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Abstract This paper investigates new technological devices to be utilised in future optical
communications, by means of variational method (FEM) and multipole scattering approach
(Rayleigh method). This last one provides interesting asymptotic results in the long-wavelength
limit. The so-called photonic crystal fibres (PCF) possess radically different guiding properties due
to photonic band gap guidance: removing a hole within a macro-cell leads to a defect state within
the gap. In the case of multi-core PCF, the localised modes start talking to each other which possibly
leads to a new generation of multiplexer/demultiplexers.

1. Introduction
Nanostructured materials containing ordered arrays of cylindrical holes pave the
way of an optoelectronics revolution, doing for light what silicon did for electrons.
The microelectronics revolution was based on the elaborate control of electric currents
achieved with semiconductors as silicon. That control depends on a phenomenon called
the band gap, i.e. a range of energies in which electrons are blocked from travelling
through the semiconductor. By analogy with semiconductors, physicist have produced
materials with a photonic band gap – a range of wavelengths of light that is blocked
by the material – by structuring the material in carefully designed patterns at the
nanoscopic-size scale. These so-called photonic crystals (PC) act as semiconductors for
light and promise innumerable technological applications. Such structures can be
stretched along the third dimension, forming a new kind of optical fibres, christened
“photonic crystal fibres” (PCF). Conventional optical fibres have a high refractive index
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at their core, which confines light by total internal reflection. Philip St J. Russell of the
University of Bath in England demonstrated in 1999 how to make photonic band-gap
fibres (Knight et al., 1999). In one version, light travels along a central hole in the fibre,
confined there by the two-dimensional band gap of a surrounding periodic cladding.
More optical power can be sent through such a central void than through glass,
enabling greater information-carrying capacity, perhaps 100 times that of conventional
telecommunications fibres. Specialty fibres have advanced the most as commercial
photonic band-gap products. Two companies, one of them being based in UK
(“www.blazephotonics.com”) and led by Philip St J. Russell, have already distributed
sample quantities and will soon begin volume production of PCF. We present analysis
of electromagnetic waves propagating through such doubly periodic array of
cylindrical channels in oblique incidence. We use Floquet-Bloch quasi-periodicity
conditions to take into account the periodicity of the problem (Nicolet et al., 2004).
Although one may argue that the PCF reportedly have a finite size in real world
(Knight et al., 1999), this model enables us to construct dispersion curves for the
corresponding periodic structure. We exhibit band gaps in conical incidence and study
localised modes associated with a defect in a macrocell.

2. Rayleigh method
2.1 Set up of the spectral problem
2.1.1 Maxwell’s equations at work. We consider a periodic heterogeneous lossless
medium. This micro-structure is characterised by its permittivity 1 ¼ 1r10 (10 is the
permittivity of vacuum) and its permeability m ¼ mrm0 (m0 is the permeability of
vacuum). We assume an implicit time dependence exp ð2ivtÞ of the electric field
Eðx; y; zÞ and the magnetic field Hðx; y; zÞ, which are therefore solutions of the time
harmonic Maxwell’s equations (in the sense of distributions in R3):

curl E ¼ ivm0mrH; div ð1rEÞ ¼ 0

curl H ¼ 2iv101rE; div ðmrHÞ ¼ 0

(
ð1Þ

Since we are studying propagation of modes in a periodic medium, the well posedness
of this spectral problem is ensured by the Floquet-Bloch quasi-periodicity conditions
which hold on the boundary of a basic cell (provided that 1r and mr are real functions
with strictly positive lower and upper bounds).

In the case of propagating waves in conical incidence in a medium invariant along
the z-axis, V ( V denoting either E or H ) is sought in the form:

V ¼ Vðr;FÞ eig z; ð2Þ

where g is the (strictly positive) propagation constant and r and F denote the
radial and angular variables of V which is associated with one of the basic cells
(Figure 1), which we denote as Y ¼ ½0; d� £ ½0; d� (d is the pitch of the square array).

From now on, we will study piecewise-constant permittivity and permeability: we
restrict our analysis to the important case of a periodic assembly of infinite conducting
cylindrical inclusions of circular cross-section C (Knight et al., 1999). Using the vector
Helmholtz decomposition

curl ðcurl VÞ ¼ 2DV þ grad ðdiv VÞ; ð3Þ
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we find that in the medium between the metallic inclusions, the electric and magnetic
field satisfies the vector Helmholtz equation

ðDþ k 2ÞV ¼ 0; ð4Þ

where the spectral parameter k denotes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 2101rm0mr

p
; 1r and mr being, respectively,

the relative permittivity and permeability in the matrix.
Because the rods are infinitely extended in the z-direction, the x and y components of

the E and H fields can be reconstructed from their z-components, via the equations

E t ¼
1

101rm0mrv 2 2 g 2
ðig gradtE z 2 ivmrez £ gradt H zÞ; ð5Þ

H t ¼
1

101rm0mrv 2 2 g 2
ðig gradtH z þ iv1rez £ gradt E zÞ: ð6Þ

It should be noted that in the subsequent analysis we retain the z-dependence of
the fields.

