, Abstract— This paper presents a method which
enables coupling between equations of electric
circiits consisting of lumped elements RLC and a
magnetic fiéld model. The coupling between the
finite element and the boundary element methods is
used to compute the magnetic field produced by
conductors excited by an electric circuit. The
nductors involved in this computation may be
connected according to any circuit topology and
mixed with lumped elements.

L. INTRODUCTION

Cne important point in eddy current computation is the
contzol of the excitation of conductors. It is sometimes
possible to superimpose eddy currents on a given static
current density. But this approach is often too inaccurate and
amore sophisticated control of the excitations is required [1].
From an electric circuit point of view, the conductors of the
magnetic field model appear as self and mutual inductances
with resistance). An approach may be to extract the

impedance matrix from the numerical model. Unfortunately,
- because of skin and proximity effects, this matrix depends on
the frequency. Moreover, in nonlinear systems, it also
depen:ds on the level of excitation and the very notion of
inductance may be ambiguous [2]. :

—

- In the case of a transient nonlinear eddy current problem,
the only accurate method seems to be the direct coupling
between the circuit equations and the finite element equations
3]. In a magnetic field computation with simple excitations,
nly resistive and inductive phenomena are present.
Consequently, the only possible free behaviour is damping.
Oscillations, in such models, are externally forced by the
xcitation and their frequencies are given.

- The corollary coupling with circuits allows the modelling
f RLC oscillating systems whose L and R elements may
tpend on the magnetic field models. In this case, frequencies
and damping time constants depend on phenomena such as
kin effect and saturation. Such a system may exhibit a very
omplex time behaviour. ’
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I FINITE ELEMENT - BOUNDARY ELEMENT COUPLING

The equation for the two-dimensional magnetostatics is:

divvgrad A=-J ' 0))

where:

A is the vector potential which has only one
component; ‘

J is the current density;
v is the magnetic reluctivity.

In linear magnetic non-conducting media, the direct

boundary element method [4] is based on the relation 2):

on on

cA {Aa_Gdr-f Gi’idr ()
r r

where: \
G is the free space Green function of the two-
dimensional Laplace operator;
¢ = 0.5 on a smooth boundary;
d./on is for the normal derivative.

Integrals are taken on the boundary T of the subdomains
and the method involves only A and dA/on (tangential flux
density) on the boundaries.

The finite element formulation [4] is based on the
Galerkin method and we have for the domain Q of

boundary I':

f[vgradA gradw-]w]d.ijvBA/an dar=0 @
Q r

where v is the magnetic reluctivity, J the current density and
w the weighting function. The Galerkin method is obtained
by choosing the same basis functions wj for the weighting of
the residue and the discretization of A given by A= T A; Wi
where Aj are the nodal values. Here the wj are chosen as
piecewise linear functions on triangles.
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The boundary term is usually used to apply a Neumann
boundary condition. Here it is used at the interface between
the finite element and the boundary element domains to
couple the methods. This can be extended to the boundary
between two finite element subdomains. The tangential field
VdA/on = H; is taken as an unknown on the boundary and
the boundary term of (3) is introduced. It leads to the same
solution for the vector potential A as the classical
formulation but it also provides the value of the tangential
field on the boundary [4].

III. EDDY CURRENTS

Using Ohm's law, the case of eddy currents can be dealt
with by introducing

J =cE =o( oA U) @
ot .

as the expression for the current density in equation (3). The
conductor is characterized by its electrical conductivity ©.
The time derivative of A expresses the inductive effects since
U = grad V is due to an externally imposed electromotive
force and can be interpreted as the terminal voltage of the
conductor (per unit of length).

In this case (3) becomes:

[vgradA gradw+0'(§-é+ U)w]dQ
Q ot

)
fwv%—édr 0

The presence of the dynamical terms does not change the
method of coupling. The numerical method used to discretize
this transient problem is a semi discrete Galerkin method.
The first step is a spatial discretization of the domains
similar to the one used in the static case. This discretization
uses the purely spatial weighting function wj and leaves a
continuous time variation of the degrees of freedom. It leads
to a system of ordinary differential equations:

[S]E%(Q+[M]A(t)=h ©®

where A is the vector of the nodal values of A and also of the
other degrees of freedom such as vdA/on and U. [S] and [M]
are the matrices of the system. The nonlinear nature of the
problem is found in the dependence of [M] on A.

