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Abstract—~Classical electromagnetism, which is a
continuous media theory, leads to two kinds of dis-
crete models: on the one hand circuit theory with
lumped elements and on the other hand discrete nu-
merical schemes such as the finite element method.
The purpose of this paper is to emphasize the com-

mon structure of the three models.

I. INTRODUCTION

The finite element method is nowadays a classical
method to discretize the partial derivative equations of
electromagnetism. Nevertheless, if this approach became
common with the use of computers for large numeri-
cal computations, another discretization of electromag-
netic systems was well known even before the advent
of Maxwell’s theory: electrical circuits with lumped el-
ements. Though from apparently unrelated origin, both
techniques appear amazingly close when presented from
the right point of view. In this paper we draw a paral-
lel between: Classical electrodynamic model for contin-
uous media based on differential forms, general matrix
(e.g. mnode or mesh) formulations for circuit equations,
and Whitney finite elements, the most appropriate con-
text to present edge element techniques. We will therefore
consider the following paradigmatic examples: For con-
tinuous electromagnetism, the full Mazwell system and a
simple electrokinetic model, for electrical circuits, a resis-
tance network, and for the numerical discrete case, finite
element method applied to the electromagnetic model pre-
sented above using the Whitney forms [1].

II. TorPoLOGY

The basic geometric framework of each model is a topo-
logical structure i.e. a set of points with no reference to
either distance or angle.

e The topological structure required for electromagnetism
is the classical IR® topology given by open sets. In fact,
a little bit more is necessary and the differentiable struc-
ture of R® with the suitable regularity is usually consid-
ered (differentiable manifold structure). Special subsets
are useful such as surfaces (2-dimensional submanifolds),
curves (1-dimensional submanifolds) and isolated points
(0-dimensional submanifolds). Roughly speaking, a p-
dimensional submanifold is a map from a domain Q of
IR? (parameter space) to R®.

e A circuit model is basically a graph [2]. A graph G
is a set IV of elements called vertices or nodes together
with a set B of unordered pairs of nodes called edges or
branches. The following concept is also useful: a mesh is
a set of branches forming a loop. View nodes, branches
and meshes respectively as 0-, 1- and 2-dimensional geo-
metrical objects of the model.

e Finite element models require a meshing of the geo-
metrical domain. Simplicial meshes are considered here.
The domain is assumed to be tiled by a set T of 3-
simplices (tetrahedra) called the elements. F' is the set
of 2-simplices (triangles) that are the faces of the tetra-
hedra in T, E is the set of 1-simplices (segments) that
are the edges of the triangles in F' and N is the set of
0-simplices (points) called the nodes or vertices that are
the extremities of the edges in E.

It may be useful to consider oriented elements in order
to determine the sign of physical quantities associated to
geometrical elements. For instance, graphs must therefore
be directed what is done by ordering pairs of nodes asso-
ciated to the edges. It is also convenient to number the
elements in discrete sets with successive integers starting
at Oor 1.

ITII. PHYSICAL QUANTITIES

At this stage, the physical quantities may already be
defined by duality with the topological elements. A phys-
ical quantity is a map from a given class of (oriented)
geometrical objects to (real or complex) numbers.

e In the continuous theory, the language of differential
forms is adopted here. O-forms such as the electric scalar
potential V' are maps from points to numbers i.e. the
usual definition of a function on IR®. 1-forms such as the
electric field E, the magnetic field H, the vector potential
A are maps from curves to numbers. 2-forms such as the
electric displacement D, the magnetic flux density B, the
current density J are maps from surfaces to numbers. 3-
forms such as the charge density p are maps from volumes
(three-dimensional subsets) to numbers. To emphasize the
duality, we write (M, «) the number associated to the p-
submanifold M (p-dimensional geometric object) and the
p-form a. For instance, (S, B) is an abstract notation for
the surface integral of flux density B across the surface
S. This taxonomy is obviously more accurate than the
one of vector analysis that merges O-forms and 3-forms
in scalar fields and 1-forms and 2-forms in vector fields.



