnetic wave picture which supports the results of
[1] in the case of a 2-D cylindrical object first with a cloak of
circular shape [2], and then we extend these results to the case
of elliptical cross sections. In electromagnetism, a change of
coordinates amounts to replacing the different materials (often
homogeneous and isotropic, which corresponds to the case
of scalar piecewise constant permittivities and permeabilities)
by equivalent inhomogeneous anisotropic materials described
by a transformation matrix T (metric tensor) [3]. The idea
underpinning electromagnetic invisibility [1] is that a suitable
geometric transformation provides the material characteristics
of a cloak described by a tensor field T and then that newly dis-
covered metamaterials enable control of the optical properties
by mimicking the heterogeneous anisotropic nature of T [4].

II. GEOMETRIC TRANSFORMATIONS

The basic principle of the methods presented in this paper
is to transform a geometrical domain or a coordinate system
into another one and to search how the equations to be solved
have to be changed. As we start with a given set of equations
in a given coordinate system, it seems at first sight that we have
to map these coordinates on the new ones. Nevertheless it is
the opposite that has to be done: the new coordinate system is
mapped on the initial one (i.e., the new coordinates are defined
as explicit functions of the initial coordinates) and the equations
are then pulled back, according to differential geometry [5], on
the new coordinates. This requires only the computation of the
Jacobian (matrix) J made of the partial derivatives of the new
coordinates with respect to the original ones.

Digital Object Identifier 10.1109/TMAG.2007.914865

In electromagnetism, such a change of coordinates amounts
to replacing the different materials (often homogeneous and
isotropic, which corresponds to the case of scalar piecewise
constant permittivities and permeabilities) by equivalent inho-
mogeneous anisotropic materials described by a transformation
matrix T = J7J/det(J) [3].

From a geometric point of view, the matrix T is a represen-
tation of the metric tensor. The only thing to do in the trans-
formed coordinates is to replace the materials (homogeneous
and isotropic) by equivalent ones whose properties are given by
the permittivity and permeability tensors

g=eT! i/ =pT L 60

We note that there is no change in the impedance of the media
since the permittivity and permeability suffer the same transfor-
mation. As for the vector analysis operators and products, ev-
erything works as if we were in Cartesian coordinates.

In the more general case where the initial £ and p are tensors
corresponding to anisotropic properties, the equivalent proper-
ties become [6]

=371 det(J) ' =37 pI Mdet(J)  (2)
where J~! is the inverse of the Jacobian matrix and J=7 =
(J=HT the transpose of this inverse.

We will also need to consider compound transforma-
tions. Let us consider three coordinate systems {u,v,w},
{X,Y,Z}, and (z,y, z). The two successive changes of co-
ordinates are given by {X(u,v,w),Y (u,v,w), Z(u,v, w)}
and {z(X,Y,Z2),y(X.Y,Z),2(X,Y,Z)}. They lead to the
Jacobians J x,, and J,. x so that

Ja:u :JzXJXu- (3)

This rule naturally applies for an arbitrary number of coordi-
nate systems. The total transformation can therefore be consid-
ered either as involving a total Jacobian built according to (3),
or as successive applications of (2). Note that the maps are de-
fined from the final {u,v,w} to the original {x,y, 2z} coordi-
nate system and that the product of the Jacobian matrices, cor-
responding to the composition of the pull back maps, is in the
opposite order.
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III. CIRCULAR CLOAK

To compute the transformation matrix T associated with the
cloak, we first map Cartesian coordinates onto polar coordinates
(7,6, z). The associated Jacobian matrix is

cos(f) —rsin(d) 0
_O0(xy,2) |
er(’r, 0) = W = SIHO(H) T’COOS(H) ?
=R(f#)diag(1,r,1) 4)

where R(#) is a rotation matrix and diag a diagonal matrix.