The next step is a time discretization that gives an
algebraic system. The backward Euler method leads to:

h+mé.n
At

1+ (M(an] . £ =

where Ay and Ap4; are the values of A at the times t, and\
tn+1 With thy1 -t = At

This leads to a time stepping method where each step
requires the resolution of the nonlinear algebraic system (7)

IV. COUPLING WITH CIRCUIT EQUATIONS

If U is given for all the conductors of the problem, th
differential system can be solved. Unfortunately, in mq
cases, it is the total current I in a conductor which has to
imposed. As the finite element formulation involves th
tangential field on the boundary, the total current I can b
expressed as the line integral of the magnetic field (Ampere
law) [5] :

=fvaA/and1".
r

From a more general point of view we can systematicall
relate to every conductor an equation like (8) and two glob
degrees of freedom: the total current I and the termin
voltage U. To do so, a circuit equation is necessary for eac|
conductor. The simplest cases correspond to imposing J or
for an individual conductor but any case of conducto
interconnection and electric circuit coupling can b
considered. In this case, the number of circuit equations mus
be equal to the number of conductors involved in the fiel
modelling plus the number of state variables necessary &
describe the external circuit (For RLC circuits this number
simply the number of inductances and capacitors). Those
equations together with equations coming from (8) are added
to system (6). Circuit equations that are differential aré
discretized according to the backward Euler method. It should
be noted that this treatment of conductors may be extended t0
thin wire conductors. In this case, no skin effect is computed
but global inductive effects are taken into account. Although
the equations are different, they may be processed the same
way from an electric circuit point of view [5]. No spec
treatment is made in order to symmetrize circuit equations
because symmetry is lost anyway with the FEM-BEM
couplmg The drawback of having a non-symmetric syst
is compensated for by the reduction of elements involved it
the boundary element method. In fact, the balance betw
the two effects depends strongly on the particular p*uble
considered.

The algebraic system is linearized by the Newton Raphso?
method and the linear system is solved by L
decomposition. The solution is improved by iteral
refinement.



V.EXAMPLE

The following problem is considered as an example: a
ponlinear inductance consisting of a coil with a ferromagnetic
saturable core is fed by a capacitor and a voltage source in
series (Fig. 1, 2 ,and 3).

The inductance is modelled with finite elements. The coil
is represented by two conductors. There are four global
degrees of freedom associated to those finite element objects:
totz! currents Iy, I and the terminal voltages Uy, Uy . To

- describe the electric circuit, the capacitor voltage Uc has
been chosen as a state variable. This introduces five degrees
of freedom related to circuit equations and five more equations
are needed. Two equations are given by formula (8) expressed

“for each finite element conductors. The three following
equations (two algebraic and one differential) are added to the
system:

Uc+ Uy - =V({)
"I1+I=0
I) + CoUc /ot=0 ©)

Fig. 4 shows the time evolution of the current when a
voltage step is applied. The response is a damped oscillation.
Harmonics due to the saturation of the core appear clearly. As
the level of current decreases, saturation becomes less
important and the harmonic rate diminishes. As the

resonance frequency of the circuit. It must be noticed that the
period increases with time as the apparent inductance
ircreases because of desaturation.

Fig. 5 shows the time evolution of the flux densxty in the
core between the two conductors.

electric circuit

finite element model\—’

Fig. 1. Nonlinear inductance fed by a capacitive circuit.

ferromagnetic core

~ osci’iations are free, their frequency is determined by the
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VI. CONCLUSION

From an electric circuit point of view, conductors involved
in the numerical magnetic field modelling form an RL
network whose terminals each correspond to a conductor. The
complete determination of the characteristics of this network
is not feasible because of the complicated dependence on the
frequency and amplitude of currents resulting from skin effect
and saturation. It is therefore necessary to solve the problem
simultaneously for the magnetic field model and the electric
circuits connected to the conductors. The method presented
here is general and allows a transient simulation of eddy
current nonlinear problems with conductors excited by
electric circuits. Those electric circuits may contain current
and voltage sources (with various wave forms), resistances,
inductances and capacitances and there is no restriction on the
topology. Conductors in the magnetic field modelling may
be included anywhere in the circuit.

This flexible method allows realistic modelling of
electromagnetic devices. Some devices may exhibit new
behaviour such as natural oscillation with a period varying
with time.
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Fig. 2. Geometry of the nonlinear inductance. The width of the Fig. 3. Magnetic characteristic of the core,
magnetic circuit is 1 cm and the conductivity of the conductors is

- 1.13 S/m. Feeding circuit: Voltage step = 5000 V, capacitance =
100 nF.
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Fig. 4. Time evolution of the current in the conductors.
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Fig. 5. Time evolution of the flux density in the core.




