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Prof. André Nicolet, Institut Fresnel, UMR CNRS 6133,
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Abstract This paper presents a direct approach to determine numeri-

cally the propagation modes in waveguides via a finite element method.

Given a pulsation ω, a quadratic eigenvalue problem is solved to obtain

the propagation constant β.

1 Propagation modes with finite elements

Our goal is to obtain numerically the propagation modes in an electromag-

netic waveguide invariant along the z-axis—and therefore described by its cross-

section in the xy-plane. We choose to formulate the problem in terms of the

electric field E with homogeneous boundary conditions, which corresponds to

a waveguide with perfectly conducting metallic walls. (A formulation of the

problem in terms of the magnetic field could be handled in a similar way.)

Choosing a time dependence in e−iωt, and taking into account the invariance

along the z-axis, we define the time-harmonic two-dimensional electric field E

such that

E(x, y, z, t) = ℜe(E(x, y) e−i(ωt−βz)), (1)

where ω = k0c is the angular frequency and β is the propagating constant of the

guided mode. Note that E is a complex-valued field depending on two variables

(coordinates x and y) but still with three components (along the three axes).

The two-dimensional electric field is separated into a transverse component Et

in the xy-plane and a longitudinal field Eℓ along the z-axis of invariance so that

E = Et + Eℓe
z, with Et · ez = 0.

Writing Maxwell’s equations in terms of E and denoting by k0 the wave

number ω
√

µ0ε0, one gets

curlβ(µ−1
r curlβ E) = k2

0εrE, (2)
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where the operator curlβ is defined as:

curlβ U(x, y) = curl
(

U(x, y)eiβz
)

e−iβz.

Since the electric field satisfies a homogeneous Dirichlet boundary condition

(n × E = 0) on the boundary of the guide, the weak formulation of Eq. (2)

writes

R(E,E′) =

∫

Ω

µ−1
r curlβ E · curlβ E′ dxdy − k2

0

∫

Ω

εrE ·E′ dxdy = 0,

∀E′ ∈ H(curlβ , Ω), (3)

where the space H(curlβ , Ω) of curl-conforming fields is defined as H(curlβ , Ω) =

{v ∈ [L2(Ω)]3, curlβ v ∈ [L2(Ω)]3}.
The discretization of this weak formulation is obtained via finite elements [1].

The cross-section of the guide is meshed with triangles and Whitney finite ele-

ments [2] are used, i.e., edge elements for the transverse field and nodal elements

for the longitudinal field:

Et =

♯edges
∑

j=1

et
j wj

e(x, y) and Eℓ =

♯nodes
∑

j=1

ez
j wj

n(x, y),

where et
j denotes the line integral of the transverse component Et on the edges,

ez
j denotes the line integral of the longitudinal component Eℓ along one unit of

length of the z-axis (which is equivalent to the nodal value), and wj
e and wj

n are

respectively the basis functions of Whitney 1-forms and 0-forms on triangles.

On a triangle, if λi denotes the barycentric co-ordinate associated to the node

i, we = λi gradλj − λj gradλi for the edge going from node i to node j and

wn = λi for the node i.

The following transverse operators are defined for a scalar function ϕ(x, y)

and a transverse field v = vx(x, y)ex + vy(x, y)ey:

gradt ϕ =
∂ϕ

∂x
ex +

∂ϕ

∂y
ey

curlt v = (
∂vx

∂y
− ∂vy

∂x
)ez

and are used to separate curlβ into its transverse and longitudinal components:

curlβ (v + ϕez) = curlt v + (gradt ϕ − i βv) × ez.

At this stage, the materials can still be supposed to be anisotropic so that

ε and µ are tensorial—but they are requested not to mix longitudinal and
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transverse components. The most general form with this property (called “z-

anisotropy” in the following) is:

ε =







εxx εxy 0

εyx εyy 0

0 0 εzz






= εtt εzz =







εxx εxy 0

εyx εyy 0

0 0 1













1 0 0

0 1 0

0 0 εzz






, (4)

so that εE = εttEt+εzzEℓe
z and a similar form is supposed for the permeability

µ. Note that this property is conserved for the inverse tensors ε−1 and µ−1. (In

the sequel we remove the explicit notation for the tensorial nature of ε and µ to

avoid heavy notations.)

