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Abstract

We are interested in the two dimensional electromagnetic diffraction by a fi-
nite set of parallel non-linear rods (optical Kerr effect). To do it, we used a method
christened ”method of the virtual antenna” which allows to simulate an electro-
magnetic wave radiated by distant sources by the same electromagnetic wave ra-
diated by nearby fictitious sources. This latest problem is then solved by a finite
element method. In order to point out the versatility of our approach, a nonlinear
(Kerr-effect) finite crystal is considered. We study the influence of the nonlinearity
on the local electromagnetic wave through a doped crystal. We check the results
via a verification of the power balance.

1 Introduction

We study the scattering by a non-linear finite photonic crystal, made of rods that are
invariant along one direction, taken as thez-axis. The non-linearity is an optical Kerr
effect (see, for example, [1]). For the time being, we restrict ourselves to an isotropic
χ(3) medium, so that we are concerned only with the(εr)zz component (indices are
dropped from now on). Thus, in the crystal,εr(E) := ε

(1)
r + χ(3)|E|2, whereE is

the (total) electric field. The rods are homogeneous, in the sense thatε
(1)
r andχ(3) are

constant scalar fields:χ(3) will be restricted toR, andε
(1)
r will be real or complex,

respectively when a lossless or lossy medium will be considered.
The crystal, considered as nonmagnetic, is surrounded by a vacuum. Because of the

form of the optical Kerr effect, there is no harmonic generation. Hence it is meaningful
to treat the electromagnetic field as a monochromatic field. Moreover, for the sake of
simplicity only TM fields are tackled. A functionu : R2 → C can thus be defined such
thatE(x, y, z, t) = <e{u(x , y)eiωt}ẑ , and hence the non-linear equation to solve is

(
4+ k2

0εr(u)
)
u = s, (1)

with u := us +ui, whereus is the unknown scattered field satisfying an outgoing wave
condition (OWC), andui is a given incident field that satisfies

(
4+ k2

0

)
ui = s.
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Figure 1: A cross-section of the studied system. The photonic crystal consists of
twenty-six rods (the small circles on the image) invariant along one direction. The
segment on left-hand side is used for extrapolation of the transmission coefficient. The
four circles centered on the origin are, from the smallest to the largest:1. ∂Σ, used for
energy extrapolation,2. Γ := ∂Ω on which the current of the virtual antenna flows,3.
the inner boundary of the PML,4. the outer boundary of the PML.

The sources of ui can be currents, or it vanishes in the case of incident plane waves.
We handle this study by numerical simulation. The finite element method (FEM)

revealed to be appropriate, for its ability to treat inhomogeneous permittivities (hence
this method seems more accurate than [2] or [3]). We used theComsol Multiphysics
software, in which the non-linearity is treated by an iterative scheme (damped Newton
method).

The OWC is taken into account through perfectly matched layers (PML) surround-
ing the region of physical interest, as described in [4].

2 Implementing the incident field: use of virtual anten-
nas

When using methods like FEM, we have to put the sources in the meshed area.
This can be very inconvenient: if the charges and currents are far from the scattering
objects, precision decreases or a higher data storage has to be allowed because a large
domain has to be considered. Besides, when dealing with plane waves (or plane waves
packet), we have to find a way to implement this incident field.

2.0.1 A first approach

A usual method to get round these difficulties is to work with the scattered field,
namelyus. In this way, the sources of the problem are automatically conveyed in the
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meshed area (under the condition, of course, that all obstacles are contained in the
meshed area).

Let us develop this method in the linear case: subtracting

(4+ k2
0)u

i = s (2)

to

(4+ k2
0εr)u = s,

we obtain the equation for the scattered field:

(4+ k2
0εr)us = k2

0(1− εr)ui.

The point is that1 − εr vanishes outside the scattering object, and thus the source is
the scattering medium (and hence it is in the meshed area).

