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Abstract
We propose a new and efficient numerical method to find spatial solitons in optical fibres with a
nonlinear Kerr effect including microstructured ones. A nonlinear non-paraxial scalar model of
the electric field in the fibre is used (nonlinear Helmholtz equation) and an iterative algorithm is
proposed to obtain the nonlinear solutions using the finite element method. The field is
supposed to be harmonic in time and along the direction of invariance of the fibre but
inhomogeneous in the cross section. In our approach, we solve a nonlinear eigenvalue problem
in which the propagation constant is the eigenvalue. Several examples dealing with step-index
fibres and microstructured optical fibres with a finite size cross section are described. In each
geometry, a single self-coherent nonlinear solution is obtained. This solution, which also
depends on the size of the structure, is different from the Townes soliton—but converges
towards it at small wavelengths.

Keywords: spatial solitons, Kerr nonlinearity, microstructured optical fibres, nonlinear optics,
self-coherent solutions, Townes solitons

1. Introduction

Rigorous techniques for modelling the linear properties of
microstructured optical fibres have been available for several
years [1], and have been successfully used to study losses and
chromatic dispersion of the fundamental mode [2], as well
as the second mode cut-off [3]. A detailed review of these
techniques with further references can be found in chapter 7
of [4].

Modelling the nonlinear properties of fibres (and in
particular the optical Kerr effect) is inherently more complex,
and while several techniques have been proposed (see
e.g. [5, 6]), none is completely satisfactory. On the one hand,
there are numerous works based on the nonlinear Schrödinger
equation (NLSE), which do not deal with the finite size of the
waveguide cross section, but focus on the transient evolution
of pulse propagation along the fibre axis. The NLSE and its
vector version are derived from Maxwell’s equations assuming

that the term ∇(∇ · E) in ∇ × ∇ × E can be neglected
and that the slowly varying envelope approximation (SVEA)
can be used [7]. On the other hand, there are (fewer)
works based directly on Maxwell equations or their scalar
approximation, which take into account the optogeometric
profile of the fibre and do not introduce the SVEA. The NLSE
and its vector version lead to a parabolic system of equations,
whereas methods based directly on Maxwell’s equations result
in an elliptic system in the harmonic case. The differences
between the two approaches have been studied extensively
in [7–9]. In spite of many achievements of the NLSE (see [6]),
some questions have been asked concerning its validity or its
accuracy in several cases. In particular, Karlsson et al have
shown that the use of the NLSE can give rise to wrong results
for the self-phase modulation of a pulse that propagates in a
bulk medium with a Kerr nonlinearity [10, 11]. Later, Ciattoni
et al even show in [12] that several generalizations of the
standard NLSE, aimed at describing non-paraxial propagation
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in Kerr media, are not able to recover available exact results
for TE and TM (1 + 1)-D bright spatial solitons. Only few
works among the numerous articles published about spatial
optical solitons deal with the genuine non-paraxial propagation
of solitons. In [13], using a non-paraxial beam propagation
method, the time evolution of solitons in a Kerr medium has
been studied without introducing the SVEA. For several cases
related either to wide angle propagation, fast varying envelope,
or large spatial frequencies, it is obtained that the NLSE is
not able to predict even quantitatively the time evolution given
by the more accurate model based on the scalar nonlinear
Helmholtz equation [13]. In [14], the time evolution of spatial
solitons is computed in a (2 + 1)-D homogeneous Kerr-type
nonlinear dielectric for a TM-problem using a finite-difference
time-domain (FD-TD) method and the corresponding problem
is solved using the NLSE. The FD-TD method shows that co-
propagating in-phase spatial solitons diverge to arbitrarily large
separations if the ratio of soliton beam width to wavelength is
of order one or less. This is not the case for the NLSE for
which the two in-phase solitons remain bounded to each other,
executing a periodic separation [14]. An even more striking
result was obtained by Feit and Fleck in 1988. They have
shown that, for a nonlinear medium with a cubic nonlinearity,
if the non-paraxiality of the beam propagation is taken into
account then a finite size focusing of the optical beam is
reached while with the paraxial wave equation a catastrophic
collapse occurs [15].

The study presented here belongs to the second group
mentioned above: it is based on the direct numerical solution
of a non-paraxial scalar approximation of Maxwell’s equations
with non-saturable Kerr-type nonlinearities. It deals with
stationary solutions and not pulse propagation. It uses the finite
element method [4, 16]. We improve on previous studies in
several ways. First of all, in our approach, we solve a nonlinear
eigenvalue problem in which the propagation constant is an
unknown of the problem; it is not fixed a priori or computed
from the field map. Secondly, while the numerical method
we propose is closely related to that proposed by Ferrando
et al [17, 18] (we also choose a scalar nonlinear Helmholtz
equation to compute the spatial solitons), we do not artificially
periodize the cross section of the fibre. Its symmetry properties
are thus fulfilled more easily, since no unit cell must be defined
to implement the periodic boundary conditions. Thirdly, and
more importantly, we do not use the ‘fixed-power’ algorithm
proposed in [17, 18]. In this algorithm, at each step of the
iterative process defined to obtain the nonlinear solution, the
power of the intermediate solution is renormalized to the power
arbitrarily fixed at the beginning of the algorithm [16]. Our
new algorithm determines the power of the solution by itself,
relying only on residue minimization. Finally, in contrast
to related work by Snyder et al [19, 20], our algorithm can
deal with inhomogeneous media [21]. As mentioned above,
this is achieved by using a finite element method to solve
the nonlinear problem. Although other techniques can also
deal with the inhomogeneous refractive index of the fibre
matrix [22], the finite element method has proved to be
very efficient for the determination of propagating modes in
microstructured optical fibres [23]. It is also flexible enough to

represent the geometry of complex structures, and it permits a
natural treatment of inhomogeneous media [21].