Using the following matrix definitions [3, 1]:

Att
ij =

∫

Ω

µ−1
r curlt w

i
e · curlt w

j
e dxdy

Azz
ij =

∫

Ω

[µ−1
r (gradt wi

n × ez)] · (gradt wj
n × ez) dxdy

Atz
ij = Azt

ji =

∫

Ω

[µ−1
r (wi

e × ez)] · (gradt wj
n × ez) dxdy

Btt
ij =

∫

Ω

[µ−1
r (wi

e × ez)] · (wj
e × ez) dxdy

Ctt
ij =

∫

Ω

εrw
i
e · wj

e dxdy Czz
ij =

∫

Ω

εrw
i
nwj

n dxdy

the Hermitian matrix system obtained from Eq.(3) for the propagation mode

can be written in the form:
(

Att + β2Btt iβAtz

−iβAzt Azz

)(

et

eℓ

)

= k2
0

(

Ctt 0

0 Czz

)(

et

eℓ

)

, (5)

where et and eℓ are the column arrays of transverse and longitudinal degrees of

freedom respectively.

A first approach to the solution of (5) is to look for k0 for a given β. Indeed,

since the square of the wave number k2
0 appears alone in (5), whereas the prop-

agation constant β and its square β2 are both involved, it seems natural to fix

the value of β to obtain a generalized eigenvalue problem for k2
0 . Nevertheless,

from a physical point of view, it is often more natural to do the opposite—as

the frequency is usually given a priori and, due to the chromatic dispersion, ε

does itself depend on k0. Moreover, the leaky modes [1] that play a fundamental



1 Propagation modes with finite elements 4

role in the study of microstructured optical fibres are traditionally described by

a complex β whose imaginary part is related to losses of the mode at a given

pulsation hence the importance to obtain β from k0.

In order to obtain an eigenvalue problem for β2, a second approach is to

slightly modify (5) by dividing the longitudinal degrees of freedom by iβ [3, 4].

The new column vector of unknowns is
(

ft

fℓ

)

=

(

et

(iβ)−1eℓ

)

, (6)

which leads to the following real and symmetric system of equations:
(

Att + β2Btt −β2Atz

−β2Azt β2Azz

)(

ft

fℓ

)

= k2
0

(

Ctt 0

0 β2Czz

)(

ft

fℓ

)

, (7)

which only involves terms in β2. This modification, however, breaks down

when general anisotropic materials are considered (i.e. full anisotropic materials

with possibly 9 non-zero coefficients instead of z-anisotropic materials), since

in this case new terms appear in the matrices that prevent the reduction to a

form without terms linear in β. They come from the fact that transverse and

longitudinal components of the field are no more orthogonal after the action of

the anisotropic constitutive laws.

This is a serious limitation for a range of modeling problems, in particular

when it is necessary to take into account a change of coordinates by equivalent

(inhomogeneous and anisotropic) material properties—as happens, for instance,

when modeling twisted microstructured optical fibres [5, 1].

In this case of more general anisotropy, the new terms correspond to the

addition of the following contribution to the matrix system:
(

iβDtt Fzt + k2
0G

zt

Ftz + k2
0G

tz 0

)(

et

eℓ

)

,

where

Dtt
ij =

∫

Ω

−[µ−1
r curlt w

i
e] · (wj

e × ez) + [µ−1
r (wi

e × ez)] · curlt w
j
e dxdy

Ftz
ij = Fzt

ji =

∫

Ω

[µ−1
r curlt w

i
e] · (gradt wj

n × ez) dxdy

Gtz
ij = Gzt

ji =

∫

Ω

[εrw
i
e] · wj

nez dxdy
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2 Quadratic eigenvalue problem

We thus propose a third approach: the idea is to transform the original quadratic

problem into a generalized linear eigensystem [6] in β, with a technique similar

to the one used to transform high order differential equations into first order

equations (this is in fact the Fourier transform of this technique).

Given a generalized quadratic eigenvalue problem of the form

−β2Mu + iβLu + Ku = 0

where M, L, and K are n × n matrices and β and u are the eigenvalue and

eigenvector respectively, it suffices to take w = iβu and to write the equivalent

linear generalized eigenvalue problem involving 2n× 2n matrices P and Q:

Q

(

u

w

)

= iβP

(

u

w

)

(8)

with

P =

(

L M

I 0

)

and

Q =

(

−K 0

0 I

)

.

