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Abstract

Purpose – The purpose of this paper is to present a complete analysis of leaky modes within a
microstructured optical fibre (MOF). Some new numerical results illustrating the versatility and
accuracy of our approach are to be given.

Design/methodology/approach – A method involving both finite elements and perfectly matched
layer (PML) is proposed.

Findings – A rigorous definition of the leaky modes is proposed that leads to a proof of the validity of
the PML approach together with a rule for the choice of the PML parameters.

Originality/value – The choice of parameters associated with the PML are discussed in great detail.
The accuracy of the constant of propagation (and especially the imaginary part) are highlighted.

Keywords Optical fibres, Finite element analysis, Perfectly matched layers

Paper type Research paper

1. Introduction
Conventional optical fibres rely on total internal reflection. For this, it is well known
that the maximum of the index of the core of a fibre has to be greater than the index of
the surrounding dielectric (often called cladding). Nowadays, a new class of fibres –
namely the microstructured optical fibres (MOFs) – has received considerable
attention from the scientific community since pioneering work demonstrated some of
their unexpected and remarkable properties such as endlessly single modedness
(Cregan et al., 1999), supercontinuum generation (Ranka et al., 2000), . . . Now, it turns
out that the leaky modes are very sensitive to the variation of the refractive index of
fibres and especially via the imaginary part of the effective index as shown for MOFs
described in paragraph 3.3. In this paper, we propose a versatile and accurate method
allowing to obtain efficiently these modes.

2. Finite element modelling
2.1 Governing equations
Let us consider an open waveguide which is invariant along the z-direction,
heterogeneous in the xy-plane (cross-section) and possibly anisotropic. Thus, we
assume that two tensor fields ð

¼
1rðx; yÞ and

¼
mrðx; yÞÞ are given and we let Z 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=10

p
and k0 ¼ v/c. Therefore, the problem of propagation in harmonic regime with a time
dependence in exp(2 ivt) in such fibres amounts to looking for a couple (b, k0) and a
non-vanishing field F ¼ (H,E )T which is solution of:
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curlbH ¼ 2iv10
¼
1rE

curlbE ¼ þivm0
¼
mrH

8>><
>>: ð1Þ

where curl bEðx; yÞ ¼ curl ðEðx; yÞeibzÞe2ibz and where curlbH is defined in the same
way. For a given b, these equations can be seen as an eigenproblem:

LbF ¼ k0F; ð2Þ

with:

Lb :¼

0 2iZ21
0 ¼
mr

21 curlb

iZ 0
¼
1r

21 curlb 0

0
BBBB@

1
CCCCA: ð3Þ

Of course, from this latest system of equations two equivalent eigenproblems can be
derived:

¼
mr

21 curlb ð
¼
1r

21 curlbH Þ ¼ k2
0H

¼
1r

21 curlb ð
¼
mr

21 curlbEÞ ¼ k2
0E:

8>>><
>>>:

ð4Þ

2.2 Spectral problem
In the literature concerning the fibres, at least three kinds of modes are studied; the
guided modes, the leaky modes and the radiative modes. All these modes are governed,
of course, by the same formal spectral problem (2) but the functional spaces in which
they live are different. For this purpose, we have to define accurately these functional
spaces.

Definition 1. We say that (E, H) is a guided mode if the following three conditions
are fulfilled:

. (b, v) [ (Rþ )2

. (E, H) – (0, 0)

. (E, H) [ [L 2(R2)]3.

Definition 2. We say that (E, H) is a leaky mode if we can find a strictly positive real
number G in order to fulfil the following three conditions:

. (b, v) [ Cþ £ Rþ , where Cþ ¼ {z [ C; Im{z} . 0;Re{z} . 0}

. (E, H) – (0, 0)

. ðe2GRE; e2GRH Þ [ ½L 2ðR2Þ�3, where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
.
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Definition 3. We say that (E, H) is a radiative mode if, for any strictly positive real
number G the following four conditions are fulfilled:

. (b, v) [ (Rþ )2

. (E, H) – (0, 0)

. (E, H) � [L 2(R2)]3.

. ðe2GRE; e2GRH Þ [ ½L 2ðR2Þ�3, where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
.