So as to focus on the main novel idea of our approach,
only the properties of the fundamental nonlinear solutions are
studied in the present paper. It is important to note that our
numerical method could also deal with both high-order linear
modes and higher-order nonlinear solutions.

In order to avoid any misunderstanding of the present
study, we clearly state that it is not directly comparable to
Bose–Einstein condensate (BEC) ones. Nonlinear optical
solitons and matter–wave condensates are sometimes linked
together due to the use of the NLSE (see for example [24]).
Since the scalar equation we consider is different from the
NLSE one, we are not allowed to take advantage of the
powerful functional density method which is often used in
the BEC field [25, 26]. This remark leads to at least two
important consequences. The first concerns the method we
have developed. It cannot be easily compared to those
developed or improved for the NLSE (see section 5 of [27]
and [28]) since the considered equations are different. These
equations may share some general common properties but this
has not been mathematically proved, at least to the best of our
knowledge. Another point related to the method is that one aim
of the present study is to set the basis of a non-paraxial method
(solving an eigenvalue problem) in the frame of a scalar
approach that can be extended to the genuine non-paraxial
vector case obtained directly from Maxwell’s equations. The
second consequence concerns the results we obtain. We do
not state that all the results obtained using our method differ
from those coming from the NLSE in all cases. It is clear that
when the required hypotheses are fulfilled the NLSE and our
method must give similar results. But since the nonlinear scalar
Helmholtz equation is nearer to Maxwell’s equations than
the NLSE one, the former must be considered, for stationary
solutions with the exp(−iβz) term, as the reference one.

The paper is organized as follows. In section 2,
the first steps of our self-coherent algorithm are described.
The nonlinear equation derived from Maxwell’s equations
is defined, and the treatment of the nonlinear term and the
iterative process to solve the nonlinear problem are explained.
Section 3 presents how a unique self-coherent nonlinear
solution can be obtained. This is explained in detail for a
step-index fibre, and then more briefly for a microstructured
optical fibre. In the last part of section 3, we study the
convergence of the iterative process and the physical properties
of the self-coherent solution obtained. A comparison with
the ‘fixed-power’ algorithm is also performed to validate our
self-coherent solution. Finally, in section 4, the physical
meaning of the self-coherent solution is described. The fibre
geometry dependence, including the finite size effect of the
microstructured fibres, is demonstrated and a comparison with
the Townes soliton [29, 30] is shown so as to prove the
originality of our nonlinear solution.

2. Introduction to the new solution technique

The scalar model is considered for the propagating solution
obtained under the weak guidance (weak refractive index
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contrast) hypothesis [31, 32]. In this case, the electric field E is
supposed to have only a non-vanishing transverse component
of known (arbitrary) direction given by the unit vector ê.
Moreover, its divergence is usually neglected, so that ∇·E = 0
is assumed. In the linear case, the electric field corresponding
to a propagation mode is therefore a field of the form

E = Re
[
φ(x, y)e−i(ωt−βz)

]
ê (1)

in which ω = k0c is the pulsation, k0 = 2π/λ is the
wavenumber and β is the propagation constant. The problem
reduces to determining the function φ(x, y) and the constant β
for a given value of k0 by solving the scalar eigenvalue problem

�tφ + k2
0εrφ = β2φ, (2)

where �t is the transverse Laplacian. This equation is
obtained from Maxwell’s equations with materials of relative
permittivity εr and using all the hypotheses above. The
dispersion curves are the set of pairs (k0, β) for which a
solution of equation (2) exists.

The relative permittivity is itself a function of the field
intensity and the following dependence is assumed:

εr(φ) = n2
0 + 1Inln

2
Kerr|φ|2 (3)

in which 1Inl is the indicative function equal to one in
the nonlinear case (where the fibre is made of an optical
Kerr material) and zero elsewhere, and where n0 (the linear
refractive index) and n2

Kerr = 3χ(3)/2ε0cn0 (the Kerr
coefficient) are constants characterizing the material [17, 33].

As the nonlinearities depend only on the modulus of the
field and not on its instantaneous value, it may be possible to
obtain solutions that can be represented by equation (1). This
is our fundamental hypothesis. We are therefore looking for
solutions (β, φ) of the nonlinear equation

�tφ + k2
0(n

2
0 + 1Inln

2
Kerr|φ|2)φ = β2φ. (4)

When a single Kerr material is used, setting the reduced field

φr = nKerrφ (5)

allows one to reduce equation (4) to

�tφr + k2
0(n

2
0 + 1Inl|φr|2)φr = β2φr, (6)

which is independent of the Kerr coefficient. Clearly, this
means that the refractive index profile leading to the self-
coherent solution φr depends on the linear part of the medium
but not on the value of the Kerr coefficient nKerr: only
the quadratic dependence matters. The physical field φ =
φr/nKerr, however, depends on the coefficient nKerr: the smaller
nKerr, the larger the power injected to produce the self-coherent
solution.

We use a finite element method [4] to solve equation (4).
As mentioned in section 1, this method is well adapted.
This is not the case of the well-known multipole method [1]
for which the refractive index of the matrix surrounding the
inclusion must be homogeneous. The more recent fast Fourier
factorization mode searching method is able to deal with an

inhomogeneous medium [22]. Nevertheless, like the multipole
method, it has been directly developed in the vector case not in
the scalar one. Furthermore, since one of the final goals of our
work is to solve the full vector nonlinear problem, it is more
convenient for us to use the finite element method for which
we already have both the scalar and the vector formulations of
the linear problem.

In the present case of a scalar model, we use a
classical finite element approximation based on piecewise
linear interpolation on a triangular mesh. Moreover, the
solutions are supposed to be close to the modes of the linear
fibre and therefore the proposed algorithm is a simple Picard
iteration, in which a propagation mode is computed in a linear
fibre with a refractive index profile determined by the field
intensity obtained at the previous iteration.