The mathematical model of infinite conducting inclusions amounts to assuming
that the tangential part of the electric field n £ E be vanishing on their boundary,
unlike the tangential part of the magnetic field n £ H which involves the (unknown)
current. If we write the tangent vector at any given point on the inclusion surface ›C as
et and the normal vector as n then

n £ Ej›C ¼ E zet þ ez £
ig

1rmrv 2 2 g 2

›E z

›t
2

ivmr

1rmrv 2 2 g2

›H z

›n

� �� �����
›C

¼ 0: ð7Þ

2.1.2 Conical mounting for metallic cylinders: miracle making. Noting that et and ez are
perpendicular, we can express the boundary conditions as a set of restrictions on the
z-components of the fields. These are

Figure 1.
Physical space and
reciprocal space
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E zj›C ¼ 0; ð8Þ

ig

1rmrv 2 2 g2

›E z

›t
2

ivmr

1rmrv 2 2 g 2

›H z

›n

� �����
›C

¼ 0: ð9Þ

When g ¼ 0, it follows straightforwardly from (9) that

›H z

›n

����
›C

¼ 0: ð10Þ

So that we can split the problem into two fundamental polarisations in the sense that
every field can be expressed as two decoupled fields, namely a T.E. field for which Hz is
the solution of

ðDþ k 2ÞHz ¼ 0; outside the metal; ð11Þ

›Hz

›n

����
›C

¼ 0; on the boundary of each cylinder; ð12Þ

and a T.M. field for which Ez is the solution of

ðDþ k 2ÞEz ¼ 0; outside the metal; ð13Þ

Ezj›C ¼ 0; on the boundary of each cylinder: ð14Þ

When g . 0, the boundary conditions in equations (8) and (10) still hold, which is one
of the peculiarities shared by the model of infinitely conducting metallic cylinders. The
fact that the conical mounting does not mix the polarisations is certainly not trivial
(and actually not true for dielectric cylinders). Hence, we thought that this remarkable
fact deserves a little digression from the main stream of the paper.

If 0 , g ! 1, we can assume that E z and H z are represented in the form

E zðv; gÞ ¼ E0
zðvÞ þ gE1

zðvÞ þ Oðg 2Þ; ð15Þ

H zðv; gÞ ¼ H 0
zðvÞ þ gH 1

zðvÞ þ Oðg 2Þ: ð16Þ

If we neglect all terms of order O(g 2), the boundary condition in equation (9) implies
that equation (10) is first order in g.

Now, if g @ 1, E z and H z are represented in the form

E zðv; gÞ ¼ g21E1
zðvÞ þ g22E2

zðvÞ þ Oðg23Þ; ð17Þ

H zðv; gÞ ¼ g21H 1
zðvÞ þ g22H 2

zðvÞ þ Oðg23Þ: ð18Þ

If we neglect all terms of order O(g 23), the boundary condition in equation (9)
implies

›E z

›t

����
›C

¼ 0
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to order g22 which brings a trivial result. What saves us is the boundary condition
in equation (8) which in any case (for every g . 0) ensures us that equation (9)
leads to equation (10)!

But that is not all, we should also note that equations (8) and (10) hold both for
( E z, H z) and (Ez,Hz) due to the definition (2) and the fact that n is perpendicular to the
z-axis.

2.1.2 Recast of the problem into longitudinal components. Finally, the boundary
value problem splits in two fundamental polarisations, namely T.E. polarisation

ðDþ k2
’ÞHz ¼ 0; outside the metal; ð19Þ

›Hz

›n

����
›C

¼ 0; on the boundary of each cylinder ð20Þ

and T.M. polarisation

ðDþ k2
’ÞEz ¼ 0; outside the metal; ð21Þ

Ezj›C ¼ 0; on the boundary of each cylinder ð22Þ

with k’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 2101rm0mr 2 g 2

p
. It should be noted that v should be greater than the

so-called cut-off frequency vc ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0mr

p
to ensure a real (positive) transverse

wave-number k’ .
2.1.3 The Bloch conditions: from boundary value to spectral problems. For the

spectral problem to be completely specified, we further assume that the longitudinal
part Vz of the vector field V satisfies an appropriate quasi-periodicity condition known
as the Floquet-Bloch condition

Vðr þ RpÞ ¼ VðrÞeik·Rp ; ð23Þ

where k is known as the Bloch wave-vector and Rp¼ p1a
1þp2a

2 is the vector attached
to the nodes p¼ ( p1, p2)[ Z2 of the lattice of translations vectors a1 and a2, which
form the basis for the lattice as a whole (Figure 1).

