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Abstract

Purpose – This paper aims to review various techniques used in computational electromagnetism such
as the treatment of open problems, helicoidal geometries and the design of arbitrarily shaped invisibility
cloaks. This seemingly heterogeneous list is unified by the concept of geometrical transformation that
leads to equivalent materials. The practical set-up is conveniently effected via the finite element method.

Design/methodology/approach – The change of coordinates is completely encapsulated in the
material properties.

Findings – The most significant examples are the simple 2D treatment of helicoidal geometries and
the design of arbitrarily shaped invisibility cloaks.

Originality/value – The paper provides a unifying point of view, bridging several techniques in
electromagnetism.
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1. Geometrical transformations and equivalent materials
Beside Cartesian coordinates, cylindrical and spherical coordinates, and even the other
orthogonal systems (Stratton, 1941), have been commonly used to set up
electromagnetic problems. In this paper, much more general coordinate systems are
discussed since they do not need to be orthogonal (and not even real valued). A modern
approach is to write the equations of electromagnetism in the language of exterior
calculus that is covariant, i.e. independent of the choice of the coordinate system
(Bossavit, 1991). In this way, the Maxwell equations involve only the exterior
derivative and are purely topological and differential while all the metric information is
contained in the material properties via a Hodge star operator. This looks rather
abstract but can nevertheless be encapsulated in a very simple and practical
equivalence rule (Milton et al., 2006; Zolla et al., 2005):

When you change your coordinate system, all you have to do is to replace your initial material
(electric permittivity tensor

¼
1 and magnetic permeability tensor

¼
m) properties by equivalent

material properties given by the following rule:

¼
10 ¼ J21

¼
1J2TdetðJÞ and

¼
m0 ¼ J21

¼
mJ2TdetðJÞ; ð1Þ

whereJ is the Jacobian matrix of the coordinate transformation consisting of the partial derivatives
of the new coordinates with respect to the original ones (J2T is the transposed of its inverse).
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In equation (1), the right hand sides involve matrix products where the matrix
associated with a second rank tensor containing the coefficients of its representation in
the initial Cartesian coordinate system. The obtained matrix provides the new
coefficients of the tensor corresponding to the equivalent material.

Explicitly, a map from a coordinate system {u, v,w} to the coordinate system {x, y, z}
is given by the transformation characterized by x(u, v, w), y(u, v, w) and z(u, v, w). As we
start with a given set of equations in a given coordinate system, it seems at first sight
that we have to map these coordinates on the new ones. Nevertheless, it is the opposite
that has to be done: the new coordinate system is mapped on the initial one (i.e. the new
coordinates are defined as explicit functions of the initial coordinates) and the equations
are then pulled back, according to differential geometry (Bossavit, 1991), on the new
coordinates. This provides us directly with the functions whose derivatives are involved
in the computation of the Jacobian matrix. The Jacobian is directly given by:

Jxu ;

›x
›u

›x
›v

›x
›w

›y
›u

›y
›v

›y
›w

›z
›u

›z
›v

›z
›w

0
BBB@

1
CCCA: ð2Þ

The equivalence rule (1) can be extended to more general material properties such as
local Ohm’s law and bianisotropic materials (Milton et al., 2006). Moreover, the rule given
by equation (1) may be easily applied to a composition of transformations. Let us
consider three coordinate systems {u, v, w}, {X, Y, Z } and {x, y, z}. The two successive
changes of coordinates are given by the sets of functions {X(u, v,w),Y(u, v,w), Z(u, v,w)}
and {x(X, Y, Z ), y(X, Y, Z ), z(X, Y, Z )}. They lead to the Jacobians JXu and JxX so that the
global Jacobian Jxu ¼ JxXJXu. The compound transformation can therefore be considered
either as involving this global Jacobian or as successive applications of equation (1). This
rule naturally applies for an arbitrary number of coordinate systems. Note that the maps
are defined from the final u, v, w to the original x, y, z coordinate system and that the
product of the Jacobians, corresponding to the composition of the pull back maps, is in
the opposite order.

When the initial material properties 1 and m are isotropic and described by a scalar,
they generally lead to anisotropic properties and are given via a transformation matrix
T ¼ JTJ=detðJÞ related to the metric expressed in the new coordinates so that the
equivalence rule (1) becomes:

¼
10 ¼ 1T21; and

¼
m0 ¼ mT21: ð3Þ

We note that there is no change in the impedance of the media since the permittivity
and permeability suffer the same transformation.

