Implicit Runge-Kutta Methods for Transient Magnetic Field Computation
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Abstract — This paper presents the implicit
Runge-Kutta methods as an interesting alternative
to Crank-Nicolson and backward Euler methods to
solve differential algebraic systems arising in
nonlinear transient magnetodynamic problems.

I. INTRODUCTION

The most widespread method used to solve transient
magnetodynamic problems is the Crank-Nicolson (CN)
method. For linear differential equations, the CN method is
unconditionally stable. The behaviour of pure
magnetodynamic systems is a simple damping even for
nonlinear problems and the CN method is often stable and
accurate enough. Nevertheless when the nonlinear
electromagnetic model is coupled to another model e.g. a
mechanical model for moving parts or circuit equations for
the feeding of conductors, it may exhibit a much more
complicated behaviour. In this case, the CN method may
become unstable. Another possibility is the more stable
backward Euler method but it is less accurate and tends to
overdamp waveforms. An important point is that the finite
element discretisation of magnetodynamic problems leads to
systems of differential algebraic equations (DAE) that can not
be treated numerically like regular ordinary differential
equations [1]. They are index 1 systems, i.e. with the
coefficient matrix of the differential terms singular, and can
only be treated by implicit methods. Candidate methods are
the implicit Runge-Kutta methods.

II. DIFFERENTIAL ALGEBRAIC EQUATIONS

The equation for the two-dimensional magnetostatics
is [2]:

div(vgrad A) = -J )]

where v is the magnetic reluctivity, and A and J are
respectively the vector potential and the current density.
These vectors have only the z-component different from zero.
Using Ohm's law, the case of eddy currents can be dealt with
by introducing (2) as the expression for the current density in
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The conductor is characterised by its electrical conductivity G,
and U can be interpreted as the terminal voltage of the
conductor (per unit of length). The finite element formulation
is based on the semi discrete Galerkin method. Weighted
residuals (3) for the domain Q of boundary I' are
constructed, where w is a weighting function (depending on
space variables).
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The space discretisation of (3) using the functions w leads to
a differential system of equations. For a classical choice of
the weight functions, the unknowns of the problem are the
nodal value of the vector potential. In a nonconducting
region, the conductivity is equal to zero and the concerned
equations reduce to algebraic ones.

In the rest of the paper, the reference to electromagnetic
quantities is given up and the general system of
differential/algebraic equations (DAE) (4) is considered:

A y(O)+B y(t)=b(t) Q)

where A and B are coefficient matrices, b is the right hand
member vector, y is the unknown vector, t is the time and
the dot indicates the time derivative. Note that A and B may
depend on y in the case of a nonlinear system e.g. B depends
on y in the case of ferromagnetic saturation and one has
B(y(t)). The numerical solution of system (4) requires a time
discretisation. A simple scheme is given by (5):

A -——-——y"+1At_ Yn +B (0yp +(A-0)y,)=0b, g +(1-)b,
®

Indices n and n+1 refer to quantities at time t, and t,.; = t, +
At respectively. Various choices of the parameter o lead to
classical methods (o=1. is implicit (backward) Euler, 0=0.
is explicit (forward) Euler, o=1/2 is Crank-Nicolson, a=2/3
is Galerkin).



The matrix A/At + aB is involved in the solution of
system (5). One obvious condition is that it must be
invertible i.e. nonsingular. The study of DAE systems such
as (5) involves the matrix pencil A + A B of matrices A and
B where A is an arbitrary parameter [1],[3]. It must be regular
i.e. det(A + A B) must not vanish identically. If it is not the
case, it is impossible to find a Atand an o so that
A/At + oB is not singular and the system is meaningless.
On the other hand, if A + A B is a regular pencil, matrices
E, F exist so that:

A* =E A F = diag(1,J) ©)

B* =E B F = diag(W.I) )

where diag denotes a square matrix constructed with the
argument square matrices placed on its diagonal, I are unit
matrices of the suitable dimension, W is a regular square
matrix, and J is a nilpotent Jordan block matrix with blocks
of the form:

0 0
1 0
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The size of the largest of these blocks is m, the nilpotency or
index of the system (The nilpotency of a matrix J may

alte{natively be defined1 as the integer m so that J = 0 and
J™ % 0). With y* = Fy and b* = E b, the DAE system (4)
is in its Kronecker normal form (KNF)[1]:

with y*:[:] b*=[f) ©)

The numerical behaviour of a DAE system depends on its
nilpotency. On the one hand, if the nilpotency is greater than
one, the system is very difficult to solve and special
techniques must be used. On the other hand, if the nilpotency
is equal to one ( J is identically equal to zero), the system is
much easier to solve and some classical methods for ordinary
differential equations may work.