2.1.4 An orphan: the TEM case. Most of the studies dealing with the infinite array
of metallic cylinders light-heartedly skip the important issue of the most peculiar class
of so-called transverse electric-magnetic waves, except in the noticeable work of
McPhedran et al. (1997). These modes are of the form (2) but otherwise they should also
fullfil the restrictive condition

Ez ¼ 0; Hz ¼ 0; ð24Þ

within the PCF. Let us check whether or not such a constraint is achievable.
Firstly, it follows from either equation (5) or (6) together with equation (24) that the

propagation constant g has to be equal to the wavenumber k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0mr

p
if we

want non zero Et or Ht. Hence, in the transverse case ðg ¼ 0Þ TEM modes would only
stand a chance to exist in the static limit.

Secondly, plugging E ¼ Et eig z and H ¼ Hte
ig z in equation (1), we find

curl E ¼ ðcurl Et þ ig ez £ EtÞe
ig z ¼ ivm0mrHt ð25Þ

The second equality in equation (25) holds true if and only if curl Et ¼ 0 in the sense of
distributions, since both Ht and ez £ Et are orthogonal to ez unlike curl Et which is
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colinear to ez. Owing to equation (20), (22) and (24) Etj›C is also null. Hence, Et is
irrotational in classical sense and it therefore derives from a potential WTE:

Et ¼ 2grad W TE; in Yn �C ð26Þ

A similar reasoning can be led for Ht but we notice that only its normal derivative will
vanish of the boundary C and therefore it is only irrotational in distributional sense (due
to the existence of a current n £ Ht on ›C ). Now, from equations (1) and (26), we have

DW TE ¼ divðgrad W TEÞ ¼ 2div Et ¼ 0; in Yn �C; ð27Þ

both in distributional and classical sense (due to Dirichlet boundary conditions on ›C ).
At this stage, we remark that Yn �C is a not simply connected set (it would be simply

connected if we would consider an array of dielectric cylinders). Therefore, equation
(27) does not imply that the (quasi-periodic) potential WTE be constant over the basic
cell (which would lead to Et ¼ 0). It is important to note also that the potential WTE is
bound to take a value Wi

TE on the boundary ›C in the ith basic cell within the array
which is distinct from its value Wj

TE on the boundary ›C in the jth basic cell if i – j.
We are therefore in presence of a quasi-periodic potential solution of a problem of
electrostatic type. The analysis of the quasi-static limit led by Poulton et al. (2001)
reveals the following relationships between on the one hand, the dynamic field
quantities Hz and our electrostatic potential WTE:

Hz , 1 þ k0;’W TE; ð28Þ

where

k0;’ , v 101rm0mr 2
1

2

g

v

	 
2
� �

is the quasi-static wavenumber.
On the other hand, in the T.M. case it is shown in Poulton et al. (2001) that

Ez , 1 þ k0;’W TM; ð29Þ

where

DW TM ¼ 0; in Yn �C; ð30Þ

which is supplied with Bloch conditions on opposite sides of Y and some Neumann
boundary condition ›W TM=›n ¼ 0 on the boundary ›C.

Remarkedly, the electrostatic solutions WTE,x and WTM, y (repectively corresponding
to fields directed along the x- and y-axes) form a Cauchy-Riemann pair and are related by
Keller’s theorem (Keller, 1964) according to grad W TE;x ¼ 2ez £ grad½Rðp=2ÞW TM; y�,
where R(w) denotes a rotation by an angle w. From this, it can be deduced that, in the
quasi-static limit, the transverse field modes Et and Ht (which are respectively
proportional to ez £ gradW TE and gradWTM) form a linearly independent (orthogonal)
pair of TEM modes, identical up to a rotation through angle p/2.

Actually, for a square array of circular metallic inclusions, it can be shown that the
potential WTE solution of equation (27) can be expressed as

W TE ¼ A ln ðr=rcÞ þ B; ð31Þ
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where A and B are some integration constants deduced from the boundary conditions
(quasi-periodicity of W on opposite sides of the basic cell Y as well as vanishing normal
derivative on the boundary r ¼ rc).

