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The representation of electromagnetic quantities by differential forms allows the use of 
nonorthogonal coordinate systems. A judicious choice of coordinate system facilitates the finite 
element modeling of infinite or very thin domains. 

DIFFERENTIAL GEOMETRY 

Because of the propagation of electromagnetic fields in 
free space (or in the air), electromagne.tic problems are often 
open, i.e., characterized by the decay of the fields at infinity, 
the opposite to closed problems with boundary conditions at 
a finite distance. As the finite element computations can only 
involve a finite number of degrees of freedom, various meth- 
ods have been proposed to overcome this difficulty. One of 
the most interesting ones is the transformation method: the 
infinite domain is transformed into a finite one used for the 
discretization and the resolution.’ The problem has then to be 
formulated in this domain, where the coordinate system is 
not orthogonal. The differential geometry allows the use of 
any coordinate system and is the right tool to formulate the 
method clearly in a general way. 

From a differential geometric point of view,‘-” the vec- 
tors are the first-order linear differential operators on func- 
tions. They have a vector space structure, one basis of which 
is the set {a/&} of partial derivatives with respect to coor- 
dinates. The action of a vector u on a function f is noted 
v(f >- A l-form 01 is a linear map from vectors u to real 
numbers a(o) (also noted ((Y,u) to emphasize dualityj. A 
special l-form associated to a function f is its differential df, 
defined such that df(u)=u(f ). One basis for the vector 
space of l-forms is the set {&I of the differentials of the 
coordinates. A p-form o is a multilinear totally skew sym- 
metric map from p vectors u, ,...,u 
f4Ul 

.p to real numbers 
, . . . ,u,>. Functions are identified wrth O-forms. In three.- 

space only 0-, l-, 2-, and 3-forms are not ide.ntically equal to 
zero (because of skew symmetry). The 0- and 3-form spaces 
are one-dimensional vector spaces, while l- and 2-forms are 
three-dimensional vector spaces. From this point of view, 
scalar from vector analysis are 0- or 3-forms, depending on 
their physical meaning: O-forms are pointwise relevant func- 
tions, while 3-forms are densities to be integrated on vol- 
umes. The “vectors” from the vector analysis are l-forms 
and 2-forms: l-forms are integrands of line integrals, while 
2-forms are flux densities. Operations on forms include the 
following. 

(i) The exterior or wedge product A that maps pairs of a 
p-form w1 and a q-form w, on the @+$)-form o,l\oa, 
defined by 

=-& C [Sgni~)wl(u,(S),...,Urr(p)) . . -.$tq 
x wz(lJ dp+l j Y.~-J~wQ+~)II~ 

where x runs over the set of permutations of p+q indices. 
The set {cilc’r .A *** /2\ &?P) of the linearly independent ex- 
terior products of p differentials of the coordinates is a basis 
for the n!/[p!(n--p)!]-dimensional vector space of 
p-forms. Any p-form can be expressed as a linear combina- 
tion of such p-monomials. 

(iii The exterior derivative d that maps p-forms, 

@Z--.- ,“I ~ Wil...ip dX’liZ-..Ad.~‘P 

4 “.‘P” 

on (p + &forms, 

do2 p! ,g= jc~wil...ip)~~d’yil’~.*.~dxip. 
l,‘$ 1 

From this definition it is obvious that the exterior derivative 
of a function is its differential df. 