As for the vector analysis operators and products, everything works as if we were in
Cartesian coordinates. It means that once the material properties have been set to
their equivalent values, all the computations are performed as if the coordinates
were Cartesian. Once the solution has been obtained in the new coordinate system, e.g.
the electric field E0, its components in the original Cartesian coordinate system, E, are
given by (in the rest of this section, the vectors are represented by 3 £ 1 column
matrices):
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E ¼

Ex

Ey

Ez

0
BB@

1
CCA ¼ J2T

E 0
u

E 0
v

E 0
w

0
BB@

1
CCA ¼ J2TE0: ð4Þ

It must be emphasized here that E and E0 are the same field expressed in two different
coordinate systems. The direct interpretation of E0 is difficult since it is expressed in a
possibly non-orthogonal and not normed basis. Other vector fields corresponding to
1-forms such as H or A are transformed in the same way while the vector fields
corresponding to 2-forms (field densities) such asD,B, andJ are transformed according to:

D ¼
JD 0

detðJÞ
: ð5Þ

It may be checked that these transformations are compatible with the equivalence rule (1)
assuming that D ¼

¼
1E is replaced by D0 ¼

¼
10E0 in the equivalent formulation. They also

preserve the form of energy densities since, for instance,
R
V
ETD dx dy dz ¼R

V0 E
0TD0 du dv dw where V0 is the image of the domain V by the coordinate

transformation and ETD is the matrix notation for the dot product.
As inhomogeneous and anisotropic equivalent materials are obtained and as the

theoretical framework is the exterior calculus, the (Whitney) finite element method is
perfectly adapted to the numerical algorithm implementation (Bossavit, 1998; Dular
et al., 1994, 1995).

In fact, this goes beyond simple change of coordinates as we will also consider active
transformations, i.e. changes of space (i.e. of manifold) where the equations are written.

It is very often useful to use radial transformations. In this case, the most simple
way is to first perform a transformation to cylindrical or spherical coordinates and to
perform the inverse transformation once the radial transformation has been made.
First, the classical transformation from Cartesian coordinates (x, y, z) to polar
coordinates (r, u, z) is introduced via a map from r, u to x, y:

xð r; uÞ ¼ r cos u

yðr; uÞ ¼ r sin u :

(
ð6Þ

The associated Jacobian is:

Jxrðr; uÞ ¼
›ðx; y; zÞ

›ðr; u; zÞ
¼

cos u 2r sin u 0

sin u r cos u 0

0 0 1

0
BB@

1
CCA ¼ RðuÞdiagð1; r; 1Þ; ð7Þ

with:

RðuÞ ¼

cos u 2sin u 0

sin u cos u 0

0 0 1

0
BB@

1
CCA and diagð1; r; 1Þ ¼

1 0 0

0 r 0

0 0 1

0
BB@

1
CCA:

R(u) has the well-known properties: R(u)21 5 R(u)T 5 R(2u).
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Furthermore, the inverse transformation is given by the map:

rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
uðx; yÞ ¼ 2 arctan y

xþ
ffiffiffiffiffiffiffiffiffiffi
x 2þy 2

p

� �
8>><
>>: ; ð8Þ

and is associated with the Jacobian:

Jrxðx; yÞ ¼ J21
xr ðrðx; yÞ; uðx; yÞÞ ¼ diag 1;

1

rðx; yÞ
; 1

� �
Rð2uðx; yÞÞ: ð9Þ

Similarly, the spherical coordinates are described via a map from r, u, w to x, y, z:

x ¼ r cos u sinw

y ¼ r sin u sinw

z ¼ r cosw

8>><
>>: ð10Þ

The spherical Jacobian:

Jxrðr; u;wÞ ¼

cos u sinw 2r sin u sinw r cos u cosw

sin u sinw r cos u sinw r sin u cosw

cosw 0 2r sinw

0
BB@

1
CCA; ð11Þ

can be written Jxr ¼ RðuÞM2ðwÞ diag ð1; r sinw; rÞ still involving the R(u) matrix
together with:

M2ðwÞ5

sinw 0 cosw

0 1 0

cosw 0 2sinw

0
BB@

1
CCA: ð12Þ

with the properties:

M21
2 ðwÞ ¼ MT

2 ðwÞ ¼ M2ðwÞ:

2. Problems with open boundary conditions
One of the primary applications of non-orthogonal coordinates is the modelling of
infinite domains (Lowther et al., 1989). In the electrostatic or magnetostatic case as well
as in the eddy current case, the solution decreases to zero at infinity. Several types of
infinite elements have been introduced (when the problem was not brutally truncated
at finite distance) but the most efficient ones correspond to a mapping of a finite
domain on the exterior infinite domain (Imhoff et al., 1990; Nicolet et al., 1994).