Let us now consider a 2-D object we want to cloak located
within a disk of radius ;. As proposed in [1], we consider a
geometric transformation which maps the field within the disk
r < Rs onto the annulus B; < 7r < Ry

’I”/:Rl +T(R2_R1)/R27OSTSR2
9 =0,0<6<2r (5)
Z=zz€eR

where 7/, ', and 2’ are “radially contracted cylindrical coordi-
nates.” Moreover, this transformation maps the field for r > R,
onto itself by the identity transformation. This leads to

or,0,z) . 1
s (i) @

where @« = (Re — Ry)/Ry for 0 < r < Ry and @ = 1 for
r > Ro.

Last, we need to go to Cartesian coordinates z’, %/, ', which
are “contracted Cartesian coordinates” where the modeling
takes place to obtain a representation of the metric tensor in the
suitable coordinate system. The associated Jacobian matrix is

o', 0, 2" 1
Jrrar (Tlv 91) - W N JZ; <F 91)

=diag <1, % 1> R(-0"). @)

Jrr’ =

The material in the cloak is obtained by mapping these coor-
dinates on the initial classical Cartesian coordinates and pulling
back the equation to obtain the T matrix. Applying the com-
position rule twice, J,,» = J.,.J,,+J,/,. Hence the material
properties of the invisibility cloak are described by the transfor-
mation matrix T = JZ ,J,.. /det(J,./). We will also need its
inverse that we give explicitly, taking into account that r(r') =
(r' = Ri/a)

— Rl ’I"/ 7‘/ — Rl

v T — Ry a2

T-! = R(¢')diag <TI ) R(—0').

®)

IV. ELLIPTICAL CLOAK

A simple generalization is obtained by considering cylinders
with an elliptical cross section. This may be deduced from the
circular case by scaling the Cartesian coordinates. The global
transformation is a mapping of a holey elliptic domain (the
inner and outer boundaries are concentric ellipses with the same
eccentricity) on a simply connected elliptic domain bounded
by the outer ellipse of the cloak. The detailed computation of
the equivalent material properties is given by the following
sequence of transformations. The starting point is the ellipse
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that bounds the exterior limit of our cloak with its principal
axes chosen conveniently parallel to the coordinates axes. The
first step is aimed at restoring the previous situation namely a
circular cloak. For this purpose, the plane is scaled by a factor
s, along the (arbitrary chosen) y-axis so that the initial ellipse
becomes a circle (in the scaled coordinates) defined by the
transformation y = s,y, (and simply x = =) characterized
by the Jacobian matrix J,,, = diag(1,s,,1). The next three
transformations are then the ones used to build the circular
cloak: transformation to cylindrical coordinates, radial con-
traction (the active part), and transformation to rectangular
coordinates. It is important to note that it is the scaled variable
ys that is involved in these various operations. The last step to
be performed is an inverse scaling along y-axis: y' = (1/s,)y.
to recuperate the initial elliptical shape of the cloak and an
identity for the transformation of the outside of the cloak. At
the end, a cloak is obtained whose inner and outer boundaries
are ellipses with Ry = =x-axis of the hole, s, R; = y-axis of
the hole, Ry = z-axis of the external boundary, s, Ry = y-axis
of the external boundary. The total Jacobian of this sequence of
transformations i8 Jopr = Jou, Jo rJrpr Jrrar Jur o
The inverse of the T matrix is given explicitly by
/

T =diag(1, s,, 1)R (¢,) diag <a, s 1) R(-4,)
T

/

x diag(1,1/52, 1)R(6,)diag(a, % 1)

— ©
or’
with 7, = Vet 4+ (y'[sy)? 8, = 0, =
2arctan((y'/sy)/ (2’ + \/W)), and
r=(r, — Ry)/a.

Note the angles and distances are computed in the scaled
coordinate systems (z,ys) where the ellipses are mapped to
circles.