2.2 Multipole expansions and boundary conditions
We expand the longitudinal fields Ez and Hz in terms of Bessel functions between the
inclusions:

jz ¼
Xþ1

m¼21

ajm Jmðk’rÞeimF þ bjmYmðk’rÞ
h i

eimF; ;j [ {E;H}; ð32Þ

where r and F denote the radial and angular variables of Ez and Hz.
We derive from equations (20), (22) and (32) that the multipole coefficients ajm and bjm

are linked by the boundary conditions

aE
m ¼ 2

Ymðk’rcÞ

Jmðk’rcÞ
bE

m; aH
m ¼ 2

Y 0
mðk’rcÞ

J 0mðk’rcÞ
bH

m: ð33Þ

2.3 Quasi-periodic Green’s function and Lattice sums
Another relation between the multipole coefficients can be gained by examining the
structure of the lattice. This amounts to taking into account the quasi-periodicity of
the transverse field (electric or magnetic), as stated by equation (23). Therefore, we
introduce a two-dimensional quasi-periodic Green’s function Gk which satisfies

ðDþ k2
’ÞGkðr; r

0Þ ¼
p[Z2

X
d ðr 2 r0 2 RpÞe

ik·Rp ; ð34Þ

where the sum stretches over the entire array of nodes p (locations of the centers of the
cavities).

Using the Graf’s addition theorem for Bessel functions, one can derive the
representation of the Green’s function Gk as a Neumann series within the central unit
cell (Movchan et al., 2002)

Gkðr; r
0Þ ¼

1

4
Y 0ðk’jr 2 r0jÞ þ

1

4

Xþ1

l¼21

SY
l ðk’;kÞJ lðk’jr 2 r0jÞe2ilu; ð35Þ

where the dynamic lattice sums SY
l are defined by

SY
l ðk’;kÞ ¼

p[Z2nð0;0Þ

X
Ylðk’jRpjÞe

iFp lþik·Rp ; ð36Þ

and Fp ¼ argðRpÞ, u ¼ argðr 2 r0Þ. As this series is slowly convergent, we shall use
the following formula, derived by McPhedran and Dawes (1992) to calculate the lattice
sums
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SY
l ðk’;kÞJ lþqðk’zÞ ¼ 2dl0 Yqðk’zÞ þ

1

p

Xq

n¼1

ðq 2 nÞ!

ðn 2 1Þ!

2

k’z

� �q22nþ2
" #

2
4i l

A
p[Z2

X k’

jQpj

� �q
J lþqðjQpjzÞe

ilup

jQpj
2
2 ðk’Þ

2
; ð37Þ

where A ¼ ja1 £ a2j denotes the area of the unit cell. For analytic purposes, it is
convenient to use the values p ¼ 0, z ¼

ffiffiffiffi
A

p
¼ d (remember that d is the pitch of the

direct array). The above formula is characterized by faster convergence via integration
with respect to z. The integer parameter q gives the number of times the convergence
of the lattice sums has been accelerated through integration and is thus called
convergence acceleration index. The reciprocal unit cell is defined by the vectors[1]

a1 ¼ 2p
a2 £ ez

A
; a2 ¼ 2p

ez £ a1

A
; ð38Þ

with the reciprocal lattice vectors

Qp ¼ p1a
1 þ p2a

2 þ k; up ¼ argðQpÞ: ð39Þ

The lattice sums satisfy the identity

SY
2lðk’;kÞ ¼ SY

l ðk’;kÞ; ð40Þ

and hence it is sufficient to calculate them only for nonnegative values of l (here · denotes
the complex conjugate quantity).

2.4 Rayleigh identities and Rayleigh system
In equating the nonsingular field in the central unit cell with the superposed effect of all
the other (singular) sources in the array, we obtain the following Rayleigh identities
(Guenneau et al., 2003) for every j in {E, K},

ajl ¼
Xþ1

m¼21

ð21ÞlþmSY
m2l ðk’;kÞb

j
m; ð41Þ

where the lattice sums SY
m2lðk’;kÞ provide the contribution of the lattice (Guenneau

et al., 2003). These two sets of equations are linked via boundary conditions equation
(33) expressed in terms of multipoles and lead to the Rayleigh system (Guenneau et al.,
2003)

M jj
l ðk’Þb

j
l þ

Xþ1

m¼21

ð21ÞlþmSY
m2lðk’;kÞb

j
m ¼ 0; ;j [ {E;H}; ð42Þ

where MEE
l ¼ Ylðk’rcÞ=J lðk’rcÞ and MHH

l ¼ Y 0
lðk’rcÞ=J 0lðk’rcÞ.