In the case of propagation problems, a transformation of an infinite domain into a finite
one as presented above would contract the wavelength to an infinitely small value as the
outer boundary is approached so that a well adapted mesh would be difficult to obtain.
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In this case, the solution is to introduce the perfectly matched layers (PML). Such regions
have been introduced by Berenger (1994) and, nowadays, in the time harmonic case, the
most natural way to introduce PML is to consider them as maps on a complex space
(Lassas and Somersalo, 2001) so that the corresponding change of (complex) coordinates
leads to equivalent 1 and m (that are complex, anisotropic, and inhomogeneous even if the
original ones were real, isotropic, and homogeneous). This leads automatically to an
equivalent medium with the same impedance as the one of the initial ambient medium
since 1 andm are transformed in the same way and this insures that the interface with the
layer is non-reflecting. Moreover, a correct choice of the complex map leads to an
absorbing medium able to dissipate the outgoing waves (Ould Agha et al., 2008). The
problem can therefore be properly truncated under the condition that the artificial
boundary is situated in a region where the field is damped to a negligible value.

For isotropic uniform media outside the region of interest, the cylindrical PML is an
annulus whose characteristics are obtained by multiplying 1 and m by the following
complex matrix:

T21
PML ¼ J21

PMLJ
2T
PML detðJPMLÞ ¼ RðuÞ diag

~r

srr
;
srr

~r
;
sr ~r

r

� �
Rð2uÞ:

This latest expression is the metric tensor in Cartesian coordinates (x, y, z) for the
cylindrical PML. u, r, ~r, and sr( r) are explicit functions of the variables x and y, i.e.:

u ¼ 2 arctan
y

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
 !

; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p
; srðrÞ ¼ sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ y 2

p� �
;

and:

~r ¼

Z ffiffiffiffiffiffiffiffiffiffi
x 2þy 2

p

0

srðr
0Þdr0;

where sr( r
0) is an arbitrary but well chosen complex valued function of a real variable

that describes the radial stretch relating the initial radial distance r to the complex one ~r.
Another remarkable property of the PML is that they provide the correct extension

to non-Hermitian operators (since TPML is complex and symmetric) that allows the
computation of the leaky modes in waveguides (Nicolet et al., 2007) and this may be
obtained via a correct choice of the PML parameters, namely R*, R trunc such that
R* , r , R trunc and sr(r) (Ould Agha et al., 2008).

3. Helicoidal geometries and twisted optical fibres
The purpose of this section is to show how the equivalence rule (1) can be used to study
the propagation of modes in twisted waveguides via a 2D model though the
translational invariance of the geometry is lost (Figure 1).

Figure 1.
A twisted structure that
may be described by the
helicoidal coordinates

Note: Reproduced from the only available original

COMPEL
27,4

810



Let us introduce an helicoidal coordinate system (Lewin and Ruehle, 1980; Yabe and
Mushiake, 1984; Igarashi and Honma, 1991) (j1, j2, j3) deduced from rectangular
Cartesian coordinates (x, y, z) in the following way:

x ¼ j1cosðaj3Þ þ j2sinðaj3Þ

y ¼ 2j1sinðaj3Þ þ j2cosðaj3Þ

z ¼ j3

8>><
>>: ; ð13Þ

where a is a parameter which characterizes the torsion of the structure. A twisted
structure is a structure for which both geometrical and physical characteristics (here
the permittivity 1 and the permeability m) together with the boundary conditions only
depend on j1 and j2. Note that such a structure is invariant along j3 but (2p/a)-periodic
along z (the period may be shorter depending on the symmetry of the cross section).