The starting point of our algorithm is thus the linear fibre;
i.e., no nonlinear Kerr effect is considered. For a given k0,
some modes are computed (by solving a matrix eigenvalue
problem to find the βs and the corresponding electric fields)
and the mode of interest is selected (e.g., the fundamental
mode). The corresponding electric field (whose amplitude is
arbitrarily fixed in the linear fibre only) is used to compute the
new refractive index profile, then new modes are computed
with this given refractive index. The mode of interest is
selected and used to modify again the refractive index profile
that gives a new eigenvalue problem. This process is repeated
until the refractive index profile and the β value reaches a fixed
point.

This process seems quite simple but there is a fundamental
flaw: the amplitude of the eigenmodes is irrelevant and the
numerical solutions of the intermediary eigenvalue problems
have an uncontrolled amplitude. To the contrary, the nonlinear
problem depends fundamentally on the amplitude of the field,
and therefore this amplitude has to be determined a posteriori
for the mode of interest. The chosen solution ψ(x, y) of the
numerical eigenvalue problem has thus to be scaled by a scalar
factor χ to obtain the reduced field

φr = χψ (7)

which corresponds to normalizing the field ψ . A suitable
numerical value of χ may be obtained by cancelling a weighted
residual of equation (6), with the solution ψ itself taken as the
weight factor (so as to minimize the error where the field has
the largest values).

In detail, here is how this normalization procedure is
applied. First, (ψi , βi ) at step i (i � 1) are computed as
particular solutions to the eigenvalue problem

�tψi + k2
0(n

2
0 + 1Inl|φr,i−1|2)ψi − β2

i ψi = 0, (8)

in which, at i = 1, φr,0 is the solution of the linear problem.
Then, the value of χi is computed so as to optimize the self-
coherence of φr,i = χiψi by cancelling the residue

∫

K

[
�tψi + k2

0(n
2
0 + |χiψi |2)ψi − β2

i ψi

]
ψi dS = 0, (9)

where the integral is computed on the cross section K of the
Kerr medium region (ψi represents the complex conjugate of
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ψi ). Using this equation as is would lead to an ill-conditioned
expression for χi , due to the subtraction of two terms of very
similar magnitude. Using the following identity derived from
equation (8),
∫

K

[
(�tψi +k2

0n2
0ψi −β2

i ψi )ψi

]
dS =

∫

K
k2

0 |φr,i−1|2ψiψi dS,

(10)
a numerically well-conditioned expression for χi can be
obtained:

χ2
i =

∫
K |ψi |2|φr,i−1|2 dS

∫
K |ψi |4 dS

. (11)

The whole procedure is summarized in the following
algorithm [16]:

begin:

• Set ψ0 = 0 (linear case), χ0 = 1, i = 1
• repeat

– Compute the eigenfunctions ψi and the correspond-
ing βi via the finite element solution of the eigenvalue
problem defined by equation (8) and select the one of
interest (e.g., the fundamental).

– Compute χi via formula (11).
– Set i ← i + 1.

• until the absolute value of the relative difference between
βi and βi−1 denoted by δrelat

i is smaller than a prescribed
tolerance.

• The (χcohψcoh/nKerr = φcoh, βcoh) of the last iteration is
the self-coherent solution.

end.
Therefore, the proposed algorithm allows us to find a self-

coherent solution from an initial solution of the linear problem
normalized at one (χ0 = 1). We call this algorithm the SCLinN

algorithm. This process renormalizes the field at each iteration
and we can thus deduce the ‘self-coherent’ power a posteriori:
it is defined as the integral of χ2

cohψ
2
coh.

3. Towards a unique self-coherent solution

Numerical experiments show that the SCLinN algorithm seems
sensitive to the amplitude and the shape of the initial field
used to start the iteration. To study this feature, a scan of the
amplitude and of the shape of the initial solution is performed.
To evaluate quantitatively the quality of a solution obtained at
the convergence according to the starting point, we propose a
criterion: the residue given by the left-hand side of equation (9)
is calculated numerically with the finite element approximation
of ψi .

The numerical tests concern two types of fibre: step-index
fibres and microstructured optical fibres. Moreover, we are
only interested in the fundamental mode in the linear case. The
nonlinear solution associated with this fundamental mode will
be referred to as the nonlinear fundamental ‘mode’. We put
‘mode’ in between quotation marks, as it is not a mode such as
defined in the linear case—there is no superposition principle.
Our finite element code has been validated for the computation
of modes in linear microstructured fibres, by comparing the
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Figure 1. Logarithm of the residue obtained at the convergence,
computed using the left-hand side of equation (9), versus the field
amplitude χ0 for two different wavelengths and three different core
radii of the step-index fibre.

results with the well-established multipole method [1, 2] and
with the more recent fast Fourier factorization mode searching
method which is more versatile [22].

To correctly describe the field in the fibre and to minimize
the computation time, an adaptive mesh refinement is used:
the stronger the field, the finer the mesh. In addition,
the convergence of the SCLinN algorithm has been shown
in [16], and in all the following tests we choose the prescribed
tolerance δrelat

i < 10−10.

3.1. Scanning the amplitude of the linear initial field for the
step-index fibre

We start by studying the influence of the amplitude χ0 of the
initial (linear) field φr,0. For this, we inject χ0ψ0 at the first
iteration in the nonlinear term in equation (8):

�tψ1 + k2
0(n

2
0 + 1Inl|χ0ψ0|2)ψ1 − β2

1ψ1 = 0, (12)

in which the amplitude χ0 is arbitrarily fixed. Therefore, the
initialization of the SCLinN by a unique initial guess is replaced
by a one-dimensional scan of the amplitude of the linear initial
solution. We denote this process the SCLin1D algorithm.