In the case of the magnetodynamic system (4), two kinds
of equations must be considered. The first kind are the
equations corresponding to nodes belonging to at least one
conducting region. The time derivative of the corresponding
nodal value of the vector potential gives a nonzero term on
the diagonal of A. Such equations do not influence the
nilpotency of the system. The second kind are the equations
corresponding to nodes belonging only to nonconducting
regions. Those equations do not have any differential term,
they are purely algebraic and their contributions to the matrix
A are null lines. They obviously lead to a system of
nilpotency 1. Therefore, classical methods such as scheme (5)
may be used. Nevertheless, if the explicit Euler method is

{ u +Wu=q

Jv + v=r

tried, the singular matrix A/At is involved and the solution
is impossible. In general, purely explicit methods may not be
applied to solve (4) because they involve singular matrices
and implicit methods must be used. One possibility is to use
the implicit Runge-Kutta methods which are presented in the
next section.

I1I. RUNGE-KUTTA METHODS

The general differential system y = f(y,t) is considered.
An approximation of the solution yn41 at time t1 from the
values y, of the solution at the previous time step may be
obtained by solving the following relations [4]:

s
k; =At f(Yn+2Bij k]’ t, + O, At) i=1l..s
=1
(10)

s
Y41 =Yn T Zui k;

i=1

A s-step method is characterised by the coefficients o, Bj; and
L given in its Runge-Kutta tableau or Butcher diagram:
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The Runge-Kutta methods may be sorted according to the
structure of their coefficient diagram. The classical explicit
methods are the methods for which B.. = 0 for j > i. If this
condition is not fulfilled (if Bi. # 0 for j 2 1), the methods are
called the implicit Runge-Kutta methods (IRK). Special cases
of IRK are the diagonally implicit Runge-Kutta (DIRK)
methods (if B;; = O for j > i), a subcategory of which are the
singly diagonajlly implicit Runge-Kutta (SDIRK) methods (if
Bij= 0 for j > iand if B, = B for all i).

The IRK methods may be applied to a DAE system . If the
following system is considered: Ay + B(y)y = b(t) where A
may be a singular matrix and which is nonlinear because B
depends on y, the following scheme may be applied:

Ak; =

S N
M| b(ty + 0 A0 = Byy +  Bij ki) (v + Y Bij kj)
{ =1 =1
for i=1...s

s
Yn+1 =Y¥n * Zui k;j
L i=1

(11)



The algorithm of table I may be used to implement the
DIRK method to solve the previous DAE system and to keep
the form of the nonlinear systems to be numerically solved as
close as possible to the ones involved in the other methods
[9]. It is very important to note that the algebraic systems to
be solved are very similar to the classical ones: they only
differ by the right-hand member and because the time step
involved in the left-hand member is multiplied by [;;. There
is no reason to lose, for instance, the symmetry or the
sparsity obtained with other schemes. The use of this
algorithm makes the introduction of DIRK in existing
computer code straightforward.

TABLE 1
ALGORITHM FOR DIRK METHODS

Fori=1tos

- To find Kj, solve the system:

A
(Atﬁﬁ +B(Ki)]Ki =

i-1

A

bty + 0 A+ —— (yn + 3 Bij k)
hBy; &

i-1
Ki—yn—D.Bjj k;
=1

Bii

« Compute k; =

S
Yo+l = Yo + 2 Hi k;

i=1

Compute

Here are some examples of DIRK:

» one step method [7]
o | o

|1

In the case of linear problems, this method reduces to scheme
(5) except for the independent term b(t) which is discretised as
b(t,+aAt) instead of (1-0)b(ty)+0a b(tyy1). Therefore in the
particular cases 0.=0 and a=1, it reduces to forward and
backward Euler respectively. In the case 0.=0.5, it is called
the implicit midpoint method [5] which is only distinct from
the CN method by the discretisation of the independent term
b(t) and which have similar stability and order of accuracy
properties.