Now, what happens in a medium, located inΩ0, presenting an optical Kerr effect?
Let us noteΞΩ0 the characteristic function of the setΩ0, i.e., for a given pointP in R2,

ΞΩ0(P ) =

{
1, P ∈ Ω0

0, otherwise.

The equation for the incident field is still (2), but the equation inΩ0 for the total field
is

4u + k2
0(ε

(1)
r + χ(3)|u|2)u = 0.

The scattered field then satisfies

4us + k2
0(Ts(ui, us)us + Ti(ui, us)ui) = k2

0(1− εr)ui, (3)

where




εr := 1 + (ε(1)
r − 1)ΞΩ0

Ts(ui, us) := 1 + (ε(1)
r + χ(3)|ui + us|2 − 1)ΞΩ0

Ti(ui, us) := χ(3)|ui + us|2ΞΩ0 .

We see that this propagation equation is far more difficult than the equation gov-
erning the total field; we thus decided to tackle the problem in a new route. For this
purpose, a question arises: is it possible to simulate ”any” sourcess by a sources′ close
to the scattering medium, such that the incident field, seen by the crystal, is the same?
If the answer is ”yes”, then we could solve the problem for the total field.

2.0.2 Virtual antennas: from the principles to the implementation

The answer being yes, we give the principle in this subsection1: the incident field
ui is brought by a currentj = ẑ located on a simple curveΓ (the interior of which

1The reader will find in the appendix a rigorous formulation, the method to obtain the expression ofj (see
below) and a detailed computation for simulating, for example, a plane wave.
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is denoted byΩ - the scattering medium is strictly included inΩ) in the meshed area.
More precisely, we find such that it radiates a fieldui

v satisfying an OWC,

(4+ k2
0)u

i
v = aδΓ,

with a, a normalization constant, being equal toiωµ0, and such thatui
v has the follow-

ing fundamental property

ui
v|Ω = ui|Ω. (4)

Because of 4, and the fact that the scattered medium is encompassed byΓ (i.e.
Ω0 ⊂ Ω), the equation for the scattered field, when restricted toΩ, is still (3). Conse-
quently, the total fieldu in Ω does not depend on the way in which the incident field is
implemented.

We called this process avirtual antenna. It is able to simulate almost any2 incident
field in a bounded region. It is worth noting that, out ofΩ, ui

v differs fromui.

3 Acceptor modes in Kerr effect media

A particular simulation is now more detailed. We present a picture (figure 1) of a
cross-section of the system under study.The incident field is a plane wave coming from
the right (ui(x, y) = Aeikx).

3.1 The acceptor mode

3.1.1 The transmission

A defect is created at the center of the crystal by removing one rod in order to obtain
an ”acceptor mode”; we show in the figure 2 the transmission (that is, the ratio of the
energy flowing through the left segment when there is or when there is not the crystal)
of the system. We note that it can be larger than one. Unless otherwise noted, the linear
part of the relative permittivity isε(1)

r = 8.41 and the amplitude of the incident plane
wave isA = 1V/m. We work with a wavelength in which the diameter of the rod is
unity with an arbitrary unit (µm, for instance, in near infrared domain). We thus have
λr := λ

d , d being the diameter of the rod.
The crystal behaves as a filter forλ ∈ [7, 10], except forλ very close to8.7: this

wavelength is called the wavelength of the acceptor mode3. The wavelength of reso-
nance being large compared to the dimension of the rods, the permittivity inside them
is usually considered to be homogeneous [2]. This approximation is unnecessary with
our method.

2we use here the terms ”almost any” because, as it will be shown hereafter, for computing, we use a
decomposition ofui in a Fourier-Bessel series; since plane waves and waves generated by threads satisfy
this condition, we consider that any physically canonical field can be simulated.

3to fix the ideas about the dimensions, the pitch of the crystal isΛ/d = 4, and so the radiusrd of the
defect is aroundrd ' 8 d.
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Figure 2: The transmission with respect to the relative wavelengthλr := λ/d. A band
gap (λr ∈ [7, 10]) and an acceptor mode (λr ' 8.7) can be noted.

