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Implicit Runge-Kutta methods
in magnetodynamic problems

A. Nicolet

Université d’Aix-Marseille I1I, Electrical Engineering Department,
Marseille, France

1. Introduction

The most widespread method used to solve transient magnetodynamic
problems is the Crank-Nicolson (CN) method. For linear differential equations,
the CN method is unconditionally stable. The behaviour of pure
magnetodynamic systems is a simple damping even for nonlinear problems and
the CN method is often stable and accurate enough. Nevertheless, when the
nonlinear electromagnetic model is coupled to another model, e.g. a mechanical
model for moving parts or circuit equations for the feeding of conductors, it
may exhibit a much more complicated behaviour. In this case, the CN method
may become unstable. Another possibility is the more stable backward Euler
method but it is less accurate and tends to overdamp waveforms. An important
point is that the finite element discretization of magnetodynamic problems
leads to systems of differential algebraic equations (DAE) that cannot be treated
numerically like regular ordinary differential equations[1]. The coefficient
matrix of the differential terms is singular, and the systems can only be treated
by implicit methods.

The equation for the two-dimensional magnetostatics is:

div(ivgradA) = -] L

where wm is the magnetic reluctivity, and A and ] are respectively the vector
potential and the current density. These vectors have only the z-component

different from zero.
Using Ohm’s law, the case of eddy currents can be dealt with by introducing
(2) as the expression for the current density in (1):
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The conductor is characterized by its electrical conductivity ¢, and U can be
interpreted as the terminal voltage of the conductor (per unit of length). The
finite element formulation [2] is based on the semi discrete Galerkin method.
Weighted residuals (3) for the domain Q of boundary I" are constructed, where
w is a weighting function (depending on space variables).
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The space discretization of (3) using the functions w leads to a differential
system of equations. For a classical choice of the weight functions, the
unknowns of the problem are the nodal value of the vector potential. In a
nonconducting region, the conductivity is equal to zero and the concerned
equations reduce to algebraic ones.

In the rest of the paper, the reference to electromagnetic quantities is given up
and the general system of differential/algebraic equations (DAE) (4) is
considered:

A y()+B y(t)=0b(1) 4)

(where A and B are coefficient matrices, b is the right hand member vector, y is
the unknown vector, t is the time and the dot indicates the time derivative. Note
that A and B may depend on y in the case of a nonlinear system, e.g. B depends
on v in the case of ferromagnetic saturation and one has B(y(t)). The numerical
solution of system (4) requires a time discretization. A simple scheme is given

by (5):
Yoi1 = ¥a

A T B (ay, +(1-a)y,)=ab

et T(1-0)b, 6)
Indices n and n+1 refer to quantities at time #z and ¢, ,; = £, + At respectively.
Various choices of the parameter o lead to classical methods (o:=1 is implicit
(backward) Euler, =0 is explicit (forward) Euler, a=1/2 is Crank-Nicolson,
0.=2/3 is Galerkin).

The matrix A/At + oB is involved in the solution of system (5). One obvious
condition is that it must be invertible, i.e. nonsingular. In the case of the
magnetodynamic system (3), two kinds of equations must be considered. The
first kind are the equations corresponding to nodes belonging to at least one
conducting region. The time derivative of the corresponding nodal value of the
vector potential gives a nonzero term on the diagonal of A. The second kind are
the equations corresponding to nodes belonging only to nonconducting regions.
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Those equations do not have any differential term, they are purely algebraic and
their coefficients in the matrix A are zero. Classical methods such as scheme (5)
may be used. Nevertheless, if the explicit Euler method is tried, the singular
matrix A/At is involved and the solution is impossible. In general, purely
explicit methods may not be applied to solve (3) because they involve singular
matrices and implicit methods must be used. We have tested several implicit
schemes[3]. Backward difference methods such as Adams Moulton or Gear
methods did not give satisfactory results because none of them was both stable
and accurate enough. Extrapolation methods are very robust but are also
extremely time consuming. Another possibility is to use the implicit Runge-
Kutta methods which are presented in the next section.

2. Runge-Kutta methods

The general differential system y = f{y, £) is considered. An approximation of the
solution y,,,, at time ¢, _; from the values y, of the solution at the previous time
step may be obtained by solving the followmg relations[4]:

k, = At f(yn+2;3ij kj, t,+o,At) i=1l.s
j=1
. ©
Yn+l _—'Yn+zui ki
i=1

A s-step method is characterized by the coefficients ¢, , By and i; with cc E B

The Runge-Kutta methods may be sorted accordumj to their coefﬂc&en

tructure. The classical explicit methods are the methods for which B, = 0 for

7 =1. If this condition is not fulfilled (if ﬂ = (0 for 7 = 1), the methods are cahed the
implicit Runge-Kutta methods (IRK). Spcmal cases of IRK are the diagonally
implicit Runge-Kutta (DIRK) methods (if ,B = 0 for j > 1), a subcategory of
which are the singly diagonally implicit Runge Kutta (SDIRK) methods (if [}’ =
Oforj>iandif B; = Bforally).