Forms appear here as set functions and are in a way con-
nected to the concept of Lebesgue measure. A p-form may
indeed be considered as the integrand on a p-dimensional
submanifold.If such definitions may seem abstract at first
sight, they are in fact deeply related to real life experimen-
tal processes [3]. A magnetic flux density is never directly
accessible but only known through measurements on mag-
netic fluxes across finite size loops in various positions.

e On graphs, one has nodal quantities such as node po-
tential V' mapping nodes to numbers and branch quan-
tities such as branch currents I and voltages U mapping
branches to numbers. It will also be useful to define mesh
currents I, that map meshes to numbers. Note that
branch quantities are of course related to the continuous
physical quantities. Physically a branch is made of a de-
vice such as a piece of conducting material. The current is
the flux integral of the current density on a cross section
of the device and the voltage is the line integral along the
mean fiber. The hypothesis that such branch quantities
are sufficient to represent accurately enough the physical
behaviour of the device on the branch is the basis of the
lumped element model.

e For the numerical discrete model, discrete p-field corre-
spond to maps from p-simplices to numbers. For instance
the electric field is represented by a set of value associated
to edges. Of course, a practical mesh is placed in contin-
uous physical space such that the tetrahedra are embed-
dings of a reference tetrahedron. One therefore may define
a projection from a continuous p-form to a discrete p-field
by taking the integral on the corresponding p-simplices.
For instance, the continuous electric field is projected on
the mesh by taking its line integrals along all the edges.

IV. TOPOLOGICAL OPERATORS

To manipulates quantities one has to define operators
that map then to each others. A first class of operators
rely only on the topological structure.

e In the continuous model, one defines the exterior deriva-
tive d of a p-form. Consider the boundary of a p-
dimensional submanifold. The boundary 99 of a set Q
of the parameter space IR? is the set of points z such
that any open set containing the point z contains both
points that are in  and points that are not in Q. If a
p-submanifold M is the image of 2 in IR", its boundary
OM is the image of 9Q in IR™. The boundary operator
0 is a map from p-dimensional sets of points to (p-1)-
dimensional sets of points. If M is regular enough, it is
a map from (p-1)-forms a to numbers (OM, ). We now
take the general Stokes theorem [4] as a definition of the
exterior derivative i.e. d is a linear map from p-forms « to
(p+1)-forms da such that for any p-dimensional submani-
fold M one has (M,da) = (O0M,a). It may be shown that
this operator corresponds to grad, curl and div of vector
analysis when acting on 0-, 1- and 2-forms respectively.
The fact that the boundary of a boundary is an empty set
(0OM = P for any M) leads immediately to the fact that
dda = 0 for any p-form a.

e The corresponding operators on graphs are incidence
matrices. Consider V' the column array (of size #V) of

nodal value of the potential and U the column array (of
size #U) of voltages associated to branches. Build now the
following #U x #V rectangular array such that every line
corresponds to a branch and every column to a node. It
is now possible to encode the connectivity of the oriented
graph (i.e. what nodes are boundaries of what branches)
in this array the following way: consider an element of the
array corresponding to a given node and a given branch,
if the node is the end point of the branch set the element
value to +1 or if it is the starting point set the value
to -1 else if the branch is not connected to the node set
the value to 0. Considered as a matrix A, this array is a
linear operator from nodal quantities to branch quantities
e.g. the fact that voltages across a branch are differences
of the potentials on the nodes at the extremities of the
branches is expressed by the matrix product U = AV.
The matrix C is associated to the meshes: lines correspond
to meshes and columns to branches, elements of the matrix
are different from zero if the branch is on the mesh, +1
if the orientations of the branch and the mesh match and
-1 if they are opposite. The fundamental property of the
incidence matrices is that the matrix product CA = 0.

e The discrete operators on the meshing are also defined as
incidence matrices that are representations of the bound-
ary operator. Here the boundary operator associates to
a p-simplex the (p-1)-simplices that constitute its bound-
ary e.g. it associates to a tetrahedron the four triangles
that are its faces. This can be easily encoded in incidence
matrices. G is the node-edge incidence matrix, the lines
correspond to edges and the column to nodes, whose el-
ements are +1, -1 or 0 in a way exactly similar to the
graph case. R is the edge-face incidence matrix, the lines
correspond to faces and the column to edges, whose el-
ements are +1, -1 or 0 indicating that the given column
corresponds to an edge that is on the boundary of the face
corresponding to the given line with a similar or opposite
orientation. D is the face-tetrahedron incidence matrix,
the lines correspond to tetrahedra and the column to faces,
whose elements are +1, -1 or 0 indicating that the given
column corresponds to a face that is on the boundary of
the tetrahedron corresponding to the given line with a
similar or opposite orientation. The fact that the bound-
ary of a boundary is an empty set is now encoded in the
matrix products RG =0 and DR = 0.