For the sake of simplicity, in this paragraph, we assume that the fibre is made of
isotropic and non-magnetic materials. Moreover, the cladding is supposed to be
homogeneous. In other words, for a sufficiently large R0, the permittivity is constant,
1r(x, y) ¼ 11. In this case, provided that:

1Max ¼ max
ðx;yÞ[R2=

ffiffiffiffiffiffiffiffiffiffi
x 2þy 2

p
,R0

1rðx; yÞ;

is greater than 11 and also that finite energy eigenvectors are considered (Definition
1), the spectrum of the operator Lb consists of a discrete set of eigenvalues
belonging to [b 2/1Max; b 2/11 [and of continuous spectrum [b 2/11; þ 1] (Zolla et al.,
2005). On the other hand, when 1Max , 11, only leaky modes may exist and
complex valued propagation constants have to be considered. If we focus our
attention only on leaky modes propagating along the increasing z, it turns out that
b0 ¼ Re{b} and b00 ¼ Im{b} are both positive. Note that, if the first condition is
fulfilled, the field (H,E ) cannot be of finite energy. Actually, within the cladding
every component of the electromagnetic field is solution of Helmholtz equation,
namely:

DU þ ~k
2

1U ¼ 0; ð5Þ

where U is one component of either E or H and ~k
2

1 ¼ k2
111 2 b 2. The function U

can be written in cylindrical co-ordinates as a Fourier Bessel expansion:

U ðx; yÞ ¼ Ucðr;wÞ ¼
n[Z

X
cnH ð1Þ

n ð~k1rÞe
inw; ð6Þ

where H ð1Þ
n refers to the Hankel function of the first kind of order n. This latest

function has a well known asymptotic behaviour, namely:

H ð1Þ
n ð~k1rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

p~k1r

s
e2iðnðp=2Þþðp=4ÞÞei~k1r þ Oðr23=2Þ; ð7Þ

and leads to:

Ucðr;wÞ ¼ s ðwÞ
ei~k 0

1rffiffiffi
r

p e2
~k 00
1r; ð8Þ
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with:

s ðwÞ ¼

ffiffiffiffiffiffiffiffiffi
2

p~k1

s
e2ip=4

n[Z

X
cneinðw2p=2Þ; ð9Þ

where ~k 0
1 ¼ Re{~k1} and ~k 00

1 ¼ Jm{~k1}. It is therefore of prime importance to know
the sign of ~k 00

1. First of all the outgoing wave condition leads to the positiveness of
the real part of ~k1. And if we let b ¼ b 0 þ ib 00, we deduce:

~k
2

1 ¼ k2
011 2 b02 þ b002 2 2ib0b00 ð10Þ

As a result we have:
b 0b 00 ¼ 2~k01

~k001:

Bearing in mind that b0 and b00 are both positive together with ~k 0
1, we have to

conclude that ~k 00
1 is a real strictly negative number and consequently the

electromagnetic field does diverge exponentially at infinity and the coefficient of
this divergence (the smallest G satisfying the aforementioned condition (c) in
Definition 2) is linked precisely with the imaginary part of the propagation constant
b. From both theoretical and practical points of view, the non-finiteness of energy of
the electromagnetic field leads to dramatic consequences. And especially when
dealing with the weak form of Maxwell equations: the field does not vanish at
infinity. Last, the real part of b is of the same magnitude as k0 ¼ v/c whereas its
imaginary part can be extraordinary smaller, say 1028 k0 in the following numerical
experiments and sometimes for very low leakage as small as 10215 k0! And for
experimental reasons this latest information is of prime importance.

2.3 Finite element method and PML
2.3.1 Circular PMLs. In the finite element analysis of wave problems in open space, one
of the main difficulties is to truncate the unbounded domain. A common approach is to
surround a finite region of interest with absorbing boundary conditions at finite
distance. An alternative to conditions defined on the boundary is to introduce a special
layer of finite thickness surrounding the region of interest such that it is non-reflecting
and completely absorbing for the waves entering this layer under any incidence. Such
regions have been introduced by Berenger (1994) and are called perfectly matched
layers (PML). Nowadays, the most natural way to introduce PML is to consider them as
maps on a complex space (Lassas et al., 2001; Lassas and Somersalo, 2001) so that the
corresponding change of (complex) co-ordinates leads to equivalent 1 and m (that are
complex, anisotropic, and inhomogeneous even if the original ones where real, isotropic,
and homogeneous). This leads automatically to an equivalent medium with the same
impedance than the one of the initial ambient medium since 1 and m are transformed in
the same way and this ensures that the interface with the layer is non-reflecting.
Moreover, a correct choice of the complex map leads to an absorbing medium able to
dissipate the outgoing waves. The problem can therefore be properly truncated under
the condition that the artificial boundary is situated in a region where the field is
damped to a negligible value. To sum up, we have a problem in an unbounded region
with outgoing propagating waves or with exponentially diverging waves. A change of
co-ordinates is performed such that it corresponds to the identity map in a region of
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interest (bounded, convex and, for all practical purposes, with a simple shape) and to
complex co-ordinates for the surrounding region. These complex co-ordinates are
chosen to turn propagating waves to evanescent waves (i.e. exponentially decreasing at
infinity) so that this outer domain can be truncated.