In addition, to start the study of SCLin1D , a cylindrical
fibre with a Kerr material (nKerr = 3.2 × 10−20 m2 W−1) in
the circular core of radius 2.0 μm is considered. The linear
part of the refractive index of this core is n0 = 1.45. The
core is embedded in an infinite cladding with a linear refractive
index n = 1.435 (weak guidance approximation WGA). The
Dirichlet condition at the edge of the geometry is also applied
(in the present paper we do not address the computation of the
leaky modes [1, 4]).

Figure 1 gives the effect of the initial field amplitude on the
residual values defined by the left-hand side of equation (9), for
different wavelengths and geometries.

Figure 1 shows the minimum residue for the nonlinear
solution at the convergence of the iterative process (i.e. when
δrelat

i < 10−10, the fixed point is reached). The influence of
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(a)  Final residue versus initial parameters

    0 and    0 /   lin.χ σ σ
(b)  Final residue versus final parameters

    coh and    coh /   lin. (see the text for a
 complete description)
χ σ σ

Figure 2. Maps of the residue computed for the nonlinear solution as a function of the input parameters characterizing the initial field (a) and
as a function of the output parameters characterizing the nonlinear field (b) of the step-index fibre described in the text at λ = 1.0 μm.
σlin corresponds to the standard deviation of the solution of the linear problem approximated by a Gaussian function.

the mesh has been ruled out by verifying that the minimum
corresponds to the same χ0 for different meshes. It may
be deduced that a single nonlinear solution is found for
each wavelength: it is the self-coherent nonlinear solution.
Obviously there exists another minimum residue for χ0 = 0,
corresponding to the solution of the linear problem.

3.2. Scanning both the amplitude and the width of the initial
field

In a further investigation, the residue is considered by scanning
the initial solution not only in amplitude but also in shape.
At the first iteration, instead of the solution of the linear
problem, we inject a Gaussian function χ0e−(r/σ0)

2
, where

r = √
x2 + y2 and where σ0 represents the standard deviation

of the function. Therefore, the initialization of the SCLin1D

algorithm is replaced by a two-dimensional scan on χ0 and σ0.
We call this process the SCGauss2D algorithm.

The computation is started with one value of σ0 and
the scan in χ0 is performed, then another value of σ0 is
taken, and so on. Finally, the residue at the convergence of
SCGauss2D is obtained, according to the two parameters χ0 and
σ0 characterizing the initial field, as shown in figure 2(a).

A narrow valley of minimal residues is observed. This
means that for one σ0 there exists a single χ0 such that one
‘good’ final nonlinear solution is obtained: it is the self-
coherent solution. Notice that the linear case corresponds to
a vertical line in the figure 2(a) at σ0/σlin = 1 when the
Gaussian profile closely matches the profile of the fundamental
mode as in the WGA. Figure 2(a) suggests that there exists a
continuum of solutions depending on the value of σ0 given for
each minimum of the residue. Thus, the question is whether
the nonlinear solutions obtained with the solution of the linear
problem or each Gaussian function (characterized by σ0) as the
starting point are the same: is the self-coherent solution really
unique?

Figure 2(b) shows the absolute value of the logarithm
of the residue according to the final solution parameters
(χcoh, σcoh), in which we approximate this nonlinear solution

with a Gaussian fit. This figure shows that these final
parameters have nearly the same value. Therefore, from a
full map of the initial parameters, the SCGauss2D algorithm
provides a localized surface formed by the final parameters
characterizing the computed nonlinear solution. In addition,
the minimum residues are localized in a small part of this
surface. These results allow us to confirm the assumption
that the SCGauss2D algorithm finds a single nonlinear solution:
the self-coherent nonlinear solution. This solution is a scalar
spatial Kerr soliton in the step-index fibre.

Since for both studied cases (SCLin1D and SCGauss2D

algorithms) only a unique residue minimum associated to a
nonlinear solution (corresponding to the same β value) is found
for all the step-index fibres and wavelengths we have tested,
we can assume that this observed rule is general for this kind
of fibres.

3.3. Results for the microstructured optical fibre

Microstructured optical fibres (MOFs) have more degrees of
freedom related to the geometries and index contrasts than
step-index fibres [4]. The study of these fibres allows us to
extend the domain of validity of our algorithm and to compare
our results with those previously published in [17]. The case
of a solid core MOF made of four rings of air holes embedded
in a Kerr material matrix (nKerr = 3.2 × 10−20 m2 W−1) is
considered here. The linear part of the refractive index in the
matrix is n0 = 1.45. The pitch � (space between the centre of
two adjacent air hole centres) is equal to 10.0 μm and the air
hole radius is equal to 2.75 μm.

As for the step-index fibre, the results obtained with
SCLin1D show two minima for the residue: one associated
with the solution of the linear problem (χ0 = 0) and
one corresponding to the nonlinear solution. Whatever
the amplitude of the solution of the linear problem, a
single nonlinear solution—the self-coherent solution—is again
found.

For the SCGauss2D algorithm the Gaussian function is
injected only in the matrix and not in air holes since the
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 0 μ(a) (b) (c) (d)σ m=4 .0  0 =10.0 μσ m Final nonlinear
filed

Zoom on the 
center of the fibre

Figure 3. Field distribution in the microstructured optical fibre at λ = 5.0 μm for two initial Gaussian fields ((a) and (b)) and for the
fundamental soliton ((c) and (d)).

field is usually very weak in the air holes due to the index
contrast between the matrix and the inclusions. As for the
step-index fibre, there is a narrow valley (similar to that of
figure 2(a)) corresponding to the minimal values of the residue
as a function of the initial parameters χ0 and σ0/σlin. The
map of the final residue versus the final parameters χcoh and
σcoh/σlin obtained is similar to that of figure 2(b).