This algebraic system can be written as RB ¼ ðM þ SÞB where Rðk’;kÞ is the
so-called Rayleigh matrix. It possesses standard properties of the Rayleigh system: it
neatly separates the effect of the boundary conditions (the M jj

l Þ from that of the
geometry of the lattice (the SY

l Þ, so that quite wide-ranging results can be gained
without specifying particular compositions of voids. It is also remarked that the

Study of conical
Bloch waves

939



coefficients M jj
l are real which makes R Hermitian due to equation (40). This is

consistant with the fact that we consider lossless media.

2.5 Normalisation of the Rayleigh system
From the definition of the boundary terms M jj

n , one can show that, as n !þ1,

M jj
n ¼ O G2ðnÞn

1

2
k’rc

� �22n
 !

ð43Þ

Similarly, one can show that, for the lattice sums,

SY
l ðk’;kÞ ¼ O GðlÞ

1

2
k’d

� �2l
 !

; as l !þ1: ð44Þ

This causes numerical difficulties when

k’d

2
! 1;

since the off-diagonal terms increase extremely rapidly with index l:

zjl þ
Xþ1

m¼21

Djj
lmzjm ¼ 0; ;j [ {E;H}; ð45Þ

where

zjl ¼ bjl

ffiffiffiffiffiffiffiffiffiffiffi
jM jj

l j

q
and

Djj
lm ¼

sign
�
M jj

l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M jj

l

��� ��� ��Mm

��r ð21ÞlþmSY
m2lðk’;kÞ for j [ {E;H}:

Using asymptotics of Bessel functions for large l and a fixed m, we get:

Djj
lm ¼ O

ðk’rcÞ
lffiffiffiffiffiffiffiffiffiffiffi

G2ðlÞl
p Gðl 2 mÞ

ðk’dÞl

 !
¼ O

1ffiffi
l

p
rc

d

	 
lðl 2 mÞ!

l!

� �
: ð46Þ

Therefore, if m is fixed as l !þ1,

Djj
lm ¼ O

l 2mffiffi
l

p
rc

d

	 
l
� �

: ð47Þ

With l and m playing a symmetric role, it is a straightforward matter to show that,
if l is fixed as m !þ1,

Djj
lm ¼ O

m2lffiffiffiffi
m

p
rc

d

	 
m
� �

: ð48Þ
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Owing to this normalisation, the elements in the Rayleigh system decay exponentially
away from the main diagonal, giving rise to higher multipole coefficients that decay
similarly quickly. The frequency of vibration v can be calculated for any given value
of the Bloch vector k by annulling the determinant of the system det(R(k’, k)) at
fixed conical parameter g. In this way one can specify the dispersion relation for
high frequencies by taking some high-order truncations (Guenneau et al., 2003).
Also, in the dilute composite limit, one can truncate the system to the dipole order
ðl;m [ {21; 0; 1}Þ to get some effective properties in the long-wavelength limit.

3. Finite element method
3.1 Operator formulation
The following operators are defined:

gradg w ðx; yÞ ¼ grad ðwðx; yÞeigzÞe2igz

curlg V ðx; yÞ ¼ curl ðVðx; yÞeigzÞe2igz

divg Vðx; yÞ ¼ div ðVðx; yÞeigzÞe2igz

8>>><
>>>:

ð49Þ

Their domains are classes of (k,Y)-periodic (i.e. satisfying equation (23)) square
integrable functions with values in C (for gradg) or C3 (for divg and curlg) which we
denote as L2

]ðk;Y Þ and ½L2
]ðk;Y Þ�3.

We say that the couple (Ek,Hk) associated with the Bloch vector k is an
electromagnetic Bloch wave if (Ek,Hk) verifies equation (1) and is of the form specified
by equation (2) with

ðg;v;kÞ [ Rþ £ Rþ £ R2

ðEk;HkÞ – ð0;0Þ

Ek;Hk [ ½L2
]ðk;Y Þ�3:

8>>><
>>>:

ð50Þ

The solutions (Ek, Hk) of the spectral problem defined by equations (1), (2) and (23)
hence satisfy

curlg Hk ¼ 2iv101rðx; yÞEk

curlg Ek ¼ ivm0mrðx; yÞHk

(
ð51Þ

with 1r and mr defined as in equation (1). Note that curlg gradgw ¼ 0 for smooth scalar
fields w and divg curlg U ¼ 0 for smooth vector fields U.