3.1.2 Maps of the fields

The real part of the electric fields in the linear and non-linear cases are reproduced in
the figure 3. First we consider the acceptor mode. On the first image, 3(a), we are in the
linear regime. We observe that the field in the microcavity can be as high as5 V/m (to
be compared with the amplitude of the incident field:A = 1 V/m). If the medium is
nonlinear, this localization of the field can be enhanced (figure 3(b)) or lessened (figure
3(c)) according to the sign of the nonlinear coefficient.

The essential feature of the acceptor mode is to appear only at the resonant fre-
quency - compare 3(a) with 3(d): there is no peak of the field in the microcavity if the
wavelength is in the band gap. Hence, in the band gap, the variation of the field are too
low for the nonlinearity to have an important effect.

Since the electric fieldu is inhomogeneous, and since the relative permittivity de-
pends on it, the variation of the relative permittivity is also inhomogeneous. It is rep-
resented on the figure 4. The innermost rods have a change of relative permittivity as
high as4 0.14

8.41 = 1.7%; on the other hand, the electric field far from the microcavity is
too small to significantly affect the relative permittivity of the outermost rods. In [2],
the case in which only the six central rods are nonlinear is studied.

3.1.3 The differential cross-section

We are concerned in this section in the direction in which the fields escape from the
crystal.

4we note that, contrary to [3], the variation in each rod is not cylindrically symmetric. Moreover,1.7%
being higher that one encounters in experiment, the convergence of the programs is not limited by the value
of the nonlinear parameterχ(3).
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(a) χ(3) = 0 V 2/m2, λr = 8.7. (b) χ(3) = −10−2 V 2/m2, λr = 8.7.

(c) χ(3) = 10−2 V 2/m2, λr = 8.7. (d) χ(3) = 0 V 2/m2, λr = 8.3.

Figure 3: The real part of the total electric field<e{u}, in V/m, for different values
of χ(3) (zero in 3(a) and 3(d), negative in 3(b) and positive in 3(c)) and different wave-
lengths (the resonant wavelengthλr = λa in 3(a), 3(b) and 3(c), and in the gap in
3(d)).
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Figure 4: The variation of the relative permittivity,χ(3)|u|2 = εr − ε
(1)
r , with λr = λa

andχ(3) = −10−2 V 2/m2.

The circle∂Σ (cf fig.1) completely encompasses the crystals. Hence, on that curve,
the scattered field, which satisfies the Helmholtz equation, can be expanded in the
Fourier-Bessel basis5:

us|∂Σ(r, θ) =
∑

n∈Z
bnH(2)

n (kr)einθ|r=r0 ,

wherek is the wave vector in free space andr0 is the radius of∂Σ. Since

H(2)
n (z) ∼z→∞

√
2
πz

ei(−z+nπ/2+π/4) + o(1),

the following map is bounded anda priori nonzero for an incident plane wave:

σ(θ) = lim
r→∞

2πr
|Es(r, θ)|2
|Ei(r, θ)|2 .

This is the definition of the differential cross section (DCS). As seen in the figure 3,
outside the microcavity, the nonlinearity has nearly no effect on the fields, and hence it
has nearly no effect on the DCS.

The DCS is presented in the figure 5 for two wavelengths, the one of resonance and
one in the band gap. We note that, for small changes in the frequency, the directions
of radiation completely differ, especially for the backward (θ ' 0) and the forward
scattering (θ ' π).

5the development is in theH(2)
n functions because of our convention about the Fourier transform and the

outgoing wave condition.
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Figure 5: The differential cross sectionσ; blue: λr = 8.7 (the resonant wavelength),
green:λr = 8.3 (in the gap).