Figure 3 shows the field distribution when the Gaussian
function is used as an initial field, as well as the effect
of the nonlinearity when SCGauss2D has converged. (Using
the symmetry properties of the fibre, only a quarter of the
geometry needs to be modelled, which significantly reduces the
cost of the numerical computations.) These figures illustrate
the independence of the final self-coherent nonlinear solution
according to the spatial extent of the input initial field.

Therefore both for step-index fibres and for MOFs,
SCLin1D and SCGauss2D lead to the same solution: the self-
coherent solution. Actually, the most natural choice for the
physical studies is to use SCLin1D in which the starting point
depends on the solution of the linear problem.

Note that a very fine scan must be performed to obtain the
minimum value of the residue equal to the machine accuracy
(10−15). Consequently, in practice, the speed and accuracy
of the algorithm SCLin1D are improved by using the golden
section search in one dimension [34]. For each wavelength
studied, the search is performed on the value of χ0. The
typical shape of the function to be minimized is that in figure 1.
Using this improvement, the algorithm is able to reach machine
accuracy for the minimal values of the computed residues.

3.4. Physical significance of the self-coherent solution:
comparison with the ‘fixed-power’ method

A ‘fixed-power’ method was proposed by Ferrando et al
in [17, 18] to find nonlinear solutions in MOFs with a Kerr term
in the matrix refractive index. We call this process, in which the
power is given a priori, the algorithm F PFer . Our algorithm
SCLinN can be easily modified (to study the ‘fixed-power’
method) by replacing equation (11) with χ2

i = P/
∫

K |ψi |2 dS,
in which P is the fixed value of the power. We call our finite
element method implementation of the ‘fixed-power’ process
the F PF E M algorithm.

To compare the physical properties of the solutions given
by F PFer , F PF E M , and SCLin1D , we use the quantities
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Figure 4. Dependence of the gap function� on the nonlinear
coefficient γ for various air hole radii a at λ = 1.55 μm. These
results are obtained by using the algorithm F PF E M , and γc is defined
in the text.

defined in [17]: the dimensionless nonlinear coefficient γ =
Pn2

Kerr/A0 and the gap function� = (βNL −βlin)/k0, in which
P is the total power, and A0 = π(�/2)2 characterizes the core
size (for the step-index fibre, A0 = πR2

core, in which Rcore

is the radius of the core). βlin and βNL are the propagation
constants of the solution of the linear and nonlinear problems,
respectively.

Our first study consists in comparing the results of the
two implementations of the ‘fixed-power’ method: F PFer

and F PF E M . The computations are provided for a silica
microstructured optical fibre with a pitch equal to 23.0 μm,
for various air hole radii at λ = 1.55 μm [17]. The
MOF considered in F PF E M has a finite size and is made
of four rings of air holes, while the geometry for F PFer is
periodic. The evolution of the gap function � according to the
nonlinear coefficient γ is computed (see figure 4) for various
air hole radii. This figure shows an approximate limit power
corresponding to γc = 1.7 × 10−3. As soon as γ > γc the
numerical process is divergent. Figure 4 shows that the value
of γc found with F PF E M is the same as that obtained with
F PF E M (see figure 3(a) in [17]).

The second study consists in understanding the physical
significance of the self-coherent solution. To achieve this,
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(a)  Comparison for the step-index fibre
described  in section 3.1 at λ = 1.0    m 
and the corresponding residue

μ
(b)  Comparison for two MOFs with different
radii a at λ = 5.0    m and one associated 
residue for a =1.5    m 
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Figure 5. Comparison between F PF E M and SCLin1D for the fundamental ‘mode’ for different fibres. γc corresponds to the critical power;
above this value F PF E M diverges.

the physical powers obtained by F PF E M and SCLin1D are
compared. Therefore, this study consists in getting the value
of the ‘self-coherent power’ (i.e., Pcoh = ∫

F |χcoh|2|ψcoh|2 dS)
obtained using SCLin1D . Then, the value of the physical
power equal to Pphys. = Pcoh/n2

Kerr is deduced. Finally,
some ascending values of power are injected as input in
F PF E M until the value of the physical power Pphys. obtained
with SCLin1D is reached. Figure 5 gives the results of this
comparison for several fibres: the step-index one, figure 5(a),
and two microstructured optical ones with different air hole
sizes, figure 5(b).

Figure 5(a) shows the comparison between F PF E M and
SCLin1D for the step-index fibre described in section 3.1 at λ =
1.0 μm. The ‘fixed-power’ algorithm F PF E M diverges for
power γ above the critical power γc (see figure 4). Contrary to
the results provided by F PFer in [17], the critical γ computed
with F PF E M depends slightly on the air hole radius a. As will
be shown in the next paragraph, this dependence is confirmed
using SCLin1D . This issue is also discussed in section 4.

The self-coherent algorithm SCLin1D finds the self-
coherent solution at the corresponding critical power directly.
As mentioned at the end of section 3.1, two minimal values
of the residue are found. The first one corresponds to the
linear case γ = 0 and the second one corresponds to the
self-coherent nonlinear solution. This solution is obtained both
with SCLin1D and with SCGauss2D . The other solutions found
with the ‘fixed-power’ method at lower powers are not the self-
coherent solution because they do not correspond to a minimal
residue.

To complete this observation, the study is repeated for
various MOFs (figure 5(b)). The computed results for these
two MOF geometries lead to the same conclusion as that
already drawn for the step-index fibre: the self-coherent
solution obtained with the algorithm SCLin1D gives directly
(and so, much more rapidly) the limit of the highest power
solution reachable (γ = γc) with the algorithm F PF E M .

Therefore, with our new SCLin1D algorithm and for each
fibre, a single self-coherent solution corresponding to the
spatial soliton with the highest possible energy just before the
self-focusing instability is easily obtained.