X R(—H;)dlag(l, Sy 1)

V. NUMERICAL MODELS

Although the previous computations are rigorous, we would
like to make some numerical modelling of the cloaking process.
Indeed, the material properties of the cloak involves an unavoid-
able singular behavior on the inner boundary of the cloak [7],
and it is important to check that the invisibility will resist to an
approximate numerical computation as this will be a clue for the
feasibility of a real-life invisibility cloak made of metamaterials
that themselves approximate the ideal behavior of the theoret-
ical materials of the cloak.

The numerical modelling is based on the finite-element
method that is perfectly adapted to inhomogeneous and
anisotropic media and note, by the way, that the geometric
transformations are a useful tool associated with this method
[8]. Due to the singular behavior of the material properties
and to the strong inhomogeneity and anisotropy, the use of
second-order elements together with a very fine mesh in the
vicinity of the inner boundary of the cloak are necessary (see
Fig. 1). To model the outgoing waves, we use perfectly matched
layers [9] that may also be interpreted via geometric transfor-
mations [10], [11]. The finite-element model is implemented in
the freeware GetDP [12].
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Fig. 1. Magnified picture of a part of the triangular mesh of the cloak. The use
of a very fine mesh on the inner boundary of the cloak is necessary. A total of
56 148 second-order triangular elements have been used in this model.

Fig. 2 Real part of the longitudinal electric field of a source which radiates in a
vacuum. The source is a wire of circular cross section (the electric field is given
on the boundary) and radiates cylindrical waves.

As a test problem, we look at the cylindrical waves radiated
by a wire source of circular cross section in presence of a finite
conducting object arbitrarily shaped as a letter “F” when it is
surrounded by a cloak. We consider here p polarization

Vx (7' X B - pocow’e B =0 (10)
where E; = E.(7,y)e., £/, and i’ are defined by (1).

Let us first consider a source made of a wire of circular cross
section (radius = 0.25) centered at point ry = (2.5,2) with
a constant £, imposed on its boundary, radiating in a vacuum
with wavelength A = 1 (note that all lengths are given in ar-
bitrary units (microns (um), e.g., for visible light). The electric
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Fig. 3. Real part of the longitudinal electric field of the same line source which
radiates in the presence of a F-shaped metallic obstacle.
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Fig. 4. Real part of the longitudinal electric field for the same line source which
radiates in the presence of a F-shaped metallic obstacle surrounded by the invis-
ibility cloak which is a cylinder of circular cross section (interior radius = 1,
exterior radius = 2).

field F, is therefore a cylindical wave (Fig. 2) (note that the
electric field is given in arbitrary units, volts per meter (V/m)
for instance, and £, = 1 on the boundary of the source wire).
In a second experiment, a F-shaped obstacle is placed near the
origin (0, 0) beside the aforementioned line source as shown
in Fig. 3. This obstacle is made up of an arbitrary homoge-
neous nonmagnetic lossy material characterized by its permit-
tivity €, p = 1 + 4i. Then, the letter “F” is surrounded by
an annulus-shaped coating (cloak of invisibility) geometrically
characterized by two circles centered on the origin Ry = 2 and
Ry = 1(Fig.4) and optically characterized by ¢’ and y1’ given by
(1). Finally, the circular cloak is replaced by an elliptical cloak
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material (permittivity and permeability) not to obtain a more
tractable model but to design a new optical device. Previous re-
sults have been extended to the case of elliptic shapes. It must
be noted that the characteristics of the material properties lead
to equations that are theoretically outside the domain of appli-
cation of the finite-element method (some coefficients become
null or infinite and this destroys both the coercivity and the con-
tinuity of the operator). This is in fact fundamental for invisi-
bility as this way the inside of the cloak is insulated from its
electromagnetic environment. Nevertheless, the numerical com-
putations based on the finite-element method have shown that
the invisibility should resist to some approximation of the ma-
terial properties.
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Fig.5. Real part of the longitudinal electric field for the same line source which
radiates in the presence of a F-shaped metallic obstacle surrounded by the in-
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