The topological operators now available already allow a
set up of fundamental equations.

o Using exterior derivative, Mazwell equations are: dH =
J+0,D,dE = —0;B, dD = p, and dB = (0 where 0; is the
partial derivative with respect to time. The electrokinetic
model is obtained from the full system by assuming some
simplifying hypotheses: time variations are neglected and
one focuses on F and J what gives dJ = 0, dE = 0.

e In circuits equations, Kirchhoff laws are a direct con-
sequence of the Maxwell equations assuming simplifying
hypotheses. Mainly, dynamical terms are neglected out-
side lumped elements (roughly Faraday induction law is
confined inside inductances and displacement currents are
only present inside capacitors) and the current density is
supposed perfectly confined inside lumped elements and
ideal connections (i.e. without voltage drop). Conser-



vation of current dJ = 0 implies directly the Kirchhoff
current law (KCL) for nodes given in matrix form by
ATI = 0. and dE = 0 implies directly the Kirchhoff
voltage law (KVL) for meshes given in matrix form by
CTU =o.

¢ One of the prominent feature of the Whitney element ap-
proach is that exact formulation of discrete Maxwell equa-
tions for discrete fields (denoted here by the boldface low-
ercase corresponding to the continuous field) is obtained
thanks to incidence matrices, namely: Rh = j + d;d,
Re = —0;b, Dd = p, and Db = 0.

V. METRIC

In the previous sections, only topological properties
have been involved. This section is now devoted to the
introduction of metric concepts.

e The Hodge star operator * is a linear map from p-forms
to (3-p)-forms. It is necessary to express the usual mate-
rial constitutive laws that relate 1-forms such as electric
and magnetic field to 2-forms such as current density, elec-
tric displacement and magnetic flux density. For instance
D=exE, B=puxH, and J = 0 x E where ¢ is the
dielectric permittivity, p the magnetic permeability , and
o the electric conductivity. In vector analysis, metric and
topological aspects are interlaced and usually completely
hidden in the use of Cartesian coordinates.

e In circuit theory, metric properties are encoded in the
impedance matriz Z, a square matrix that relates branch
voltages to branch currents. Consider for instance a resis-
tance network. Z is therefore a diagonal matrix contain-
ing the resistance of each branch. On the one hand, if the
shape of a particular resistive element is modified, its sec-
tion or length, the resistance value is modified indicating
its metric nature. On the other hand, changing the shape
of an ideal connection without changing the topology of
the circuit does not modify the circuit equations.

o The introduction of Whitney elements [1] allows the in-
terpolation of discrete p-fields to continuous p-forms and
is used in setting up the finite element method. To a p-
simplex s of the mesh defined by p + 1 vertex points of
indices 4g,%1,...,%p, is associated a shape p-form: w® =
Eg(_l)a)‘a(io)(d/\a(il) A... /\d/\g(ip)) where ¢ is a permu-
tation of the indices, (—1)” its sign, A the exterior product
[4] and A; the barycentric coordinate associated to node i.

Given a discrete p-field, the interpolated discrete p-form
or Whitney form is the linear combination of shape p-
forms with the number associated to the corresponding p-
simplex as coefficient. Beyond the trivial case of 0-forms
that corresponds to classical nodal elements, 1-forms are
represented with the help of the so-called edge elements.
For instance E = 3, ., .. € (Aigrad); — Ajgrad))
where e®i is the line integral of E along the edge e;;
from node i to node j. The interesting properties of
such interpolation for finite element modelling are nowa-
days well known [1]. Another example are face elements
where to each triangle f;;; is associated to the vector
shape function wfii* = 2(\;grad\; x grad\ +\;jgradXy, x
gradi; + Apgradd; x grad);). The main role of Whit-
ney interpolation shape functions is the construction of

a discrete Hodge operator. This involves the Euclidean
scalar (i.e. dot) product of IR® used in the construction
of a matrix that corresponds to the impedance matrix of
circuit models (but is usually only sparse and not diag-
onal). Let o denote a scalar field representing a mate-
rial property such as €, y, or o... For two p-simplices
s and s', the matrix Mp(a) is defined such that its ele-
ments are m,(a)sy = (,aw® A xw® ) where § is the
support of the meshing in IR®. For instance, using vector
analysis notations, coefficients of My(o~!) are given by
ma(oY)s,e = [0 W .w® dQ [5].