3.2 Power balance

In order to check the model coherence and the precision of the used numerical
algorithms, we study the dissipated power. We choose the parameters as follows: the
linear relative permittivity isε(1)

r = 8.41−2i and the non-linearity coefficient isχ(3) =
−10−2 m2/V 2. Let Σ be the innermost disk of figure 1 with origin as center. Since its
boundary is in the vacuum area, the (line density of the average over a time period of
the) electromagnetic powerPharm

e flowing throughΣ can be easily derived:
∫

Σ

Pharm
e ds = −

∫

∂Σ

<(P̂) · n̂ dl,

<(P̂) being the real part of the complex Poynting vector,∂Σ the boundary ofΣ, andn̂
the unit normal vector.

Denoting byε′′r the imaginary part of the relative permittivity, one also has6

∫

Σ

Pharm
e ds = −ε0ω

2

∫

Σ

εr”(u)|u|2 ds.

This expression is the electromagnetic power lost insideΣ, i.e. in the crystal.
The comparison of the two expressions for

∫
Σ
Pharm

e ds gives a relative error of
8 × 10−5, for linear and for non-linear crystals as well. From a numerical point of
view, this is highly acceptable in view of the fact that one expression integratesu∇ū
on a line and the other one integratesεr(u)|u|2 on a surface.

6we obtain one expression from the other by the use of the propagation equation (1) satisfied byu and an
application of Stoke’s theorem.
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4 Conclusion

The scattering of electromagnetic waves on a medium presenting a nonnegligible op-
tical Kerr-effect has been numerically studied in this article. The finite element method
has been used, and this allows to avoid the usual approximation of the homogeneity
of the relative permittivity in the rods. For the implementation of the incident fieldui,
we use a method which substitutesui generated by a sourceS (possibly far from the
scattered medium) by a fieldui

v generated by a currentj flowing through a curveΓ
located inside the meshed area. With this method, called the virtual antenna, almost
any incident field can be simulated with a fictitious source at finite distance.

To confirm our simulation, a power balance has been checked. Moreover, the reac-
tion of the crystal to an incident plane wave has been reported, through the transmission
of the system, several maps of the electric field and the differential cross section.
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We give here the details about the computation of the currentj = ẑ of the
virtual antenna. We noteui

v the field generated byj andui the incident field we intend
to simulate. The relative permittivity of the host medium isεr; kr is defined, as usually,
by kr := k0

√
εrµr = k0

√
εr. Since we are dealing with the incident field,εr andkr

are just (possibly complex) numbers.Ω is a closed and simply-connected region of the
plane, whose boundaryΓ := ∂Ω is differentiable (we will use the normal vector along
it).

The aim is to find a function : R2 → C such that7

(
4+ k2

r

)
ui

v = iωµ0δΓ, (5)

lim
r→∞

|√r ui
v| < ∞, lim

r→∞
√

r(
dui

v

dr
− ikru

i
v) = 0, 8 (6)

ui
v|Ω̇ = ui|Ω̇. (7)

We assume thatui is unique9 and satisfies
(
4+ k2

r

)
ui = s, (8)

|ui(P )| < ∞ ∀P ∈ Ω. (9)

The method is the following one: first consider thatΩ is an infinitely conducting
metal, illuminated by a sourceS; then

(
4+ k2

r

)
u = s, in R2\Ω (10)

andu satisfies a Dirichlet condition on∂Ω. Besides, inΩ, the total field vanishes;
hence, sinceS is obviously out ofΩ, and soSupp{s} ⊂ R2\Ω, one also has

(
4+ k2

r

)
u = s, in Ω̇. (11)

From the two last equations, we deduce:

(
4+ k2

r

)
u = s + [

du

dn
]
∣∣∣
Γ
δΓ, in R2 (12)

where, and from now on,u is a distribution.
The scattered field,us := u−ui, thus satisfies the following equation, obtained by

subtracting (12) by (8):