The geometry of most MOF leads to rather use cylindrical PML. In this case, the
PML corresponds to a complex stretch of the radial co-ordinate r, the region of interest
is a disk defined by r , R* and the PML region is a circular annulus around the region
of interest defined by R* , r , R trunc. R* and R trunc are real constants. As the
expressions of the material tensors in Cartesian co-ordinates are needed, the whole
setting requires a transformation between Cartesian and cylindrical co-ordinates.
The recipe involves a sequence of co-ordinate systems. We start here with the physical
coordinates and we finish with the modelling co-ordinates. The mapping will therefore
be from the last system of the list to the first one while the pull back maps will be from
the first system to the last one.

(1) (x, y, z) are real valued classical Cartesian co-ordinates.

(2) (~x; ~y; ~z) are a complex stretch of the previous Cartesian co-ordinates. They are
complex valued and it is fundamental to understand that this change is an
active transformation rather than a mere change of co-ordinates in the sense that the
ambient space is changed. (x, y, z) are a parametrization ofR3 and the complex stretch
corresponds to an extension of the problem to C3 and more precisely to a three
dimensional subspaceG ofC3 (in terms of real dimensionsC3 is six dimensional and
R3 and G are three dimensional) (Lassas et al., 2001; Lassas and Somersalo, 2001).
The map from G to R3 is chosen in such a way that the restriction of this map to the
region of interest is the identity map. The solution of the original problem onR3 can
be extended analytically to C3 and then restricted to G. If the complex stretch is
correctly chosen, this “complexified” solution on G is evanescent where the physical
solution involves outgoing or even exponentially diverging waves.

(3) ( ~r; ~u; ~z) is a cylindrical representation of (~x; ~y; ~z).

(4) (rc, uc, zc) are real-valued cylindrical co-ordinates on G. They are related to
( ~r; ~u; ~z) via ~u ¼ uc, ~z ¼ zc, and a radial complex stretch:

~r ¼

Z rc

0

srðr
0Þdr0; ð11Þ

where sr is a complex-valued function of a real variable, i.e. sr ¼ 1 in the central
region of interest defined by rc , R * (the complex stretch corresponds to an
identity map in this region) and sr has a complex value in the PML defined by
R* , r , R trunc.

(5) (xc, yc, zc) are the Cartesian representation of (rc, uc, zc) and are also real-valued
co-ordinates that will be called modelling co-ordinates. This is the modelling
space where the numerical approximations are written, where the finite element
mesh is defined, and where all the outgoing waves are turned to evanescent
ones so that the computation domain can be truncated.

In the end, only the real-valued co-ordinates x, y, z and xc, yc, zc are involved but the
complex map corresponds to a complex valued Jacobian. In the case of cylindrical
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coordinates, ~r and rc are just introduced to compute the radial stretch. Note also that
uc ¼ ~u and therefore will be simply denoted u. The Cartesian to cylindrical co-ordinates
transformation is just used to obtain the Cartesian expression of the corresponding
metric tensor. The Jacobian associated to these changes of co-ordinates are:

J~x ~r ¼ Jxrð ~r; uÞ; J ~rrc ¼ diagðð› ~r=›rcÞ; 1; 1Þ ¼ diag ðsrðrcÞ; 1; 1Þ; Jrcxc

¼ Jrxðrcðxc; ycÞ; uðxc; ycÞÞ:

The global Jacobian Js is the product of the individual Jacobians:

Js ¼ J~xr ~J ~rrc
Jrcxc

¼ RðuÞ diag sr;
~r

rc
; 1

� �
Rð2uÞ; ð12Þ

where R(u) denotes the following matrix of rotation:

RðuÞ ¼

cos u 2sin u 0

sin u cos u 0

0 0 1

0
BB@

1
CCA:

Note that we solve in fact numerically the extended problem obtained by the complex
stretch equation (11) and defined on G that has the very remarkable property to
coincide with our original problem in the region of interest. In order to comply with
traditional notation in the PML context and to avoid cumbersome notations, we drop
the c subscript associated with the modelling co-ordinates that will subsequently be
denoted as r and (x, y, z) without any ambiguity. For isotropic uniform media outside
the region of interest, the cylindrical PML characteristics are obtained by multiplying 1
and m by the following complex matrix:

T21
s ¼ J21

s J2T
s detð JsÞ¼RðuÞdiag

~r

srr
;
srr

~r
;
sr ~r

r

� �
Rð2uÞ¼

ððrsrsinðuÞ2Þ= ~rÞþðð ~rcosðuÞ2Þ=rsrÞ sinðuÞcosðuÞðð ~r=rsrÞ2 ðrsr= ~rÞÞ 0

sinðuÞcosðuÞðð ~r=rsrÞ2 ðrsr= ~rÞÞ ððrsrcosðuÞ2Þ= ~rÞþðð ~rsinðuÞ2Þ=rsrÞ 0

0 0 ~rsr=r

0
BB@

1
CCA:

This latest expression is the metric tensor in Cartesian co-ordinates (x, y, z) for the
cylindrical PML and u, r, ~r, and sr(r) are explicit functions of the variables x and y.
Another remarkable property of the PML is that they provide the correct extension to
non-Hermitian operators (since Ts is complex and symmetric) that allow the
computation of the leaky modes and this may be obtained via a correct choice of
the PML parameters, namely R *, R trunc, and sr(r). The method used to compute these
parameters is accurately described hereunder (Figure 1).
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2.3.2 How to choose the complex stretch coefficient?. For this purpose, we first introduce
new tensor fields

¼
1sðx; yÞ and

¼
msðx; yÞ defined as follows:

¼
zs :¼ J21

s ¼
zrJ2T

s detð JsÞ for z ¼ {1;m}; ð13Þ

We are now in a position to introduce a new electromagnetic field (called substituted
field in the sequel) Fs ¼ (Hs, Es)

T which is solution of equation (2) except that we have

replaced
¼
1r and

¼
mr by

¼
1s and

¼
ms. The main feature of this latest field is the remarkable

correspondence with the first field F; whichever the function sr provided that it equals

1 for r , R*, the two fields F and Fs are identical in the region r , R* (Berenger,
1994). In other words, the PML is completely reflectionless. In addition, for complex
valued functions sr (Im{sr} strictly positive in PML), the field Fs may converge
exponentially towards zero although its counterpart F diverges exponentially: Fs is of

Figure 1.
Four different systems of

co-ordinates in order to
obtain circular PML

x

y y

yc

xc

yc

R*

R*
xc

R*

x
R*

PML PML

PML PML

(x,y) (r,j)

(rc ,jc)(xc ,yc)

Cartesian co-ordinates Polar co-ordinates

Complex polar
co-ordinates

Complex cartesian
co-ordinates

Notes : The physical space in Cartesian (x,y) and polar 
(r,j) co-ordinates are linked by x = r cos j and y = r 
sin j. The stretched complex polar co-ordinates (rc,jc) 
and the real polar co-ordinates are linked by r = Ú 0

rc 
sr(r′) dr′  (where sr is a complex valued function) and 
j = jc. Finally, the complex Cartesian co-ordinates 
which characterizes the modelling space and the 
complex polar co-ordinates are linked by rc = ÷x2

c  + y2
c 

and jc = 2 arctan (xc + ÷x2
c + y2

c)yc
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finite energy and for this substituted field a weak formulation can be easily derived
which is essential when dealing with finite element method.