VI. POTENTIALS AND GAUGE

Introducing potentials allows to verify automatically
homogeneous equations.

¢ Homogeneous Maxwell equations dE + 0;B = 0 and
dB = 0 are verified if one introduces potentials as aux-
iliary quantities, namely a 'magnetic’ vector potential A
(1-form) and an ’electric’ scalar potential V (0-form) such
that B = dA and E = —9;A — dV. In the case of the
electrokinetic model, the conservation of current dJ = 0
may be insured by the introduction of an ’electric’ vector
potential T such that J = dT.

e The equivalent feature in circuit model is the introduc-
tion of mesh currents I,,,. To a mesh is associated a cur-
rent circulating with the same intensity in all the branches
of the loop. Such a current certainly respects the KCL as
it enters and leaves a node on the mesh exactly once. The
total current in a branch is the sum of all the currents of
the meshes in which the branch is involved. This can be
written in matrix form as I = C1I,,,. Similarly, given nodal
potential V', the set of branch voltages U = AV obtained
by the differences of potential respects the KVL.

e In the finite element model, discrete potentials mimic
exactly continuous potentials excepted that discrete op-
erators are used. For instance, a conservative discrete
current density j (associated to the faces) is obtained if
a discrete 1-form t (associated to the edges) such that
Jj = Rt is introduced.

The central problem of using potentials is that they are
not unique and explicit computations very often require a
gauge fixing condition.

o Rather than the classical Coulomb and Lorenz gauge of
classical electrodynamics textbooks, the azial gauge will
be considered here. A common setting of this gauge is to
impose the third component of the vector potential (7' or
A) to be equal to zero i.e. T, = 0. A more general setting
is to introduce an arbitrary (contravariant) vector field v
such that its integral curves (i.e. the curves such that the
tangent vector to the curve at a point is precisely the value
of the vector field at this point) have no loop. In this case,
v.T = 0 may be taken as a gauge (note that here the dot
product does not involve the metric and represents in fact
a duality product). We force as much as possible the line
integrals of A (they are imposed to be zero along any part
of an integral curve of v) keeping the line integrals along
any closed loop (i.e. the current through the loop) free.

¢ A similar phenomena occurs in circuit theory. If all the
possible meshes are considered in a circuit, the vector I,



is much too large to represent uniquely the branch cur-
rents satisfying the KCL. The classical method to define a
suitable set of meshes is to use a spanning tree i.e. a con-
nected subgraph such that it spans all the nodes of the
original graph and has no loop (note the similarity with
vector v used to define the axial gauge). The branches
of the graph not included in the tree form the co-tree.
The following set of suitable meshes is selected: to each
branch of the co-tree is associated a mesh that include
this very branch together with branches exclusively taken
in the tree. From now, I,,, will refer only to the currents
associated to this set of meshes.

e In the Whitney finite element practice, the most natural
gauge is the spanning tree gauge. A spanning tree is build
on the set of edges of the meshing. The values of the
discrete 1-form potential (e.g. a or t) associated to the
tree branches are set to zero while the ones associated
to the co-tree are kept as unknowns. This introduces a
maximum set of constrains that keep free the flux of the
curl of the potential through the faces.

VII. MODELS

All the tools are now available to define the models of
interest.

e The classical general model is of course Maxwell full
system with more or less sophisticated constitutive laws.
We focus here on the more specific electrokinetic model.
To define a model, a geometrical domain have to be de-
fined together with boundary conditions e.g. defining the
trace (normal component from vector analysis point of
view) of J on the boundary what corresponds to fixing the
amount of current injected in the system. Putting the var-
ious equations altogether, one has to solve do ! xdT =0
(curl o~ tcurl T = 0 in vector analysis formalism) for
the potential T' submitted to the boundary conditions and
constrained by the chosen gauge condition.

e In circuits equations, the method of meshes is considered
here. The KCL ATT = 0 is satisfied if I = CI,,. Beside
the impedance, active voltage sources E are considered
in the branches so that voltages in the branches are U =
ZI — E (the sign is determined by the power convention)
submitted to the KVL CTU = 0. All together this gives
the linear system: CTZCI,, = CE.

e The matrix system for the finite element model of the
electrokinetic model is : RTMy(c™1)Rt = a where t is
the unknown vector associated to the edges such that the
current through the faces are j = Rt and o comes from
the boundary conditions or any other prescribed sources.