This general coordinate system is characterized by the Jacobian of the
transformation equation (13):

Jhelðj1; j2; j3Þ ¼

cosðaj3Þ sinðaj3Þ aj2cosðaj3Þ2 aj1sinðaj3Þ

2sinðaj3Þ cosðaj3Þ 2aj1cosðaj3Þ2 aj2sinðaj3Þ

0 0 1

0
BB@

1
CCA; ð14Þ

which does depend on the three variables j1, j2 and j3. On the contrary, the
transformation matrix Thel:

Thelðj1; j2Þ ¼
JT

helJhel

detðJhelÞ
¼

1 0 aj2

0 1 2aj1

aj2 2aj1 1 þ a 2 j2
1 þ j2

2

� �
0
BB@

1
CCA; ð15Þ

which describes the change in the material properties, only depends on the first two
variables j1 and j2 (Nicolet et al., 2004, 2006, 2007). This matrix may also conveniently
be expressed in terms of twisted cylindrical coordinates:

RðwÞ

1 0 0

0 1 2ra

0 2ra 1 þ r 2a 2

0
BB@

1
CCARð2wÞ ¼

1 0 ar sinðwÞ

0 1 2ar cosðwÞ

ar sinðwÞ 2ar cosðwÞ 1 þ r2a 2

0
BB@

1
CCA;

with:

w ¼ 2 arctan
j2

j1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 þ j2
2

q
0
B@

1
CA; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 þ j2
2

q
:

Helicoidal coordinates have also been combined with PML to compute the leaky modes
in twisted microstructured optical fibres (MOF) (Nicolet et al., 2007):
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ThPML ¼ RðwÞ

rsr
~r

0 0

0 ~r
rsr

2a
~r
sr

0 2a
~r
sr

rð1þa 2 ~r 2Þ
~rsr

0
BBBB@

1
CCCCARð2wÞ: ð16Þ

This is the expression of the “twisted cylindrical PML tensor” in “helicoidal Cartesian
modelling coordinates” j1, j2 and all the quantities involved in the previous expression
can be given as explicit functions of these two variables, joining:

srðrÞ ¼ sr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1

2 þ j2
2

q� �
;

and:

~r ¼

Z ffiffiffiffiffiffiffiffiffi
j2

1þj2
2

p

0

srðr
0Þdr0;

to the expressions for r and w given here above.
The fact that the equivalent materials are independent from the longitudinal coordinate

j3 allows a 2D model for the determination of the propagation modes and of the leaky
modes via a classical model provided it allows completely anisotropic and inhomogeneous
media. Luckily, the finite element method allows such a numerical computation.

Figure 2 shows a MOF (Guenneau et al., 2001, 2002a, b, 2003; Zolla et al., 2005). It is a
dielectric waveguide whose structure consists of a bulk of silica (supposed to be
unbounded) drilled by six air holes with a center-to-center spacing L ¼ 6.75mm. Each
hole is circular with a radius equal to rs ¼ 2.5mm. A given wavelength l0 ¼ 1.55mm is
considered for which the index of silica is about

ffiffiffiffiffiffi
1Si

p
¼ nSi ¼ 1:444024.

Note that for this structure no propagating mode can be found and the fundamental
mode is a leaky mode. The figure shows the norm of the longitudinal component of the
electric field (reconstructed via equation (4): Ez ¼ aj2Ej1 2 aj1Ej2 þ Ej3, Nicolet and
Zolla, 2007) for the “fundamental mode” in the case of a very strong twist
(a ¼ 50,000 m21) for which the losses are very large.

4. Invisibility cloaking
The geometrical transformations can also be used in the reverse sense to design new
materials. In this case, a geometrical transformation is applied to free space to guess
interesting material properties given by the equivalence rule. A new device can be built
if the new material properties may be approximated, e.g. using electromagnetical
metamaterials (Ramakrishna, 2005). For instance, a convex domain is mapped on a
holey domain with the same exterior boundary. The structure made of the transformed
equivalent material is an invisibility cloak and any object can be perfectly hidden in the
central hole (Pendry et al., 2006; Zolla et al., 2007).

To compute the transformation matrix T associated with the cloak, we first map
Cartesian coordinates onto polar co-ordinates (r, u, z). The associated Jacobian matrix
is given by equation (7).