* two step method [7]

o o 0
1-0 1-200 [0
|12 172

This 2-step scheme leads to more interesting methods than
the previous 1-step one. This scheme is A-stable for
a21/4 [6] and it is L-stable and of the order 2 for

0c=(2—«/§)/2 [7]. It is of the order 3 for o= (3++/3)/6.
L-stability includes the A-stability and moreover guarantees
that phenomena with small time constants will be rapidly
damped, even when large time steps are used. Thanks to this
property, this method is well suited for stiff problems.
Another interesting feature of this method is that the first line
of its tableau corresponds to that of the 1-step scheme. It is
therefore possible to combine both methods in an adaptive
scheme. Once the intermediate quantities k1 and k2 are

computed, two approximations Y(l) and y(z) are produced
and an estimation of the error € is computed:

O _-@

§n+1 =¥n +k1
—-(2 —-(2
v =3P 4 (kg +k,) /2 (12)

- -(2) =q
entt = Yoy — Y = (kg —kp) /2

The error estimator can therefore be used to control the time
step.

IV. EXAMPLE

As an example, the case of a nonlinear inductance is
considered. It is connected to a capacitor to form a RLC
circuit (Fig. 1). The free damped oscillations of the discharge
of the capacitor are studied [8],[9]. The space discretisation is
made by linear triangular finite elements and the time
integration is performed with the second order 2-step DIRK
method (0. = (2 —+/2)/2) with the adaptive feature.

R=6Q

o) 100 turns
\‘ Uc(0) =500 V

||
| |
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Fig. 1. Test problem (discharge of a capacitance in an inductance).

Fig. 2 shows the numerical results: The time evolutions
of various energies (i.e. magnetostatic and electrostatic
energies) and cumulated Joule losses are given. Their sum,
the total energy, must remain constant, as is the case, up to
small numerical variations. The time steps are marked on the
total energy curve to show the adaptivity of the scheme.



Small time steps are used when the magnetostatic energy is
high (i.e. when the magnetic core is saturated) while large
time steps are used at lower magnetostatic energy levels (i.e.
when the material is linear).

It is difficult to give an absolute comparison of respective
performances of the CN method and of DIRK methods. In the
case of the 1-step method with a=0.5 and a fixed time step,
the computation work, the stability and the accuracy are
almost the same as the CN method. In the case of the second
order 2-step DIRK method, with a fixed time step, this
method is of the same order but stabler (L-stable) than the
CN method for twice as much work. Therefore the
comparison of both methods depends greatly on the problem
and on the chosen time step. On the other hand, an adaptive
scheme brings some new qualitative advantages because it is
almost independent of the initial choice of the time step and
guarantees a required accuracy or at least detects numerical
problems. It is difficult to define the computation cost of
such methods. For simple problems, the time step will be
increased and the method will be quite economical but
anyway less than a simpler method with a smart choice of the
time step. For more difficult problems such as stiff
problems, the time step will be reduced and the computation
cost will be high. In real problems, the adaptivity leads to a
constant variation in the time step. The computation cost
associated with such methods is directly related to their
robustness and reliability. Therefore, adaptive methods are
incommensurable with constant time step methods. It can be
claimed that adaptive DIRK methods achieve a good
performance-cost ratio.
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V. CONCLUSION

Contrary to generally accepted ideas, implicit Runge-Kutta
methods do not necessitate an important modification of
computation codes and, specially, it is possible, using the
proposed algorithm, to preserve the symmetry of the
algebraic systems arising in the solution. They are not too
expensive from a CPU time point of view and therefore they
provide a set of methods with interesting properties such as
high accuracy, stability, and error control.
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Fig. 2. Time evolution of energies and losses during free damped ocillations of a RLC noninear circuit using a IRK method.