Since we consider a (perfectly conducting) metallic inclusion C in the basic cell Y,
the presence of metallic walls introduces unknown currents equal to the tangential
component of the magnetic field. Therefore, we choose an electric field formulation to
deal with simple boundary conditions (the tangential component of the electric field is
null on metallic walls). Eliminating the magnetic field from equation (51), one finds:

1

1r
curlg

1

mr
curlg Ek ¼ k2

0Ek ð52Þ

where k2
0 ¼ 1omov

2 ¼ v2=c 2, c is the celerity of light in vacuum.
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3.2 Weak formulation
The numerical formulation is given by the following residue (Guenneau et al., 2002)

Rðg; Ek;E
0
kÞ ¼

Z
Yn �C

m21
r ðcurlt Et;k · curlt E0

t;k þ gradt El;k · gradt E 0
l;k

2 i gEt;k · gradt E 0
l;k þ ig gradt El;k · E0

t;k þ g 2 Et;k · E0
t;kÞdx dy

2 k2
0

Z
Yn �C

1rðEt;k · E0
t;k þ El;k E 0

l;kÞdx dy:

ð53Þ

The weight vector field E0
k is chosen in the same discrete Hilbert space as the unknown

field Ek, i.e. a space with finite dimension equal to the number of numerical parameters
to be determined. This formulation involves both a transverse field Et,k in the section of
the guide and a longitudinal field El,k along its axis such that:

Ek ¼ Et;k þ El;kez: ð54Þ

3.3 Discrete weak form
The section of the guide is meshed with triangles and Whitney finite elements
(Bossavit, 1990) are used, i.e. edge elements for the transverse field and node elements
for the longitudinal field:

Ek ¼

Et;k ¼
edges i

P
aiw

e
i ðx; yÞ

El;k ¼
nodes j

P
gjw

n
j ðx; yÞ

8>><
>>: ð55Þ

where ai denotes the line integral of the transverse component Et,k on the edges, and gj

denotes the line integral of the longitudinal component El,k along one unit of length of
the axis of the guide (what is equivalent to a nodal value). Besides, wn

j ðx; yÞ ¼ ljðx; yÞ
and we

i ðx; yÞ ¼ lkðx; yÞgrad llðx; yÞ2 llðx; yÞgrad lkðx; yÞ (where lj is the barycentric
coordinate of node j and the edge i has nodes k and l as extremities) are, respectively,
the basis functions of Whitney 1-forms (edge element discrete space W 1) and Whitney
0-forms (nodal element discrete space W 0).

Moreover, the use of the Whitney elements solves the spurious mode problem in a
way similar to the one of the cavities (Bossavit, 1990).

As the eigenvalue problem involves, on the one side, k2
0 only and, on the other side,

both g and g 2, a more classical (though generalized) eigenvalue problem is obtained by
fixing g [ Rþ (rather than k2

0) for a given Bloch vector k and looking for ðk2
0;EkÞ

satisfying the discrete spectral problem.

3.4 Implementation of Bloch conditions
In order to find Bloch modes with the finite element method, some changes have to be
performed with respect to classical boundary value problems that will be named Bloch
conditions (Nicolet et al., 2004). To avoid tedious notations, a simpler case is considered
here: a scalar field Uk(x, y) (time and z dependence are irrelevant here and there is no
particular problem to extend this method to vector quantities and edge elements) on the
square cell Y with Bloch conditions relating the left and the right side. The set of nodes
is separated in three subsets: the nodes on the left side, i.e. with x ¼ 0, corresponding to
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the column array of unknowns ul, the nodes on the right side, i.e. with x ¼ 1,
corresponding to the column array of unknowns ur, and the internal nodes, i.e. with
x [ ½0; 1�, corresponding to the column array of unknowns u. One has the following
structure for the matrix problem (corresponding in fact to natural boundary conditions,
i.e. Neumann homogeneous boundary conditions):

A

u

ul

ur

0
BB@

1
CCA ¼ b ð56Þ

where A is the (square Hermitian) matrix of the system and b the second member
column array. The solution to be approximated by the numerical method is a
Bloch function Ukðx; yÞ ¼ U ðx; yÞeiðkxxþkyyÞ with U Y-periodic and in particular
U ðx þ 1; yÞ ¼ U ðx; yÞ. Therefore, the relation between the left and the right side is:

