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Abstract - This paper presents a numerical
modelling of an electromechanical relay connected
with an electric excitation circuit. This transient

modelling not only takes into account the classical
electromagnetic equations of the device but also the
movement and circuit equations. The use of the
finite element-boundary element coupling method
facilitates the computation of the movement while

the actual coupling with circuit equations is
necessary for an accurate and reliable
representation of transient phenomena.

’ INTRODUCTION

In the majority of practical applications, electromagnetic
phenomena are used to cause movement or forces ( motors,
relays, ...) and are inserted in external electric circuits
( transformers, ... ). Magnetic field programs that are only
able to treat electromagnetic quantities are therefore not very
effective in numerical modelling of such apparatus. Moreover
the coupling is often strong in well designed systems which
are precisely conceived to transform one kind of energy into
another (e.g. a motor has to transform electrical energy into
nechanical energy ). In a relay for example, the excitation
circuit generates current in the coil and the resulting magnetic
field causes force and torque on moving parts. In the reversed
way, motion of moving parts acts on geometry, induces flux
variations in the system and modifies the inductance in the
circuit.

I MAGNETIC FIELD MODELLING

To compute the electromagnetic part of the problem (and
to evaluate forces), a program called LUCIE is used which is
based on the coupling of the finite element method and the
boundary element method (F.E.M.-B.E.M. coupling).

a. Subdomain method

To carry out that coupling, the system is divided into N
subdomains {Dj, i=1, ... ,N} whose respective boundaries
are the contours {I'j, i=1, ... ,N}. The unknown fields are
the vector potential A(x,t) on the subdomains Dj and the
tangent magnetic field Hy(x,t) on the boundaries I'j. Under
these conditions, the 2D magnetic field equation (1) (which is
a set of partial differential equations) is well posed in each
subdomain Dj.

div (vj grad A) =-Jj ¢))
Either the finite element method (F.E.M.) or the boundary
element method (B.E.M.) can be used to solve (1) in each
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subdomain Dj. Both methods are based on spatial
discretization relations such as :
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where wik(x) are nodal weighting functions, Ak are the N
time varying nodal values of the vector potential and Hyk are
the M time varying nodal values of the magnetic tangentizai
field on the boundaries I7j.

The finite element method with trial functions,
{wn(x), i=1,...,N}, identical to the weighting functions
(Galerkin method) gives N equations such as (3).

(vigrad A.grad wy—Ji wy ) dD;j — | wy HedINi = 0(3)
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In a subdomain made of a linear and nonconducting
material, it is also possible to use the boundary elemeri
method which is based on equation (4) where G is the free
space Green function for 2D Laplace operator, ¢ is a constant
depending on the smoothness of I'j (c=1/2 on a regular
boundary) and n is the outer normal vector for Dj.
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Fig. 1. Representation of the sub-domains defined in the modelling
of the relay. The solving method is specified for each subdomain.

b. FEM.-B.EM. coupling

The philosophy of the F.E.M.-B.E.M. coupling is to useé
the B.E.M. for linear magnetic and non conducting media
wherein rigid parts can move (generally air), remeshing is
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therefore avoided. The B.E.M. is also used to provide a
rigorous treatment for open boundaries. The FEM. is
chosen everywhere else and especially in media that can be
the seat of phenomena such as saturation or eddy currents.

IT COUPLING WITH MOVEMENT [1]

a. Mechanical model

Only rigid motions in 2D models are considered. Three
degrees of freedom are associated with each moving part, two
degrees of translation and one degree of rotation. The
mechanical model is the classical Newton equation taking
into account electromagnetic forces and torque. Connection of
the different objects with springs, viscous dampers or
constant forces is considered.

The movement first order differential equations are :

dv dx

m m +cv+kx=F(t) , m )
where the following quantities are defined :
e position : x(t);
o speed : v(b);
. mass or momentum of inertia : m;
» elastic constant of the spring : k;
e viscous damper constant : ¢; _
o applied force or torque including magnetic forces and

constant forces: F(t).

