2614 IEEE TRANSACTIONS ON MAGNETICS, VCL. 28, NO. 5, SEPTEL IEER 1992

Modeling of ferromaonetlc materials in 2D finite element problems using |
Preisach’s model :

Frangois Henrotte, André Nicolet,Frangois Delincé*, André Genon, Pr Willy Legros
Dept. of Applied Electricity, University of Liége, Sart Tilman B28, B-4000 Belgium
* This author is a Research Assistant with the Belgian National Fund for Scientific Research

Abstract — In this paper, a complete 2D finite
element modelization for ferromagnetic materials
is described. It is based upon the definition of. an
adapted constitutive law which has to be completed
by an hysteresis model like Preisach’s one. A
representation of the irreversible part of the
ferromagnetic behaviour by equivalent currents is
given; a classical non-linear system has to be
solved finally. Some numerical results are joined
to underline the physical capacities of the method.

I. INTRODUCTION

Ferromagnetic materials are widely used in electrotechnical

applications. Their essential features are non-linearity and
irreversibility. Both are important but, when the way to deal
with the first in numerical calculations is quite clear, the
second is often overlooked. This paper presents a method
allowing one to involve in finite element problems materials
with irreversibility as well as non-linearity properties.

When dealing with a two-dimensional problem, it is
convenient to choose the vector potential A , defined by (1)
as an unknown because equation (2) is automatically
satisfied and only a scalar field has to be discretized. Thus,
the only remaining equation that must be dealt with is (3)
where H dependson A through B.

B=curlA 0Y)
divB=0 2]
cul H=]L 3)

II. CONSTITUTIVE LAWS

Usually, classical constitutive laws, suchas H=v3B or
H=v(B) B, are used that are both reversible and respectively
linear and non-linear. In the case of ferromagnetic materials,
these relations are not useful because they are not able to
take irreversibility into account. This being so, our work is
based on the definition of a more complete constitutive law
for such materials :

H=v(B)B+KH,. @

The additional term H can be understood as the coercive
field, it is the representation of the irreversibie part of the
ferromagnetic behaviour and depends on the past-history of
the material. In another way, H can also be seen as the

parameter determining on which hysteresis branch the
magnetic state is at, at time t. The reluctivity is then defined

as (Fig. 1)
v(B)=IHB)-H.!/B. ®

It is always positive and finite in spite of the division by a
possibly zero-induction. The non-linearity of ferromagnetic
behaviour is described by the dependencs on induction of that
reluctivity.

Manuscript received February 17, 1992

0018-9464/92303.00 © 1992 IEEE

iB

g(B)B
B)

/: > 3
C
Fig. 1. Definition of the reluctivity and of the coercive field

III. HYSTERESIS MODEL

Equation (5) must be completed by a hysteresis mod
which will give the actual values of v(B) and H, ateac
time and each point of discretization. There are many kin
of hysteresis models, they can usually be seer as an:
expression giving B from H and a set of parameters which 5
represent the important values of the "past-history” of the
material (more precisely the turning-point values of the local 5
variable magnetic field, further called "dates"). Those dates
are obviously different from one point to another in th
magnetic domain,that compells us to memorize one set o
such values at least for each finite element.

Moreover, hysteresis models are mostly scalar ones. So
autributing a direction to the vector H. makes it usuall

necessary to hypothesize about (or model) ths two-
dimensional behaviour of the material and about a pcssibl
non-alignment of H and 3. In this study, we decided 10
neglect that misalignment, as a first approximation.

The natural formulation of most hysteresis models is 0
determine B(t) knowing H(t); unfortunately, seeing that our
unknown is the vector potential (and consequently B), i
appears that we must solve the model in the reversed fashion
That leads to an iterative search for the value of H
corresponding to a given value of B. In view of the pamculﬂf
shape of hysteresis branches, the "Regula Falsi me'hod s
well suited for that search (Fig. 2).

Fig. 2. Regula Falsi methed




IV. PREISACH’S MODEL

Among the plethora of hysteresis models, we chose the
isach's one due to its great accuracy and generality and
spite a certain amount of complexity and heaviness. It is a
: henomenologxcal model for the hysteretic magnetization
M(t) A reversible component is added afterwards to obtain
'ihe induction. The medel has the following form :

n@a,b) Gu[H®] dadd .

In that expression, p(a,b) is a weight function defined on
the triangular half-plane domain { a,b | a>b }, and Gap[f(1)] is
4 two-valued operator characterized by a pair of switching
values (a,b) with a>b . It switches (Fig. 3) :

from (-1) to (+1) if f(t)=a and £(t)>0
from (+1) to (~1) if f(t)=b and £(t)<0.