Ukð1; yÞ ¼ U ð1; yÞeiðkxþkyyÞ ¼ Ukð0; yÞe
ikx ) ur ¼ ule

ikx ð57Þ

Therefore, the set of unknowns can be expressed in function of the reduced set u and ul

due to:

u

ul

ur

0
BB@

1
CCA ¼ P

u

ul

 !
with P ¼

1 0

0 1

0 1eikx

0
BB@

1
CCA ð58Þ

where 1 and 0 are identity and null matrices, respectively, with suitable dimensions.
The finite element equations related to the eliminated nodes have now to be taken into
account. Owing to periodicity of the structure, the element on the left of the right side
corresponds to elements on the left of the left side. Therefore their contributions
(i.e. equations corresponding to ur) must be added to the equations corresponding to ul

with the correct phase factor, i.e. e2 ikx what amounts to multiplying the system matrix
by P*, i.e. the Hermitian conjugate of P. Finally, the linear system to be solved is:

P*AP
u

ul

 !
¼ P*b ð59Þ

where it is worth noting that the system matrix is still Hermitian what is important for
numerical computation. Now a generalized eigenvalue problem (with natural boundary
conditions) Au ¼ lBu is transformed to a Bloch mode problem according to
P*APu0 ¼ lP*BPu0. Such problems involving large sparse Hermitian matrices can
be solved using Lanczos algorithm that gives the largest eigenvalues (Nicolet et al.,
2004). Physically we are in fact interested in the smallest eigenvalues and therefore
A21, the inverse of A, instead of A itself must be used in the iterations. Of course, the
inverse is never computed explicitly but the matrix-vector products are replaced by
system solutions due to a GMRES method. It is therefore obvious that the numerical
efficiency of the process relies strongly on Krylov subspace techniques and the Arnoldi
iteration algorithm (Nicolet et al., 2004). The practical implementation of the model has
been performed thanks to the GetDP software (Dular et al., 1998) (Figure 2).
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4. Numerical results
In this section, we provide some numerical illustration for an array of channels filled
with perfect metal (any metal in the microwave regime) which are drilled within a silica
matrix in a densely packed configuration. We obtain some band diagrams exhibiting a
nice photonic bandgap, i.e. a range of frequencies where no electromagnetic wave
propagates (Figures 3 and 4). When we remove one channel, we observe some localised
signal sitting right in the middle of the gap (its normalised frequency vd=c ¼ 7:95 is
independent of the Bloch vector k). The practical application lies in futurist optical
fibres (Knight et al., 1999; Zolla et al., 2004).

4.1 Effective properties and singular perturbation
On the dispersion diagrams of Figures 3 and 4, we can only see one acoustic band.
The reason for this is that if we consider k’rc ! 1 in equation (42), the relationship
between k’ and k is supplied by

M jj
0 ðk’rcÞ þ SY

l ðk’;kÞ ¼ 0; ;j [ {E;H}: ð60Þ

This equation provides the first perturbation away from the plane-wave state. It
appears to hold true even for shorter wavelengths in comparison with the array
spacing d, as long as k’rc ! 1. Now, for long-wavelengths, it is possible to obtain
analytic expressions for the lattice sums SY

l in equation (37). We find that when
k’ ! jQmj, equation (60) can be approximated as (Guenneau et al., 2003)

M jj
0 ðjQmjrcÞ2

2

p
ln

jkj

2

� �
þ x1

� �
2 4 x2 þ

ln ð2dÞ

p

� �

2
4

d 2

1

jQmj
2
2 k2

’ jQnj¼jQmj

X
1 þ OðkQmj2k’jÞ ¼ 0;

ð61Þ

where x1.20.318895593, x2 is the Euler’s constant 0.557215665 and Qm is defined by
equation (39). Hence, the boundary term MHH

0 in equation (61) becomes

Figure 2.
The Bloch theorem and
virtual periodic meshing
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MHH
0 ¼

Y 0
0ðjQmjrcÞ

J 00ðjQmjrcÞ
¼ 2

1

p

2

jQmjrc

� �2

þOððjQmjrcÞ
0Þ; ð62Þ

and so this term (corresponding to TE polarised waves) dominates the perturbation in
equation (61). It corresponds in fact to the first dispersion curve.