(iii) the integration of an n-form o=f(.u’- *-x”)dx’ 
ir\*.*&-ix” on a n-dime.nsional domain M is defined by 

where f is supposed to be zero outside M. 
These objects and operations only involve the topology 

and the differential structure of the ambient space, i.e., they 
are independent of any notion of angle and/or distance.. 
Those notions are introduced by giving a metric g, i.e., a 
symmetric bilinear map from two vectors u,w to real num- 
bers g(v,w). The metric allows the definition of the Hodge 
star operator +, which maps p-forms on (n-p)-forms, 
where n is the dimension of the ambient space. In local co- 
ordinates, the star operator is defined for an exterior 
p-monomial by (using the Einstein summation convention 
on repeated indices) 

m ,\dxin E. ____ Jl”.l. (n-p)! ’ i.3) 

where e- ,,GS‘j, is the Levi-Civita symbol. If the matrix, the 
elements of which are gil =g(J/Jx’,d/dxjj is considered, the 
gii are the components of its inverse and g=det(gij) is its 
determinant. By linearity? the definition of the star operator 
may be extended to any form. In three-space, the Hodge star 
operator maps O-forms on 3-forms, l-forms on 2-forms, and 
conversely. This is why only functions and “vectors” are 
used in the vector analysis of the three-space with the Eu- 
clidean metric. 
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The interesting property of differential forms is their be- 
havior under the mapping of domains. If 4 is a differential 
map from a domain A1 to a domain N, a function f on N is 
mapped (pulled back) on a function d*(f )=fo4 on M by 
composition with 4. Vectors on M are mapped (pushed for- 
ward) on vectors on N by considering their action on pulled- 
back functions. Since a vector L’ on M maps the puIIed-back 
functions sl;*(f ) to numbers ~[+*(f )], it defines a linear 
differential operator for the functions f on N, i.e., a vector 
C/+(V) on N, whose action on a function f on N is given by 
rf,*(u)(f )= U[ eS’(f )]. A l-form on N is mapped (pulled 
back) on 41 by considering its action on pushed-forward vec- 
tors from M to N. The pull-back +*;‘(a) on M of a l-form 
m on N is defined by (~~‘(~~),u)=(~,~*(LI)). Any purely 
covariant object such as a p-form or the metric can be 
pulled back from M to N by the following definitions, for a 
p-form $~+(w)(u r ,...,u~~)=w[(P,(u,)~...~~*(u~)], and for 
the metric (p*(~)(~u~,w~)=g[~,,(v~),~~(~~)]. As g allows 
the definition of the star operator *g on N, rf*(g) allows the 
definition of the star operator *++iRj on M. In the preceding 
definitions, it is important tot remark how the duality reverses 
maps leading to an alternation of push-forward and pull-back 
maps for the domains, the functions, the vectors, and the 
forms. The fundamental point for the setting of transforma- 
tion methods is that the operations on forms previously de- 
fined commute with the pull-back. For forms Q.$, one has 

L~*(,aip) = Lj’i ai/if#P(~), (41 

L#l*(.dCt) - d@(. CYj, (5) 

(6) 

*~*(g.jL~~(CY)x~+(*gL~). (71 

The electromagnetic fields and sources may be repre- 
sented by differential forms: the magnetic fie.ld H and the 
electric field E are l-forms; the magnetic fhrx density B, the 
electric flus density D) and the current density J are Z-forms; 
and the charge density p is a 3-form. In this representation, 
Maswell’s equations are dH=J+ c?,D, dE= -a&3, dB =O, 
and dD=p, where Jt is for partial derivation with respect to 
time. The l-form *1 and the O-form V may be introduced as 
potentials, such that B = dA and E = - cYA - d V. All those 
equations are obviously independent of the metric. Neverthe- 
less, this one is involved in the definition of the constitutive 
relations: the free space electromagnetic characteristics are, 
with c*=l, /“u=l, and ee=l, given by D=+E and B=*H. 

FINITE ELEMENTS AND TRANSFORMATION METHOD 

In order to set up the finite element method, a variational 
form is introduced. For example, the magnetostatic Lagrang- 
ian is given by the integration of the 3-form L, the magne- 
tostatic Lagrangian density, on the domain M4 (the coeffi- 
cient v is the magnetic reluctivity): 

dA!\v *dA-AI\J 

The finite element method consists of approximating A 
by A = CApi, where Ai are parameters and oj are l-forms 
corr?sponding to “shape functions” obtained by assuming a 
simple behavior on elements from a meshing of M. The cur- 
rent density J is approximated by J = 2iJj+ wi . 