The expressions for the three matrices M, L, and K follow from (5) and (1):

M =

(

−Btt 0

0 0

)

, L =

(

Dtt Atz

−Azt 0

)

,

K =

(

Att − k2
0C

tt Fzt + k2
0Gzt

Ftz + k2
0Gtz Azz − k2

0C
zz

)

.

Note that the matrix −β2M+iβL+K is Hermitian if the material properties

correspond to real scalars or Hermitian tensors.

Iterative methods for large sparse eigensystems (such as the Implicitly Restarted

Arnoldi Method (IRAM) used in Arpack [7]) require only to perform matrix-

vector products. More exactly, if the smallest eigenvalue around a given value

s is to be found, the finite rank operator (Q − sP )−1P is the only thing the

algorithm (e.g., the reverse iteration interface of Arpack) has to know. We

emphasize the fact that it is an operator as it is a very bad idea to compute

explicitly this matrix! This operator comes from the composition of three op-

erations: first, sP is subtracted from both sides of the eigenvalue problem to
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shift the spectrum by a value s, then the system is multiplied on the left by P−1

to transform the generalized eigenvalue problem into a regular one, and finally

the matrix is inverted so that the numerical algorithm will provide the smallest

eigenvalues instead of the largest ones. In practice, the fact that the two lower

blocks of the matrix

Q − sP =

(

−K − sL −sM

−sI I

)

are made of identity matrices up to a scalar factor, commuting with any other

matrix, makes it possible to give an explicit formula for the inversion of Q−sP .

The block matrix determinant is the matrix ∆ = −(s2M + sL + K) and

(Q − sP )−1 =

(

∆−1 s∆−1M

s∆−1 −∆−1K − s∆−1L

)

.

The explicit expression for the requested operator is thus:

(Q − sP )−1P

(

u

w

)

=

(

∆−1(Lu + sMu + Mw)

∆−1(−Ku + sMw)

)

.

It involves only two n × n system solutions with the same matrix ∆ (∆−1 is

not explicitly computed but instead systems involving ∆ are solved) and even if

a little more time consuming, the algorithmic complexity of the method is the

same as the one of the two previous methods.

3 A numerical example

As a simple numerical example, a metallic rectangular waveguide (εr = 1, µr =

1, width= 2m, height=1m) and a propagation constant β = 2m−1 are consid-

ered. The first three modes correspond to k2
0 equal to π2/4+4 = 6.467401100m−2,

π2 + 4 = 13.86960440m−2, and 5π2/4 + 4 = 16.33700550m−2 respectively.

The corresponding finite element model uses a uniform mesh with 2596 tri-

angles, leading to a system of equations with 5047 complex unknowns. We used

Arpack [7] to solve the eigensystems iteratively and prescribed a relative error

tolerance of 10−8 on the eigenvalues and Krylov subspaces of dimension 20.

Given β = 2m−1, the first method gives a correct answer for the values of

k2
0 (6.467378559331, 13.86950286971, and 16.35633078641) in 32 Arpack steps.

Note that the discrepancy with the analytic result is due to the finite element

discretization and not to rounding errors in matrix computations, as we we have

successfully verified by using a finer mesh.
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The two methods allowing the computation of β from given k0 (numerically

obtained above) are now considered. The first method (that recovers a linear

problem in β2) gives β = 2 with 13 figures for the three modes using 31, 25

and 30 Arpack steps respectively. The method directly solving the quadratic

eigenvalue problem gives β = 2.000000000000, β = 2.000000000003, and β =

1.999999999996 using 58, 52, and 78 Arpack steps respectively. (Note that the

non-Hermitian routine from Arpack is used and that all the computed imaginary

parts are negligible as expected, i.e., of the order of the prescribed accuracy in

Arpack.)

Although the simple example presented here can be computed by the three

methods, an application where our new method is necessary can be found in [8].

4 Conclusion

We have presented three methods to solve the quadratic eigenvalue problem that

arises in the modeling of electromagnetic waveguides. All three algorithms are

based on the same discretization of the problem and use the same elementary

matrices—only with a different organization of the computations. Even if the

direct computation of the quadratic eigenvalue problem is a little bit more time

consuming, the three methods have the same algorithmic complexity and are

stable and accurate. The main advantage of the new method lies in its general-

ity: it allows the computation of β from a given k0, which is important to cope

with the chromatic dispersion of optical materials, and it can take into account

general anisotropic materials—a crucial advantage for the modeling of twisted

microstructured optical fibres [1, 5, 8].
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