The last study is to compare the convergence of SCLin1D

with the one of the ‘fixed-power’ method F PF E M (figure 6).
This figure shows the comparison of the convergence for

two different powers (represented by the γ coefficient) in the
MOF described in section 3.3. Figure 6 proves that SCLin1D

converges much more rapidly than F PF E M . After 50 steps
the convergence of F PF E M is not reached, whereas SCLin1D

requires 13 steps to converge. In addition, at the critical power
(γ = γc), that is to say for the self-coherent solution, the
effective index cannot be found with F PF E M because this
algorithm does not reach the required accuracy (for δrelat

i <

10−10) unlike the self-coherent algorithm SCLin1D .

4. Beyond the Townes soliton

As illustrated in figure 5, the self-coherent solution
corresponds to the spatial soliton with the highest reachable
power before the self-focusing instability. Therefore, we can
wonder whether this solution is the solution obtained for a
homogeneous silica medium with a nonlinear Kerr term [29].
To analyse this issue, SCLin1D is implemented for this case
and the results are compared with those given by the following
fibre geometries (figure 7): the step-index fibres with various
core radii in the case of the WGA described in section 3.1, and
different solid core microstructured optical fibres with various
air hole radii.

Figure 7 shows that the self-coherent solution of the
nonlinear step-index fibre depends on the core radius. This
means that, even in the nonlinear case, the core/cladding
interface is important. The curves given in figure 7 also
prove that the nonlinear solution obtained in the step-index
fibres differs from that of the homogeneous medium. As
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i is the absolute value of the relative difference between the values of β at the steps i − 1 and i . To make the comparison with the F PF E M

results easier, the value of neff for the self-coherent solution at step 13 of the SCLin1D is extended to step 50.

Figure 7. Comparison of the nonlinear effective index of the spatial
soliton versus the wavelength in different nonlinear waveguides and
in a homogeneous nonlinear medium. The solid core MOFs studied
have four rings of air holes with various radii a and� = 6.0 μm.
The index contrast of the step-index fibres with various core radii
fulfils the WGA.

expected, the higher the core radius (i.e. the structure tends
to the homogeneous medium), the smaller the difference with
the homogeneous medium. The same phenomenon is observed
for the MOFs, where the self-coherent solution does not
correspond to that obtained in the homogeneous medium. In
addition, the smaller the air hole radius (i.e. the structure
tends to the homogeneous medium), the smaller the difference
with the homogeneous case. Figure 7 also shows that for
smaller wavelengths the role of the air holes decreases, the
self-coherent solution being more confined. Notice that, in
the ‘fixed-power’ study [17], the ratio λ/� is small. This
explains the weak influence of the fibre geometry on the
critical nonlinear coefficient γc. As a consequence, the diagram
of existence of spatial solitons (figure 3(b) in [17]) must
be modified so as to take into account the influence of the
waveguide geometry. In the parameter space (γ, a) and
using the terminology defined in [17], the frontier between

the spatial soliton region and the self-focusing region is not
exactly a vertical line defined by a unique critical nonlinear
coefficient γc. It is rather a line segment such that the lower
the nonlinear coefficient the bigger the hole radius. The limit
case corresponds to a step-index fibre with nonlinear core
surrounded by an air ring with the hole diameter d = 2a =
�/2 (see figure 7).

Therefore, the spatial solitons obtained with our algorithm
for nonlinear optical waveguides differ from that of a nonlinear
homogeneous medium.

The second point concerns the study of the Townes
soliton [17, 29, 30]. The Townes soliton corresponds to the
solution of a propagation problem in a nonlinear homogeneous
medium. It corresponds to the critical solution before the
self-focusing instability. We recall that the genuine Townes
soliton, as defined in the seminal article written by Chiao
et al, is obtained without using the SVEA (see equations (5)
and (6) in [29]) but the propagation constant of the soliton
is computed from the field profile. The problem solved (see
the paragraph below equation (6) in [29]) is not an eigenvalue
problem. To assert the difference between our self-coherent
solution obtained for each structure with the Townes soliton,
the power and the profiles of these solutions are studied. The
first step is to get the profile R(r) of the Townes soliton as the
solution of the one-dimensional (1D) equation:

�t R − R + R3 = 0, R
′
(0) = 0 and

R(∞) = 0. (13)

To solve this two-point boundary value problem a shooting
method is used [34]. The profile of the solution is obtained
and shown in figure 1 of [29]. We have also calculated the
critical power coefficient Ncr [30] given by

Ncr =
∫

�

|R|2r dr ≈ 1.862 (14)

where � corresponds to the 1D domain.
To compare our self-coherent solution with the Townes

one, an expression of the self-coherent power Ncoh associated
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with the critical power coefficient Ncr is defined. In physical
units, the lower bound of the critical power P lb

cr is given
by [30, 33]

Ncr = 4πn0n2

λ2
P lb

cr (15)

where n2 represents the nonlinear coefficient characterizing the
Kerr medium. The scalar optical Kerr effect can be defined
as follows: εr(φ) = (n0 + n2|φ|2)2 ≈ n2

0 + 2n0n2|φ|2, and
we have defined n2

Kerr = 2n0n2, in which n2 is the nonlinear
coefficient characterizing the material [5]. However, in our
case, an eigenvalue-like problem is solved. Indeed, unlike the
Townes soliton studies [29, 30], the propagation constant β
is considered so as to describe completely the features of the
nonlinear self-coherent solution. To take into account the βcoh

eigenvalue of our approach, the physical power Pphys defined
directly from the Poynting theorem is calculated. In this case,

Pphys = βcoh

k̃0

P lb
cr = Pcoh

n2
Kerr

= Pcoh

2n0n2
, (16)

in which Pcoh = ∫
�

|χcoh|2|ψcoh|2 dS is the self-coherent power
obtained at the convergence of SCLin1D , and k̃0 = 2πn0/λ is
defined so as to compare with the critical power coefficient Ncr

given in [30]. Consequently, we get

P lb
cr = k̃0

2n0n2βcoh
Pcoh. (17)