Moreover, when dealing with simple stretched functions it is possible to give a
simple criterion which ensures the exponential decreasing of the field Fs. For instance,
take the following example:

srðr
0Þ ¼

1 for r0 # R*

j in PML

(

where j is a complex number. In that case, the complex function r(rc) is given by:

r ¼
rc for rc # R*

R* þ jðrc 2 R*Þ in PML

8<
:

The function U can be reexpressed in the stretched polar co-ordinates in the PML as per:

U csðrc;wcÞ ¼
n[Z

X
cnH ð1Þ

n
~k1ðR* þ jðrc 2 R*ÞÞ
� �

einwc :

For large values of rc, the behaviour of Ucs is governed by exp i~k1ðR* þ jðrc 2 R*ÞÞ
� �

which exponentially converges towards zero if ~k1j has a strictly negative imaginary
part. Consequently, the field Fs converges exponentially towards zero as well (and
therefore is of finite energy) if the simple following criterion is fulfilled:

g :¼ ~k 00
1j

0 þ ~k 0
1j

00 . 0: ð14Þ

Keeping in mind that ~k 00
1 is negative whereas ~k 0

1 is positive, a straightforward solution
could be j 0 , 0 and j 00 ¼ 0. In other words, j would be a real negative number. But, in
that case, the function r(rc) is no longer monotonic and therefore we are “doomed” to
choose the number jwithin the upper complex plane. As a conclusion, for a given couple
(k0,b) inRþ £ Cþ , we compute ~k1, from equation (10) and j is chosen in such a way that
g is sufficiently large in order to ensure that the skin layer thickness of the substituted
electromagnetic field is of the same order than the thickness of the PML (Figure 2).

In order to illustrate the decreasing of the substituted field within the PML, let us
consider a six hole MOF shown in Figure 3. The Figure 2 shows the exponential
decreasing of the z component of the electric field for a parameter j ¼ 1 2 2i and for a
wavelength l ¼ 1.55mm: we find b ¼ 5.8323 £ 105 þ 0.173092 i m21. The decreasing
of the field which is characterized by g is therefore computed by two different ways:
The first one (denoted gth) through the equation (14) and the second one (denoted gnum),
by numerical computing of the field itself. Finally, we find gth ¼ 4.98105 m21

and gnum ¼ 4.97 £ 105 m21.
2.3.3 Weak formulation for the substituted field Fs. If j verifies the inequality (14) the

field converges towards zero at infinity and, as a result, a weak formulation can be
easily derived. For instance, with the electric field Es, we obtain:Z

R2
ð
¼
ms

21 curlb £ EsÞ · ðcurl �b £ E*s Þdxdy 2 k2
0

Z
R2
ð
¼
1sEsÞ · �E*s dxdy ¼ 0 ð15Þ
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Figure 2.
Behaviour of the

substituted field within
the PML

Notes : The logarithm of the z component of the substituted electric field, log | Es,z(x,0) |,

is plotted versus x in the PML (for R* < x < Rtrunc). The structure is depicted in Fig. 3

20 22 24 26 28 30
x(mm)–28

–27

–26

–25

–24

–23

log | Es,z(x,0) |

–22 Numerical decreasing for the substituted field

Theoretical decreasing for the substituted field

Figure 3.
Six hole MOF structure

x

y

eSi e2

O2rs

V

Notes : A bulk of silica is drilled by six air holes

distant each other from    = 6.75 mm. Each hole is

circular with a radius equal to rs = 2.5 mm.  Note

that for such as structure no propagating mode can

propagate

V
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for any test function E*s . Then, we split the electric field Es into a transverse part Et and
a longitudinal part Ez:

Es ¼ Et þ Ezẑ

from which, we are led to:

curlb £ Es ¼ ibEt £ ẑ þ 7tEz £ ẑ þ ð7t £ EtÞẑ:

Finally, by letting:

L0ðEtÞ ¼ Et £ ẑ

L1ðEsÞ ¼ 7tEz £ ẑ þ ð7t £ EtÞẑ

(

we derive the following weak formulation for the substituted electric field:

Z
R2

b2F0 þ ibðF1;1 þ F1;2Þ þ F2 dxdy ¼

Z
R2

k2
0G dxdy ð16Þ

with:

F0 ¼ ð
¼
ms

21 L0ÞðEtÞ · ðL0Þ E*t

� �

F1;1 ¼ ð
¼
ms

21 L0ÞðEtÞ · ðL1Þ E*s

� �

F1;2 ¼ ð
¼
ms

21 L1ÞðEsÞ · ðL0Þ E*t

� �

F2 ¼ ð
¼
ms

21 L1ÞðEsÞ · ðL1Þ E*s

� �

G ¼ ð
¼
1sEsÞ ·

Q

E*s

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

In most applications in optics, we have to find the dispersion curves, i.e. to look for b’s
for a given k0. In such a case, the eigenproblem described in (16) leads to a generalized
eigenproblem owing to the presence of both b and b 2 (Tisseur and Meerbergen, 2001,
for instance).