7Ω is a closed region, thuṡΩ := Ω\∂Ω.
8these two conditions are often summed up as the outgoing wave condition (OWC).
9we thus have to add a condition; in practice, this could be an OWC if we want to simulate a wave

generated by a thread oriented along thez-axis, which encounters the plane we are considering inr0 and
on which a current of intensityI flows; in that cases = iωµ0Iδr0 . It can also be the explicit formula
ui(x, y) = Aeikx if we want to simulate an incident plane wave of amplitudeA and of wave vectork; in
that case the sources vanishes, etc.
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(
4+ k2

r

)
us = [

du

dn
]
∣∣∣
Γ
δΓ. (13)

us also satisfies an OWC. Comparing (5) with (13), we conclude that, if

iωµ0 = [
du

dn
]
∣∣∣
Γ
,

thenui
v andus satisfy the same partial differential equation with the same boundary

condition, and thusui
v = us. Consequently, choosing

 =
−1

iωµ0
[
du

dn
]
∣∣∣
Γ
, (14)

we have10

ui
v|Ω = −us|Ω = ui|Ω.

We note that, givenui andΓ, the solutionj of the problem is uniquely determined;
thus the ”mirage” fieldui

v is also uniquely determined.

If Γ has an arbitrary shape, thenu (or more preciselyus) has to be solved numeri-
cally. We then extract the generated currentj and can do our simulation (obviously, the
infinitely conducting metal is now removed). However, ifΓ is a circle (say, of radius
R and centered at the origin), it is possible to give an explicit expression forj .

The electric field generated by the virtual antenna satisfying the equation (5), it has
the following Fourier-Bessel expansion:

ui
v(r, θ) =





∑

n∈Z

(
ain

n Jn(krr) + bin
n H(2)

n (krr)
)
einθ, r ≤ R

∑

n∈Z

(
aout

n Jn(krr) + bout
n H(2)

n (krr)
)
einθ, r ≥ R

Bothui
v and

dui
v

dr
do not suffer a jump when crossingΓ. Besides, insideΩ, the field is

bounded (by eq.7 and eq.9) so all thebin
n vanish. OutsideΩ, ui

v satisfies an OWC (eq.6)
and thus all theaout

n vanish. Moreover, by the requirement (eq.7) thatui
v restricted to

Ω is identical to the incident field, whose development in the Fourier-Bessel functions
can be

ui(r, θ) =
∑

n∈Z
anJn(krr)einθ,

we haveain
n = an. Finally, by the continuity condition, we havebout

n =
ain

n Jn(krR)

H
(2)
n (krR)

.

All the conditions (from eq.5 to eq.9) have been used, so we have thisuniquesolution
for ui

v:

10−us|Ω = ui|Ω sinceu vanishes inΩ.
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ui
v(r, θ) =





∑

n∈Z
anJn(krr)einθ, r ≤ R

∑

n∈Z

anJn(krR)

H
(2)
n (krR)

H(2)
n (krr)einθ, r ≥ R

Now, developing on a Fourier basis,

(r, θ) =
∑

n∈Z
jn(r)einθ,

and applying the relation (14), we have, after some straightforward computations, the
following expression for the current of the virtual antenna:

jn(r) =
ankr

2iωµ0

{ Jn(krR)

H
(2)
n (krR)

(H(2)
n−1 −H

(2)
n+1)(krr)− (Jn−1 − Jn+1)(krr)

}
.

We recall that, in order to simulate a plane wave of amplitudeA, the coefficientan

is simplyAin.

On the figure 6, the currentj on Γ is presented, as well as the real part of the field
<e{ui

v}.
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(a) The real part<e{ui
v}, in V/m, of the field generated by the virtual antenna, and

arrows of the line density of the average over a time period of the electromagnetic power
Pharm

e , in W/m2.

(b) The real (in red) and imaginary (in blue) parts of the currentj , in A/m, of the
virtual antenna, in function of the polar angle.

Figure 6: A plane waveui
v is generated in the diskΩ by a currentj onΓ = ∂Ω. Outside

of Ω, ui
v differs fromui (a plane wave); in particular,ui

v satisfies an OWC, hence the
use of PML (the exterior annulus, in whichui

v almost vanishes).
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