It can be shown that at any time t the two subdomains
defined by Sx = ( a,b | Gap[f()] = £1 } are simply
éonne ted and separated by a polygonal line L(t) whose
yem e3 coordinates (aj,b;j) are coinciding with the local
extrema of H(t) at previous times (Fig. 4); M(t) is by the
way completely defined by L(t). If we introduce the function

a

U y
the integration (6) can be reduced to a simple summation of
< values of that functicn con the vertices of L(t) which makes

the evaluaticn of B(t) very fast (See Mayergoyz [1] for more
zmor'n..zon abcut that model).
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Fig. 3. Gyp|f(t)] : clementary hysteresis operator
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Fig. 4. Suircase polygonal boundary L(t)
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The important point to keep in mind is that any hysteresis
model, together with the constitutive law (4), makes a whole
and coherent modelization of ferromagnetic media. Ideally,
several interchangeable hysteresis models should be
implemented. Afterwards, the user must choose a balance
between the amount of calculation required and the desired
accurcy.

V. ADDITIONAL CURRENTS EQUIVALENT TO
IRREVERSIBILITY

‘After substituting (4) in (3), the equations to solve

become :
culv(B)B=]-curl H. = J'.

Note that, in this expression, — curl Hz behaves like a
fictional additional current density. Knowing the value of H,
in each finite element of the magnetic domain, we are able to
evaluate that ficticnal current density and add it to the real
one. In that way, we have reduced an irreversible problem
into a reversible and still non-linear one, which can now be
solved by an iterative method like Newton-Raphson.

The whole problem is then brought down to the
evaluation of that fictional current density

Ific = - curl He . ™

For that purpose, let us consider the following particular

H_. distribution (Fig. 5 ) :

HMGxy)=h if(xy)e Dy

HM(xy)=0 if(x,y)e Dy
where ] is a constant vector and Dy, is the ath finite element.
If we apply Stokes' theorem to an arbitrary external curve
C1 and to an arbitrary internal curve C3, respectively

enclosing the surfaces S1 and S2 (Fig. 6), the following
expressions are obtained

JecdS1= 0 =f Jgc dS2
St S2

Fig. 5. Elementary Hc distrituaon
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Fig. 6. Curves C,C3,C3.
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showing that Ifjc is in fact confined on the edges of the
element. Moreover, the same theorem appliexi to curve C3
leadsto:

0
where L is arbitrary and ¢ is the angle between h and the
edge under consideration. It can thus be deduced that the edge
density jfic(s) has a constant value on each side of the

element given by

: L
[ Jﬁcd53=f jsicds =hLcos¢
S3

jfic = hcos ¢.

As usually done in the finite element method, the edge
densities are converted into nodal currents by a weighting
operation. The expression of those nodal currents is very
simple :

"(node i) = K" Lyx" 2,
where (ijk) is a direct permutation of (123) and Ljk is the
vector going from node j to node k in the nth element.

Using first degree triangular elements (which are really the
best adapted to hysteresis modulation), He(x,y) is precisely a
summation of states like the one shown Fig. 5. The
interesting feature of this approach is that the superposition
principle can be applied now (curl is a linear operator). The
addidonal currents will consequently be evaluated element by
element without needing information about the magnetdc
state of neighbouring elements and immediately assembled in
the system matrix.

VI. RESULTS

As an example, let us consider the system consisting of a
magnetic circuit including an air gap whose thickness is e.
On both sides, time-dependent currents oriented respectively
upwards and downwards induce a variable magnetic flux in
the circuit (Fig. 7). In the case of a simple loading-unloading
excitaton, successive magnetic states of two representative
elements of the system are given in Fig 8a, 8b and 8¢
respectively for e=0.0mm (no air gap), 0.5mm and 10mm
(while the average length of the circuit is 1400mm).

Computation with this method fits correctly the physical
behaviour. The remanent induction, BR, and the
demagnetizing field Hp, appear clearly on the diagrams,
respectively when the magnetic circuit is closed (Fig. 8a) and
when the air gap is large (Fig. 8c). A real computation of the
hysteresis phenomenon, as attempted in this paper is really
the only way to show those typically irreversible
characteristics and furthermore to obtain quantitative values
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Fig. 7. Magnet ic circuit with airgap e
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Fig. 8. Plot of the successive magnetic states in two different elements of
the system; (a) with no air gap, (b) with an average air gap, (c) with 3
large air gap. Note that the ascending path is always common bezause the
initial state 13 "story-less” ;

of them. As a matter of fact, any reversible law would have-
led in the three cases to a uniform zero-solution afts
unloading.

VII. DIFFICULTIES

Some properties of the non-linear system obtained by thig
method have to be pointed out. (1°) The functional of the
variational principle associated is not always conv2x an
therefore areas of decreasing reluctivity exist. (2°) Beca
the non-linearity of the system, the Jacobian marrix has
be evaluated, which involves the derivative of the reluctivity
(3v/3B%). At turning-points, the latter is not continuous (th »
left and right limit values are different). These properties
make the Newton-Raphson solving method no longec
unconditionnally convergent [3]. Some werk must then be
done to obtain a really reliable solving method.

VIII. CCNCLUSION

We have in fact demonstrated a specialized finite element
scheme that can be used in any situation where ferromagnetic
materials have to be modeled. The irreversible part of the
behaviour is transformed into a set of equivalent noda
currents which leads us 1o a classical non-linear system. The
physical background of the hysteresis phenomenon appe3
in numerical results; quantities like remanent induction and
demagnetizing fieid can be calculated by this method. s
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