The IRK methods may be applied to a DAE system. If the following system
is considered: A y + B(y)y = b(f) where A may be a singular matrix and which
is nonlinear because B depends on y, the following scheme may be applied:

Aki=A{b(tn+aiAt)—B(yn+ZBﬁ k) (v, + 2.8, kj)] for i=1.s
. . - (1)
Yn+l =Yn+zu‘i ki
i=1

The algorithm of Figure 1 may be used to implement the DIRK method to solve
the previous DAE system and to keep the form of the nonlinear systems to be
numerically solved as close as possible to the ones involved in the other
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Figure 1.
Algorithm for DIRK
method

Fori=1tos

¢ To find g;, soive the system:
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¢ Compute k;= -
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methods[5]. It is very important to note that the algebraic systems to be solved
are very similar to the classical ones: they only differ by the right-hand member
and because the time step involved in the left-hand member is multiplied by ;.

There is no reason to lose, for instance, the symmetry or the sparsity obtamed

~with other schemes. The use of this algorithm makes the introduction of DIRK

n existing computer code straightforward. The advantage of DIRK is that the
global system (7) for IRK reduces to a sequence of s systems as indicated in the
algorithm.

Here are some examples of DIRK:

> one-step method[6]

=By =0 =1

In the case of linear problems, this method reduces to scheme (5) except
for the independent term b(t) which is discretized as b(f,+aA¢) instead of
(1-o)b(t, )+ b(t, , ). Therefore in the particular cases = 0and o= 1, it
reduces to forward and backward Euler respectively. In the case ¢ = O 5,
it is called the implicit midpoint method[7] which is only distinct from
the CN method by the discretization of the independent term b(f) and
which have similar stability and order of accuracy properties.

. z‘wo-step method[6]
=B =0 u =12
ocz—l 0, By; = 120, By = 0, Uy = 1/2

This 2-step scheme leads to more interesting methods than the previous
1-step one. This scheme is A-stable for o = 1/4[8] and it is L- stable and of
the order 2 for oo = (2 2-\2) 2)/ 2[6]. It 1s of the order 3 for oo = (3 + \3)/6 L-
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stability includes the A-stability and moreover guarantees that
phenomena with small time constants will be rapidly damped, even
when large time steps are used. Thanks to this property, this method is
well suited for stiff problems. Another interesting feature of this method
is that its first step corresponds to that of the 1-step scheme. It is
therefore possible to combine both methods in an adaptive scheme. Once
the intermediate quantities k; and &, are computed, two approximations
M and 3@ are produced and an estimation of the error @ is computed:

- —(2)
yn+l = yn + kl

yor =y 4 (k, +k,)/2 @®)

n+l
- -2 —

(
€ne1 = yn+l —yn+l = (kz - kl)/z
The error estimator can therefore be used to control the time step.

3. Example

As an example, the case of a nonlinear inductance is considered. It is connected
to a capacitor to form a RLC circuit (Figure 2). The free damped oscillations of
the discharge of the capacitor are studied[5,9]. The space discretization is made
by linear triangular finite elements and the time integration is performed with
the second order 2-step DIRK method (o = (2-V2)/2) with the adaptive feature.
The non linear character allows a better testing of adaptivity as the time
constant of the system evolves with the kernel saturation. The DIRK methods
have proved to be the only effective ones when hysteresis is considered[3].

100 turns

Uc(0} =500V
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Figure 2.

Test problem (discharge
of a capacitance in an
mductance)
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Figure 3 shows the numerical results: the time evolutions of various energies
(i.e. magnetostatic and electrostatic energies) and cumulated Joule losses are
given. Their sum, the total energy, must remain constant, as is the case, up to
small numerical variations (less than 2 per cent). The fluctuations seem to be
related to the saturation of the kernel but the reason is not obvious. The time
steps are marked on the total energy curve to show the adaptivity of the
scheme. Small time steps are used when the magnetostatic energy is high (i.e.

Figure 3.

Time evolution of
energies and losses
during free damped
oscillations of a RLC
non linear circuit using
a DIRK method

when the magnetic core is saturated) while large time steps are used at lower
magnetostatic energy levels (i.e. when the material is linear). The adaption uses
a norm of the error vector and the sensitivity of the method to local error
depends on the choice of this norm.
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4. Conclusion

Contrary to generally accepted ideas, implicit Runge-Kutta methods do not
necessitate an important modification of computation codes. In particular, it is
possible, using the proposed algorithm, to preserve the symmetry of the
algebraic systems arising in the solution. They are not too expensive from a
CPU time point of view and therefore they provide a set of methods with
interesting properties such as high accuracy, stability, and error control. It can
be claimed that adaptive DIRK methods achieve a good performance-cost ratio.
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