Let us now consider a 2D object we want to cloak located within a disk of radius R1.
As proposed in (Pendry et al., 2006), we consider a geometric transformation which
maps the field within the disk r , R2 onto the annulus R1 # r # R2:
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r 0 ¼ R1 þ rðR2 2 R1Þ=R2; 0 # r # R2

u 0 ¼ u; 0 , u # 2p;

z 0 ¼ z; z [ R

8>><
>>: ð17Þ

where r 0, u 0 and z 0 are “radially contracted cylindrical coordinates”. Moreover, this
transformation maps the field for r $ R2 onto itself through the identity
transformation. This leads to:

Jrr 0 ¼
›ðr; u; zÞ

›ðr 0; u 0; zÞ
¼ diagðc11; 1; 1Þ ð18Þ

where c11 ¼ R2=ðR2 2 R1Þ for 0 # r # R2 and c11 ¼ 1 for r . R2:
Last, we need to go to Cartesian coordinates x 0, y 0, z 0, which are “radially contracted

Cartesian coordinates” where the modelling takes place to obtain a representation of
the metric tensor in the suitable coordinate system. The associated Jacobian matrix is
given by equation (9):

Jr 0x 0 ðx 0; y 0Þ ¼
›ðr 0; u 0; z 0Þ

›ðx 0; y 0; z 0Þ
¼ JT

rx

1

r 0
; u 0

� �
¼ diag 1;

1

r 0
; 1

� �
Rð2u 0Þ: ð19Þ

Figure 2.
Map of the norm of the

longitudinal component of
the electric field Ez ¼

aj2Ej1 2 aj1Ej2 þ Ej3

for a strongly twisted fibre
(a ¼ 50,000 m21) with

very large losses

3

2

1

0

−1

−1 0

Notes: The map is truncated at the inner boundary of the PML, the field unit on the
gray scale is arbitrary, and dimensions on the axes are in m. Reproduced from the
only available original

1 2 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Max: 5.403
×10−5

×10−5 Min: 3.073e-5

−2

−2

−3

−3

Geometrical
transformations

813



Applying the composition rule twice, Jxx 0 ¼ Jxr Jrr 0Jr 0x 0, hence the material properties
of the invisibility cloak are described by the transformation matrix
T ¼ JT

xx 0Jxx 0= detðJxx 0 Þ. We will also need its inverse that we give explicitly, taking
into account that r(r 0) ¼ c11(r 0 2 R1):

T21 ¼ Rðu 0Þdiag
r 0 2 R1

r 0
;

r 0

r 0 2 R1
;
c2

11ðr
0 2 R1Þ

r 0

� �
Rð2u 0Þ: ð20Þ

4.1 Cylindrical cloaks of arbitrary cross section
A quite general situation is now considered, where the shape of the cloak is
described by two arbitrary functions R1(u) and R2(u) giving an angle dependent
distance from the origin corresponding, respectively, to the interior and exterior
boundary of the cloak.

The geometric transformation which maps the field within the full domain
r # R2(u) onto the hollow domain R1(u) # r # R2(u) can be expressed as:

r 0ðr; uÞ ¼ R1ðuÞ þ rðR2ðuÞ2 R1ðuÞÞ=R2ðuÞ; 0 # r # R2ðuÞ

u 0 ¼ u; 0 , u # 2p

z 0 ¼ z: z [ R

8>><
>>:

Note that the transformation maps the field for r . R2(u) onto itself through the
identity transformation. This leads to:

Jrr 0 ðr 0; u 0Þ ¼
›ðrðr 0; u 0 Þ; u; zÞ

›ðr 0; u 0; z 0Þ
¼

c11ðu
0Þ c12ðr

0; u 0Þ 0

0 1 0

0 0 1

0
BB@

1
CCA;

where c11ðu
0Þ ¼ R2ðu

0Þ=ðR2ðu
0Þ2 R1ðu

0ÞÞ for 0 # r 0 # R2ðu
0Þ and c11 ¼ 1 for

r 0 . R2ðu
0Þ and:

c12ðr
0; u 0Þ ¼ ðr 0 2 R2ðu

0ÞÞR2ðu
0Þ

dR1ðu
0Þ

du 0
2

ðr 0 2 R1ðu
0ÞÞR1ðu

0Þ dR2ðu
0Þ

du 0

ðR2ðu 0Þ2 R1ðu 0ÞÞ2
;

for 0 # r 0 # R2ðu
0Þ; and c12 ¼ 0 for r 0 . R2ðu

0Þ:
Finally, the properties of the cloak are given by:

T21 ¼ Rðu 0Þ

c2
12
þf 2

r

c11f rr 0 2 c12

f r
0

2 c12

f r

c11r
0

f r
0

0 0
c11f r
r 0

0
BBBBB@

1
CCCCCARðu 0ÞT;

with:
f r ¼

ðr 0 2 R1ðu
0ÞÞR2ðu

0Þ

ðR2ðu 0Þ2 R1ðu 0ÞÞ
¼ ðr 0 2 R1ðu

0ÞÞc11:

The parametric representation of the ellipse rðuÞ ¼ ab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cosðuÞ2 þ b2sinðuÞ2

p
corresponds to cloaks of elliptical cross section and it has been checked that it
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provides exactly the same result as in Nicolet et al. (2008), where similar results have
been obtained by a space dilatation.