Therefore, the coefficient Ncoh permitting us to compare
our scalar spatial Kerr solitons with the Townes soliton can be
defined, by using P lb

cr of the equation (17) in expression (15),
as

Ncoh = 4π2n0

βcohλ3
Pcoh. (18)

Figure 8 shows the comparison between the coefficient
Ncoh for step-index fibres with various core radii, for solid core
MOFs with various air hole sizes, and for the homogeneous
medium with the critical power coefficient Ncr of the Townes
soliton. These results confirm those obtained in figure 7, and
they illustrate the influence of the fibre geometry. In addition,
figure 8 shows that the smaller the wavelength (the field is more
confined in the MOF core), the smaller the difference between
the Townes soliton and the self-coherent solutions.

Figure 8 also gives the evolution of the value of Ncoh in the
homogeneous medium case, with respect to the wavelength. As
explained above, our numerical approach SCLin1D takes into
account the β value. Nevertheless, it is very near the constant
one of the genuine Townes soliton (1.4555 instead of 1.45). A
more detailed wavelength dependence cannot be obtained with
the current numerical accuracy of the effective indices. We can
recall that it is known from the seminal work of Chiao et al
that for the Townes soliton this dependence is really weak (see
page 480 of [29], second column).

It is interesting to notice that the nonlinear self-coherent
solution (obtained with SCLin1D from equation (6), φ and β
being unknown) in the homogeneous medium corresponds well
to the Townes soliton (obtained from equation (13) with a
shooting method).

Figure 8. Evolution of the value of the self-coherent power
coefficient Ncoh for various step-index fibres, for different solid core
MOFs, and for the homogeneous medium as a function of the
wavelength. The horizontal dashed line is the critical power
coefficient Ncr = 1.862 of the Townes soliton.

Figure 9 illustrates the dependence of the nonlinear self-
coherent profile as a function of the wavelength and of the
fibre geometry. The global shapes of these spatial solitons
are similar that of the Townes soliton (see figure 1 in [29] and
figure 1 in [30] that show clearly that the Townes soliton can
be approximated with a Gaussian curve) but the amplitudes are
different. As expected at a fixed wavelength, the spatial width
of these spatial solitons decreases with the radius a of the air
holes but the maximal amplitude increases. Nevertheless, the
ratio Pcoh/βcoh which appears in formula (18) decreases with
a, inducing an overall decrease of the critical power coefficient
Ncoh (see also figure 8).

The next point concerns the influence of the finite size of
the structure. The solid core MOF considered in figure 10 has
the same geometry as that described in section 3.3 but the air
hole radius is equal to 1.0 μm. The results are given for several
numbers of air hole rings Nr . As can be seen in figure 10, the
curve order is reversed between the linear and the nonlinear
cases for the MOFs.

In the linear case and at a fixed wavelength, the effective
index increases when Nr increases, which is well known [4]. In
the nonlinear case, the evolution of Nr is physically coherent
with the wavelength dependence already observed in figure 7:
the more the structure confines the field, the lower is the
nonlinear effective index. Obviously, if the air hole radius
increases, the influence of the finite size structure becomes
negligible. These results prove that the nonlinear self-coherent
solution depends not only on the MOF structure but also on its
finite size.

Last, figure 11(a) gives the evolution of the linear and
nonlinear effective indices and normalized effective area versus
the wavelength obtained with SCLin1D for a step-index fibre
described in section 3.1.

Figure 11(a) shows that the larger the wavelength, the
stronger the nonlinear effect. To confirm this observation,
figure 11(b) shows that the effective area obtained in the
nonlinear case is constant in comparison with the linear case.

9



J. Opt. A: Pure Appl. Opt. 10 (2008) 125101 F Drouart et al

(a) λ =3.5    mμ (b) λ =10.0    mμ

Figure 9. Field profiles for three MOFs with four air hole rings at two wavelengths. The coloured region represents the first air hole of the
MOF according to the radius and the associated values of the ‘self-coherent power’.

Figure 10. Effect of the number of air hole rings Nr in a solid core
MOF (� = 6.0 μm and a = 1.0 μm) on the effective index
according to the wavelength in the linear and nonlinear cases.

Thus, the field scattering which increases with the wavelength
is challenged by the nonlinear effect.

From the results of this section, we can infer that
differences from Townes soliton properties will be observed
in waveguides in which the ratio of the wavelength over the
characteristic size of the nonlinear core is above a constant
slightly smaller that unity. Such a ratio is only three times that
measured in a nonlinear glass planar waveguide [35] and can
be overcome in structures like nanowires [36].

5. Discussion

The self-coherent algorithm SCLin1D has been presented for
the scalar approach within the weak guidance approximation.
Neglecting the term ∇[E · ∇εr/εr], we obtain the equation
�E + k2

0εrE = 0. However, for the step-index fibre, while the
weak index contrast is fulfilled in the linear case, as soon as
we have considered the Kerr effect the index contrast increases

and the WGA is not valid any more (see figure 12(a)). For
the microstructured optical fibre, even the linear case does not
obey this approximation (see figure 12(b)). Indeed, the WGA
is only validated if the relative index variation is negligible
on a distance of one wavelength [31]. Consequently, so as
to obtain more accurate results, future studies must deal with
the full vector problem. Such an extension of the present
work is possible since our original numerical method can be
formulated in the vector case [4, 23].