It is useful here to consider dual structures. In the case
of a planar circuit (i.e. that can be drawn on a plane
without crossing branches), its dual is defined the follow-
ing way: an obvious method to choose the suitable mesh
set is to take the connected surfaces of the plane deter-
mined by branch loops. The dual graph is obtained by
exchanging the role of nodes and meshes so that to each
branch of the dual corresponds a branch of the primal
graph. Incidence matrices A and C (and therefore KCL
and KVL) exchange their role and simple rules (e.g. an
impedance corresponds to the inverse impedance on the

dual branch) make that the branch current in the primal
circuit is numerically equal to the branch voltage in the
dual one and vice versa. In the case of the finite element
meshing, the dual is obtained by switching nodes with
tetrahedra and edges with faces. The incidence matrices
G*, R*, D* of the dual meshing correspond to transposed
of the primal ones G* = DT, R* = RT , D* = G”. The key
to understand the discrete setting of Maxwell system is
to associate discrete 'magnetic’ quantities h,j, d, p, t with
a meshing and ’electric’ quantities e*,a*, b*, v* with its
dual meshing. Therefore one has Dj = 0 i.e. j = Rt on
the primal meshing and RTe* = 0 on the dual meshing.
The discrete Hodge operator is the square matrix that re-
late the current through the faces of the primal meshing to
the electromotive force along the corresponding branches
of the dual meshing: My(c~!)j = e*. This set of dis-
crete equations provides directly the system of equations

usually found thanks to the Galerkin method.
The general theory of electrical circuits may be directly

transposed to magnetic circuits similarly represented by
graphs. To the branches are associated the magnetic
fluxes ® and the magnetomotive forces H (circulation of
the magnetic field along a branch) that are related by the
reluctance matriz R such that H = R®. The conserva-
tion of the magnetic flux is expressed as AT® = 0 where
A is the branch-node incidence matrix of the magnetic
circuit. Again this is satisfied by the introduction of mesh
magnetic fluxes &, and a mesh-branch incidence matrix
C such that & = C®,,. A magnetomotive force M can
be associated to the meshes so that C* H = M. The ma-
trix equation for the magnetic circuit is CTRC®,, =

We introduce now the electric-magnetic circuit coupling
by remarking that the magnetomotive force is produced
by currents circulating in electric circuits and by trans-
forming the KVL, bringing back the Faraday induction
law CTU = e where e is the f.e.m. induced on the
meshes. Consider a magnetic circuit interlaced with an
electric circuit. The coupling of the circuits is a purely
topological property described by two matrices (They are
not unique but are taken among the possible equiva-
lent ones by choosing cutting surfaces for meshes): the
magnetic mesh-electric branch incidence matrix F,, and
the electric mesh-magnetic branch incidence matrix F.
The Faraday induction law is now CTU = —8,F,® and
the Ampere law writes CTH = F,,I. Finally, the cou-
pling equations for the electric and magnetic circuits are:
CTZCI,, = —8,F.C®,, and CTRC®,, = F;nCI,,.

REFERENCES

[1] A. Bossavit, ”Computational Electromagnetism, Variational for-
mulations, Edge elements, Complementarity”, Academic Press,
Boston, 1998.

[2] A. Calvaer, Electicité Théorique, régimes et circuits électriques,
fascicule 2, Derouaux, Liege, 1978.

[3] E. Tonti, On the Geometrical Structure of Electromagnetism, in
Gravitation, Electromagnetism and Geometrical Structures, for
the 80th birthday of A. Lichnerowicz, G. Ferrarese ed., Pitagora
Editrice Bologna, pp. 281-308. (1995)

[4] K. Janich, Vector Analysis, Springer Verlag, New York, 2001.

[5] A. Bossavit,L. Kettunen, Yee-like schemes on a tetrahedral mesh
with diagonal lumping, Int. J. Numer. Modell., 12:129-142, 1999.