On the dispersion diagram, we can only see one acoustic band. The reason for this is
that if we consider k’rc ! 1 in equation (61), the boundary term MEE

0 becomes

MEE
0 ¼

Y 0ðjQmjrcÞ

J 0ðjQmjrcÞ
¼ 2

2

p
ðlnðjQmjrcÞ þ x2Þ þ OððjQmjrcÞ

2Þ; ð63Þ

and so this term (corresponding to TM polarised waves) is of the same order as the
contribution of lattice sums in equation (61). In this case, equation (61) becomes

k 2 2 k2
’ ¼

2p

d 2
ln

rc

d
þ C

	 
21

; ð64Þ

where C ¼ 22px1 2 2 ln 2 . 1:31053292. This corresponds in fact to the fourth
dispersion curve. Also, we note that the acoustic curve v(k) is quadratic in the
neighbourhood of the origin in Figure 4 which is not the case in Figure 3. This can be
also classified as a singular perturbation induced by the conical parameter g: For small
g, the asymptotics of eigenfrequencies take the following form:

Figure 3.
The propagation constant
is g ¼ 0mm21 (transverse
case). Band diagram for a
periodic array of cavities

arranged on a square
lattice (radius 0.35mm,

center spacing d¼1mm) in
a matrix of silica (1r¼ 1.5)
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vðk; gÞ , v0ðkÞ þ gv1ðk=gÞ; ð65Þ

so that the increment of the frequency may be small, whereas the (transverse) group
velocity ›v/›k may change by a finite increment. This characterises the presence
of noncommuting limit, namely between v! 0 and g! 0, which is discussed in
(Poulton et al., 2004).

In transverse incidence (g ¼ 0) and for reasons of symmetry, it appears that in the
neighbourhood of the origin k ¼ ð0; 0Þ, the frequency v is written as per:

v ¼ vjkj þ Oðkx; kyÞ; ð66Þ

and the effective index is given by N eff ¼ c=v (see straight line going to the origin in
Figure 3). But in oblique incidence (g . 0), it is clear from Figure 4 that the effective
refractive index N eff is no longer given by the variation of group velocity at the origin.
It is in fact connected to the notion of effective mass (second order derivatives)
(Guenneau et al., 2003).

4.2 Photonic band gaps for square periodic arrays
The complete gap occurs only for TE waves (since there is no acoustic band for TM
waves). The second dispersion curve corresponds indeed to TE waves and it is called
optical band. We observe that the group velocity can be negative in the neighbouhrood
of G. This can be associated to a negative effective refractive index which possibly
leads to newly discovered left-handed-materials (Smith et al., 2004).

Figure 4.
The propagation constant
is g ¼ 7mm21 (conical
case). Band diagram for a
periodic array of cavities
arranged on a square
lattice (radius 0.35mm,
center spacing d¼1mm) in
a matrix of silica (1r¼ 1.5)
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4.3 Localised modes associated with periodic multiple defects
As a simple illustration, we start with the removal of the central channel within a
supercell containing 7 £ 7 voids of the micro-structured fibre. We set some Bloch
conditions on opposite sides of this supercell, thereby assuming some infinite extent of
the PCF in the transverse plane (x2y). We then observe in Figure 5 a new eigenstate

Figure 5.
Models for periodic

structures with defects
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associated with an eigenfrequency sitting within the band gap of Figure 4. We note
that this corresponds to a flat narrow pass-band on a corresponding dispersion
diagram (not depicted since the number of dispersion curves increases dramatically
with the size of the supercell) as checked numerically, this pass-band does not depend
on the orientation of the Bloch vector within the first Brillouin zone GMK. The reader
may argue that the Bloch conditions assumed on the opposite sides of the basic cell will
influence the result. Even though our modelling does not contain within it all the
physics at work (for instance, we cannot compute the leakage of the localised mode),
we observe that removing any of the channels within the macrocell does not affect
the eigenfrequency and associated eigenstate: this is a numerical evidence of the
well-behaved convergence of the finite element algorithm for Bloch conditions.

We now move to the richer case of multiple defects within the macrocell. Provided
that the cores are close enough, they start to talk to each other (Figure 5). This
phenomenon is fairly well known in the field of optical waveguides (Guenneau et al.,
2001), but its extension to microstructured fibres is new and presents exciting
applications in multiplexing/demultiplexing as was foreseen in the transverse case by
Centeno et al. (1999).

5. Conclusion
In this paper, we have presented two algorithms by which one can construct some
band diagrams associated with conical Bloch waves in arrays of metallic cylinders.
The first one, the so-called Rayleigh method, is an analytic algorithm well suited for
various asymptotic purposes such as the long-wavelength limit (homogenisation) and
leads to an infinite algebraic system which is typically truncated as a 22 £ 22 matrix.
The second one, the so-called finite element method, leads to large sparse systems, but
can tackle problems of more complex geometries (such as arrays of cylinders of
arbitrary cross-section or models for periodic structures with defects as in Figure 5).

Note

1. We note that the dot product k · Rp in equations (23), (34) and (36) is nothing else but a
duality product, hence we adopt covariant/contravariant notations for the lattice vectors in
physical and reciprocal spaces.
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