Time discretization by the backward Euler method gives :
mv(t) + F(DAt - k x()At
KA + cAt+ m 6)
mx(t) + mv(t) At + FOAC + cx(DAt
KAC + cAt+ m .

v(t+AL =

X(t+AD =

b. Computation of magnetic forces

The F.EM.-B.E.M. coupling method gives, at each time
step, not only the knowledge of the vector potential field A
but also the knowledge of the tangential magnetic field H; on
the boundaries I'j. That allows an easy computation of
magnetic forces by the Maxwell stress tensor method [3].
That method gives an equivalent normal force density Fy, and
an equivalent tangential force density F¢ on the boundaries
of objects whose expressions are :

B2 2
Fn=(-é”—"0—%o—Ht)n , F, =B Ht %)

Note that the quantities By, and H¢ which are involved in
those expressions are well defined even on surfaces of
discontinuity ; the scalar field Hy is directly given by the
Coupling method while By is computed from the vector
potential by :

B, =curl(A).n= -a—énx —a—An
dy ox Y ®
_(BAd A . A
=(- 3y % ox ag)”@" T 11(8)
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where ny and ny are the components of the outer normal
vector n, & is the local coordinate of the shape functions used
for the boundary element discretization and J(£) is the
corresponding Jacobian.

c¢. Coupling with the magnetic system

Due to the fact that the expression of the force is an
intricate nonlinear function of the magnetic degrees of
freedom, it is cumbersome to solve simultaneously the finite
element equations and the mechanical equations.
Consequently, the following algorithm is adopted to model
the movement :

e Compute electromagnetic state at time t
*  Compute the magnetic force and torque for this state
*+ Solve the mechanical equations to find the
displacements of the moving parts.
e Verify coherence:
Keep position in physical limits
Modify time step if necessary
*  Modify the geometry in the database using the computed
displacements
. Next step

This kind of algorithm can be qualified as "weak
coupling” because the magnetic and mechanical equations are
not solved simultaneously; that means that the magnetic
force is supposed to be a constant on one time step.

IIT COUPLING WITH CIRCUITS [2]

From an electrical point of view, the conductors of a
magnetic field model can be seen as self and mutual
inductances with resistances. An approach for coupling them
with an external excitation circuit could be to extract an
equivalent impedance matrix from the numerical model and to
introduce it in the electrical circuit equations. Unfortunately,
because of saturation, movement and skin effect, that matrix
would depend on the level of excitation, on the position and
on the frequency. That makes it necessary to realize a real
coupling of the finite element equations with the circuit
equations.

a. Eddy currents

In transient problems where eddy currents exist in the
conductors, the current density term J(x,t) in equation (2) is
not known a priori and is then replaced by its expression in
accordance with Ohm's law :

A
Ji=ciE=—ci(aa—[+Ui). ©)

The conductor, Dj, is characterized by its conductivity oj.
The time partial derivative dA/dt stands for the inductive
effect and Uj is the terminal voltage p.u. of length imposed
on the conductor.

A crucial problem is to determine the effect of movement
on eddy currents. According to Faraday's induction law, the
induced electromotive force in a circuit is equal to the total
magnetic flux variation through the circuit whatever the
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origin of the variation : time variation of the field or
movement of the circuit. Equation (9) is therefore only
applicable for non moving conductors and the correct
expression for a conductor moving at speed vj is [4]:

Ji=Gi(E+ViXB)=—Gi(—a£+Ui—ViXB) (10)

where B is the induction. Since —vj X B = (vj.grad) A (as
it may be verified component by component), the
generalization of (9) for moving conductors is :

i=—oi( 2 up) a

where d/dt is the material derivative, i.e. the variation for a
given particle. We have pointed out before that with the
F.EM.-B.EM. coupling method the mesh of moving parts
is involved as a whole in the movement. Each node of the
system corresponds to the same particle during all the
motion. The material derivative dA/dt is simply evaluated by
difference of nodal values; there is no need for an explicit
term for the motional induced electromotive force.

b. External degrees of freedom for conductors

The magnetic—electrical coupled problem can be solved if
an imposed terminal voltage is given for each conductor of
the problem. If the total current, Ij, is given instead of the
terminal voltage, this becomes one more unknown and one
more relation is necessary to relate it to the magnetic degrees
of freedom. Since the tangential field H¢ is involved as an
unknown in the F.E.M.-B.E.M. coupling, the following
expression of Ampere's law gives such a relation :

lj= [ HdTj (12)
I _
A special treatment is possible to model coils where eddy
currents are prevented by the smallness of the wire section. In
that case, the following relation is used instead of (12) [1]:

dt
Dj
where Nj is the number of turns and Sj the section of one
turn in the subdomain Dj. The current density is given by
Ji = 1i/S; instead of (11) and there is no more skin effect,
only a global inductive effect is allowed.

From a more general point of view, we can systematically
relate to every conductor of the problem an equation such as
(12) or (13) and two external degrees of freedom: the total
current in the conductor, Ij, and the terminal voltage, Uj .
One circuit equation is necessary for each conductor to solve
the system. The simplest case corresponds to imposing Uj or
Ij for each individual conductor but we are more interested in
the general case of N independent conductors connected with
any external R.L.C. circuit according to any topology.