To obtain general shapes, Fourier series:

rðuÞ ¼ a0 þ
Xn
k¼1

ðakcosðkuÞ þ bksinðkuÞÞ;

may be used. An example of such a general cloak is shown on Figure 3: a source made
of a wire of circular cross section (radius ¼ 0.25) centered at point rs ¼ (2.5, 0) with a
constant Ez imposed on its boundary, radiating in a vacuum with wavelength l ¼ 1
(note that all lengths are given in arbitrary units, mm for instance for near infrared).
The electric field Ez is therefore a cylindical wave (note that the electric field is given in
arbitrary units, V/m for instance, and Ez ¼ 1 on the boundary of the source wire) and is
not perturbed at all by a F-shaped scattering (lossy) obstacle of relative permittivity
1 þ 4i placed near the origin (0,0) and surrounded by the cloak. Note also that the
unbounded space is simulated via a circular PML in the annulus 4 # r # 5.

4.2 3D cloaks
The 3D cloaks may be determined following the same guidelines but using the
spherical coordinates.

Figure 3.
Cloak with a general shape

given by Fourier series

e(0)

Notes: R1(q) is with a0 = 1, b1 = 0.1, a2 = –0.15, b3 = 0.2, a4 = 0.1,
R2(q) is with a0 = 2, a2 = –0.1, a3 = –0.15, b3 = 0.3, a4 = 0.2, all the
other coefficients = 0. Reproduced from the only available original

−0.3 0.30
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The Jacobian of the radial contraction Jrr0 ¼ diag(c11, 1,1) is still the same (r is now the
radius of a sphere). The total Jacobian is therefore:

RðuÞM2ðwÞ diag ð1; r sinw; rÞ diag ðc11; 1; 1Þ diagð1; 1=ðr 0 sinw 0Þ; 1=r 0M2ðw
0ÞRTðu 0Þ

¼ RðuÞM2ðwÞ diagðc11; r=r
0; r=r 0ÞM2ðwÞR

TðuÞ;

where we used the fact that w ¼ w 0 and u ¼ u 0. The transformation matrix for the
equivalent media is finally:

T21 ¼ RðuÞM2ðwÞ diag
r 2

c11r02
; c11; c11

� �
M2ðwÞR

TðuÞ: ð21Þ

3D arbitrary cloaks can be found by varying their interior and exterior radii with
respect to the angular coordinates: R1(u, w), R2(u, w).

5. Conclusion
The geometrical transformations may be viewed as a unifying point of view bridging
several techniques in electromagnetism: treatment of unbounded domains and of
twisted structures, design of invisibility cloaks. . . The cornerstone of the method is to
remark that the Maxwell equations can be written in a covariant form such that all
the metric properties are only involved in the material properties. The change of
coordinates may therefore be encapsulated in exotic equivalent material properties,
via the equivalence rule (1), and the rest of the computation is dealt with just as if
rectangular Cartesian coordinates were used. Though this technique is completely
general, the fact that the obtained material are usually anisotropic and
inhomogeneous makes it of particular interest in the context of the finite element
method where it provides very interesting models that do not require a modification
of the existing code (if this one is general enough). It also provides a tool to design
new electromagnetic devices such as the invisibility cloaks. It gives also an
interpretation of negative refractive index materials together with a pictural view of
the perfect lens that corresponds to a “folding” of the space (Pendry and Smith, 2004;
Leonhardt and Philbin, 2006; Schurig et al., 2007). Nevertheless, it should be
emphasized that the space transformations that do not correspond to a
diffeomorphism lead to material properties that are, if not impossible to obtain, at
least challenging for the optical metamaterial science (even in a small frequency
range). Thus, far, experimental verification of invisibility cloaks was chiefly achieved
for microwaves (Schurig et al., 2006).
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