The second issue is the value of the physical power
Pphys. = Pcoh/n2

Kerr of the nonlinear self-coherent solution.
This implies that the stronger the Kerr coefficient n2 (or
n2

Kerr = 2n0n2), the weaker the physical power. Nevertheless,
even if we choose chalcogenide glasses which are known to
have a high Kerr nonlinearity [37, 38], the power of the self-
coherent solution is huge as already computed for the Townes
soliton power [29]. With n2

Kerr = 10−17 m2 W−1, one gets a
soliton power of 2.6 × 104 W at 2 μm for the MOF described
in section 3.3 and 7.4 × 105 W at 10 μm. These results
suggest that the scalar self-coherent solution cannot easily be
validated by experiments. In the scalar approach used in our
study, from a practical point of view the induced increase
in the refractive index of the core or of the matrix is so
important that either other nonlinear effects should be taken
into account or the medium is damaged [39]. However, spatial
optical solitons have already been observed in planar nonlinear
glass waveguides using a 4 × 105 W input at 620 nm using
75 fs pulses [35]. It will be interesting to know if, in the
vector case, the physical power of the self-coherent soliton will
decrease or not so as to make it more accessible to experimental
observation.

The third issue of the discussion concerns the stability
of the self-coherent solutions. This is a difficult problem
since, in the present cases, it requires one to solve a 3D
propagation problem along the waveguide axis. For the fixed-
power solutions, Ferrando et al [17] have already proved that
the spatial solitons are stable under arbitrary perturbations.
They also showed that spatial solitons found at fixed power
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(a) Evolution of the effective indices (b) Evolution of the effective area normalized
with the core area A0 =   R 2

core
π

Figure 11. Evolution of the linear and nonlinear effective indices and normalized effective area versus the wavelength for the step-index fibre
described in section 3.1. For the nonlinear case, the SCLin1D algorithm is used.

(a)  Refractive index profile for the step-
index fibre at λ = 1.0    m (see section 3.1
 for a complete description of the structure)

μ
(b)  Refractive index profile according to the
horizontal axis of the microstructured fibre at 
λ = 5.0    m (see section 3.3 for a complete 
description of the structure)

μ

Figure 12. Effective index profile computed from equation (3) in the linear and nonlinear case for the fundamental ‘mode’ of the two fibre
types described in the text.

are stable under both small transverse displacements relative
to the hole cladding and non-perfect launching conditions. In
the case of the self-coherent spatial solitons described in the
present article, a stability analysis should also be performed.
Although this issue is crucial in the case of nonlinear studies,
it is beyond the scope of this initial work.

The last issue concerns the comparison with NLSE
studies, as already mentioned in section 1. The counterpart
of our non-paraxial description of spatial solitons is that
the results we obtain are less general than the NLSE ones
which can be related to both nonlinear optics and Bose–
Einstein condensates [24]. Our results are not obtained
with the powerful methods coming from quantum mechanics
(like functional density approach) [25, 26] but with a more

numerical method well adapted to our non-paraxial problem.
Nevertheless, as long as stationary states are considered, our
approach, which considers the nonlinear Helmholtz equation
as an eigenvalue problem (with the propagation constant as
an unknown), is a better model of Maxwell’s equations in a
nonlinear Kerr-type medium.

6. Conclusions

We have demonstrated that the nonlinear self-coherent solution
found in step-index fibres and solid core MOFs, corresponding
to the spatial soliton with the highest reachable energy avoiding
the self-focusing instability, is different from the Townes
soliton. This solution generalizes the Townes soliton within
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finite size waveguides. This result, built in the frame of a non-
paraxial and scalar approach for stationary solutions, relies on
a new algorithm implemented using the finite element method.

To find the nonlinear self-coherent solution, two distinct
criteria are defined: the convergence of the algorithm to
the required accuracy (the fixed point) and the minimum
of the residue at this point. By solving the eigenvalue
problem, a single nonlinear solution verifying these criteria is
found, for given wavelength and fibre geometry. This single
solution of the eigenvalue problem is obtained with various
initial guesses: the solution of the associated linear problem
(SCLin1D algorithm) and some Gaussian functions (SCGauss2D

algorithm).
So as to verify the numerical results obtained with the

self-coherent algorithm SCLin1D , several comparisons have
been performed. We can adapt our numerical method to
obtain a ‘fixed-power’ algorithm denoted F PF E M . The results
computed with F PF E M are in good agreement with already
published data for MOFs given in [17], called here F PFer .
The comparison between F PF E M and SCLin1D has shown that
the self-coherent solution is obtained at the critical power just
before the self-focusing instability. The SCLin1D algorithm is
shown to be more reliable and more efficient than F PF E M to
find the critical power of the spatial solitons.

Then, the physical meaning of the self-coherent nonlinear
solution of a step-index fibre with a Kerr material core and of
solid core MOFs with Kerr material matrix is discussed. Two
comparisons are made: one with the self-coherent solution
computed for a homogeneous Kerr material and the second
one with the usual Townes soliton computed for the same
structure. From the mathematical point of view the former
problem is a nonlinear eigenvalue problem while the latter is
a two-point boundary value problem (since the dependence
on the propagation is not taken into account.) We have
shown that the self-coherent spatial solitons found for the
step-index fibres and for MOFs are different from those of
the homogeneous nonlinear medium and from the genuine
Townes soliton. In the various structures considered in the
present paper, the dependence of the self-coherent solutions is
described as a function of the wavelength. We have observed
that, as expected, these self-coherent spatial solitons converge
towards the Townes soliton at small wavelengths. We have
also observed that the amplitude of the nonlinear self-coherent
solution depends on the waveguide geometry: the core size for
the step-index fibre, and the air hole radius and number of air
hole rings for the solid core MOFs.

Finally, the study of the refractive index induced by the
nonlinear self-coherent solution has been performed. The weak
guidance approximation and the scalar model are no longer
valid if the self-coherent solution is considered. To tackle this
problem, a study of the full-vectorial version of the proposed
method, including a study of the losses, is under development.
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