The equations for the paramet:rs are found by express- 
ing the extremum conditions for the discretized Lagrangian: 

L(A)=O. - 
The first term of L(A) leads to terms in the finite element 
equations, such that %e unknowns are the Ai and the coeffi- 
cients nij are the integrals of the discrete 3-forms (--v/2) 
doii?*dwi on the elements. If a domain M* is mapped on 
the domain M, the forms and the metric on M may be 
pulled-back on M*, and the formulation of the problem on 
IV* is immediate. The transformation method is thus the fol- 
lowing one: map the “transformed domain” M’ on the origi- 
nal domain M (and not the opposite!), pull-back the La- 
grangian and apply the finite element method with the 
elements obtained by meshing M*. It does not matter if the 
transformed domain no longer fits the geometry because it 
has only to be connected topologically with the rest of the 
prob1e.m. 

In the case of a two-dimensional magnetostatic problem, 
invariant by translation along the z axis, the vector potential 
is the l-form A(x,y)dz, and the geometry is described by its 
trace on the x-y plane. The shape I-forms are 
oi= ai(x,y)dz, where cui(x,y) are the classical shape func- 
tions and *Wi= ai(x,y)+dz= a~(x,y)&“My. With these 
Cartesian coordinates, it gives exactly the traditional method. 
The mapping of a domain M* with coordinates {X,Y} on the 
original domain M with coordinates {x,y} is given by two 
functions, such that {X,Y}-(x,y}=(fl(X,Y),fz(X,Y)}. 
The contribution of an element to the coefficient uij of Aj in 
the ith equation is the integral on the element of 

- v (api I)yq) 

1 a*f12fcj)yf~2 dxf, &fl+axf2 &f2 
;?ufl +fz-axf2 hfl %fl aYfz-axf2 JYfl 1 

X 

1 

c?ufl JYfl+j?Yf2 dYf2 dxf,‘+dxf22 

hfl JYf2--8xf2 8Yfi JXfl d,f2- &fz JYfl J 

i 1 
aXaj 

x dYCrj. ’ (10) 

where ax and ay indicate the partial derivative with respect to 
X and Y, respectively, and aj(X,Y), a;(X,Y) are the shape 
functions on the transformed element. This contribution of 
the transformed element is equal to the nontransformed one 
up to the central matrix. If the transformation is trivial 
Lfi~~“M~~~y-2w~ = Yl or corresponds to a conformal 

< Ifr(X,Y) +if?(X,Y) is analytic, i.e., 
dxf r = d,,f2 and c?,fi = - $f r], this matrix reduces to the unit 
matrix. As for the term involving the current density, the 
contribution to the ith equation of an element is the product 
of Jj by the integral of Wi~*Oj= criajB on the element. I) is 
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FIG. I. Modeling of an infinite domain mapped on a corona. 

the volume form associated to the metric, i.e., 
* 1 = 0= l&f t dyf2 - dxf2 d,f ,)dXAdY and the integral 
transforms simply according to the formula for the change of 
coordinates in multiple integrals. 

In the three-dimensional case, a family of discrete forms 
are the Whitney forms on tetrahedra.h They correspond to 
nodal elements for O-forms (e.g., scalar magnetic potential 
$1 and to edge elements for l-forms (e.g., A or H). Using 
such discretizations entirely based on differential forms al- 
lows a straightforward formulation of transformation meth- 
ods by pull-back of the corresponding discrete Lagrangian 
density or weighted residuals. 

respect to the characteristic length of the problem, but the 
skin depth is even smaller: the frequency of the current is 
275 kHz, the conductivity of the plate is lo7 S/m, and the 
relative permeability is 405. In those conditions, the skin 
depth is equal to about 15 pm. To model the plate, surface 
layers of 45 ,um are considered. Those layers are stretched 
by a factor 15 000 and then become layers of 675 mm in the 
transformed problem. Thus, the transformation used is sim- 
ply (x=X, y = Y/15 000). Although almost trivial, this trans- 
formation makes the problem more tractable. Moreover, the 
use of a general formalism allows the extension of this tech- 
nique to curved plates or to nonlinear transformations, e.g., 
taking into account the exponential decay of the current den- 
sity and field inside the plate. Figure 2 shows the field lines 
in the. lower stretched layer at the phase-0 degree of the 
excitation current. 