If that external circuit has Ne state variables (the number
of inductances and capacitors), the circuit theory gives N¢+Ne
relations or first order differential equations which are added to
the magnetic model ones and solved in the same time.

Njlj = - oj ‘[ da dDj - oSiUj 13)

IV  EXAMPLE : MODELLING OF THE RELAY

a. Movement equations

In this problem, only one direction of movement is free
and there is only one movement equation. The moving core
(mass=0.2 kg) is fixed to a spring (k=2500. N/m) tending to
keep the relay open while the magnetic force tends to make
the closure (Fig. 2). The movement is 7mm long; the relay
is 50mm deep; friction is neglected.

L)

Fig. 2. Mechanical diagram of the relay.

b. Circuit equations

The excitation circuit (Fig. 3) consists of an initially
charged capacitor C (V¢ = 10V) connected with an external
resistance R and with the two conductors in series
representing the coil in the model (N¢ = 2). The capacitor
voltage has to be chosen as a state variable (Ne = 1). The
circuit theory gives the following three equations :

VC—R11+U1-—U2=0
L+L=0 (14)

I[+Cd—v—°—=0
dt
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Fig. 3. Electrical diagram of the relay. The conductors are
represented by their external degrees of freedom Uj and Ij.

V  RESULTS

As a deliberate choice for this modelling, the electrical ant
mechanical diagrams are extremely simple when considered
separately (Fig. 2 and 3). They present elementary and well
known individual behaviours. '

In spite of this, time evolutions become quite intricate as
soon as the coupled problem is considered and a global
analysis of the results is not of interest. We rather apply
ourselves in this paper to demonstrate successively that
expected interplays appear actually in computed results. .

Two figures are presented showing time evolutions of the
total applied force on the moving core (including the
magnetic force and the spring force), the position of the core




and the current in the coil. All curves are scaled down for
comparison, scaling values are given in Table 1.

Fig. 4 and 5 correspond respectively to the cases where
the magnetic circuit is made of a linear or a nonlinear
material. Both materials are identical at low fields.

0.2 ﬁr@)
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Fig. 4. Time evolutions of the total force, the position of the
moving core and the current in the linear case

Fig. 5. Time evolutions in the nonlinear case.

linear nonlinear
Fmax (N) 27.32 10.92
Imax (A) 6.186 6.293

Table 1. Scaling values of the total force and the current.

a. Influence of current on force

The magnetic force is closely related to the square value of
the flux crossing the air gap which is itself proportional to
the current in the coil in the linear case. On Fig. 4 and 5, it
cain be checked that the current and force curves exhibit
similar shapes. They both present the characteristic
Tetrogression point when the closure of the relay occurs, i.e.
when the motion induced current vanishes.

b. Influence of the electric circuit on the magnetic model

As pointed out before, the magnetic model can be seen as
an RL device if Uj or Ij is imposed on each conductor.
Resulting time evolutions are combinations of exponential
functions.

The situation is completely different when the conductors
are inserted in an electric circuit, especially if this one
Contains capacitors. In this case, the system must rather be
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seen as an RLC device with a kind of damped oscillating
behaviour.

Because the inductance depends on the motion, the circuit
is a true RLC circuit as long as the moving core remains
motionless. One can check in Fig. 4 that the current curve is
a piece of a damped sinusoidal function in that case. On the
other hand this is no longer true in Fig. 5 because of the
nonlinearity of the material.

¢. Influence of movement on current

The downward motion of the moving core decreases the
length of the air gap and increases its reluctivity in the
magnetic circuit. An inverse current is then induced in the
coil (in accordance with the Lenz law) which opposes the
setting of the direct current. That inverse current reaches a
maximum when the speed does and it vanishes when the
closure is done.

CONCLUSION

It is obvious that the correct waveform for current in a
relay results from a complex interplay between the electric
circuit and the variation of inductance due to displacement of
moving parts.

A numerical implementation has been done with the
F.EM.-B.EM. coupling method. This method presents
several advantages for that kind of modelling :

*  There is no mesh deformation during the movement.

¢ There is no need for an explicit term for the motional
induced electromotive force.

¢ The method makes it easy to evaluate force and torque
by the Maxwell stress tensor method.

¢  The method makes easy it to define the electrical
external degrees of freedom of the conductors of the
model and to make the connection with an electrical
circuit.

Analysis of the computed results shows that they are in
good agreement with the different physical phenomena
involved in the problem.
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