2.3.4 Generality on finite elements. The discretisation of the equations is obtained
via finite elements (Zolla et al., 2005; Nicolet et al., 2004, 2006; Guenneau et al., 2001,
2002; Lasquellec et al., 2002; Nicolet and Zolla, 2007). The cross-section of the guide is
meshed with triangles and Whitney finite elements are used, i.e. edge elements for the
transverse field and nodal elements for the longitudinal field:

Et ¼
X#edges

j¼1

et
jw

j
eðx; yÞ and Ez ¼

X#nodes

j¼1

e z
j w

j
nðx; yÞ;
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where et
j denotes the line integral of the transverse component Et on the edges, e z

j
denotes the line integral of the longitudinal component Ez along one unit of length of
the z-axis (which is equivalent to the nodal value), and w j

e and w j
n are, respectively, the

basis functions of Whitney 1-forms and 0-forms on triangles.

3. Numerical results
3.1 Comparison with the multipole method
One of our former challenge was to compare our results with those obtained with other
methods such as the multipole method. The philosophy of this latest method is
completely different from those described in this paper and the reader can refer to Zolla
et al. (2005) for a comprehensive review of this method. This method is indeed
well-suited for the step index MOF. Be that as it may, we consider the hexagonal
structure shown in Figure 3 for a given wavelength l0 ¼ 1.55 mm for which the index
of silica is about 1Si ¼ 1.4440. For this structure, we give a map representing one mode
in Figure 3 and the corresponding complex effective index, namely neff ¼ b/k0 for the
two different methods: 1.438774 þ 4.32 £ 1028i for the multipole method and
1.438773 þ 4.28 £ 1028i for the finite element method. Besides, it is worth knowing
that the practical implementation of the model has been performed thanks to the
COMSOL software with about 40,000 elements and the computation takes a few
seconds on an ordinary laptop. Note that regarding its smallness with respect to the
real part, the imaginary part is computed with an amazing accuracy.

3.2 Leaky modes for gradient index MOF
In this paragraph, we present some numerical results for more sophisticated fibres.
Besides of the six air holes, the permittivity of the bulk varies continuously as per:

1rðx; yÞ ¼ 11 þ 1i
1 exp 2

x 2 þ y 2

r2
0

 !
ð17Þ

The case corresponding to the precedent paragraph is therefore 11 ¼ 1Si and 1i
1 ¼ 0.

By way of example, we take r0 ¼ 10mm (r0 is therefore of the same magnitude as L)
and we give a curve representing neff versus 1i

1 with 11 ¼ 1Si for the same wavelength
as before i.e. l0 ¼ 1.55mm. Note that the central symmetry of 1r does not break the C6v

symmetry of the fibre (Figures 4 and 5).

3.3 Leaky modes for elliptical hole MOF
In this paragraph, a six elliptical hole structure is considered as shown in Figure 6 for a
given wavelength l0 ¼ 1.55mm for which the index of silica is about 1Si ¼ 1.4440. The
elliptical holes are distant from each other from L ¼ 6.75mm and are characterized by
their semi-major axis a and their semi-minor axis b. Moreover, the orientation and the
choice of a and b are chosen in such a way that both the C6v structure and the area of
these ellipses are preserved (ab ¼ r2

0). Eventually, for r0 ¼ 2.5mm, and for different
values of b, effective indices (real part in Figure 7 and imaginary part in Figure 8) are
given.
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4. Conclusion
The search for leaky modes is far from being a simple task. The first way of obtaining
these modes consists in computing the scattering matrix and looking for poles of this
latest matrix in the complex plane. This numerical stage is a delicate operation and has
two major drawbacks: the “pole hunting” in the complex plane is generally performed
in a point-by-point fashion and this method is merely devoted to step index fibres. On
the other hand, the method used in this paper as shown before is a versatile and
efficient method and may be useful for obtaining leaky modes in delicate situations.
Finally, we hope to obtain leaky modes for the challenging nonlinear MOFs.

Figure 5.
The complex effective
index neff as a function
of 1i
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Figure 4.
Modulus of the Poynting
vector for the C6v six hole
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Figure 7.
Real part of effective index

versus the parameter
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