NUMERICAL EXAMPLES CONCLUSION 

Infinite chmuin: The most obvious application of the 
transformation method is the case of open boundary prob- 
lems. In the present example, the magnetic field around a 
coil with a ferromagnetic kernel is computed. A fictitious 
circular boundary of radius A is defined around the problem 
and the outside of this circle. constitutes an infinite domain. 
The method consists of mapping a corona M* on M.’ The 
corona, a finite domain, has an inner radius A and an outer 
radius R, all the circles considered here having the same 
center. The Cartesian coordinates on M are x and y, and the. 
coordinates on M* are X and Y. The transformation is given 
by the two functions (with R = $I?+ Y’): 

The use of the differential geometry in computational 
electromagnetics has been advocated by various authors.‘,’ It 
is the natural framework to set up the transformation method 
that becomes almost trivial in this context. Although the first 
examples of application of this method have been introduced 
with the help of the vector calculus more familiar to engi- 
neers, its formulation with the help of differentia1 geometry 
allows a systematic generalization, and leads to a quasiauto- 
matic implementation method, where all the steps are clearly 
defined. 

i J.-F. Imhoff, G. Meunier, X. Brunotte, and J.-C. Sahonnadiere, “An origi- 
nal sohrtion for unhounded electromagnetic 3D- and 3D-problems 
throughout the finite elemenf method,” IEEE Trans. Magn. 26, 
1659 ~19YO)o). 

“P. Bamherg and S. Sternberg, A Course in Mathematics for Students of 
Physics: 2 [Cambridge U.P., Cambridge, 1990). 

3S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space- 
Time (Cambridge U.P., Cambridge, 1973). Chap. 2. 

‘W. Thirring, “A Course in Mathematical Physics: 2: Classical Field 
Theory (Springer, New York, 1978). 

5A. Bossavit, “Notions de geometric differentielle pour l’etude des cou- 
rants de Foucault et des m,&hodes numeriques en ilectromagn&isme,” 
M&odes Num&iques en Electromagn&sme, COIL DEREdF, Eyrolles, 
Paris, 1991, pp. I-141. 

‘A. Bossavit, “Whitney forms: a class of finite elements for three- 
dimensional computations in electromagnetism,” IEEE Proc. 135, 493 
!1988). 

‘P. R. Kotiuga, “Hedge decompositions and computational electromagnet- 
its,” Ph.D. dissertation, McGiIl University, Montreal, Canada, 1984. 

x=fr(X,Y)=X[A(B-A)]/[R(B-R)], (11) 

Y=f2(X,Y:)=Y[zl(~B-A)]i[R(:5-Rj]. (12) 
Figure 1 shows the field lines computed by this method. 
Thanks to the symmetry of the problem? only one quarter has 
been computed. 

T/h plate: Very thin objects and very small skin depths 
are other examples of problems difficult to model with finite 
elements. In this case it is interesting to stretch the geometry 
along the small dimension. The example considered here is a 
steel band heated by induction. The steel band is 1.2 mm 
thick and is heated by a one-turn rectangular coil (240 mm 
long and 3 mm thickj, placed 28 mm above the band and fed 
by a 3490 A current. The thickness of the band is small with 

f-- ,--\ ir-\ 
j \ ;’ \ ‘Le./ i>d ---.A ,$?sizsJ\, ___ L<BAhlL 

FIG. 2. Field lines in a stretched layer phase: 0 degree. 
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