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Modelling of twisted optical waveguides with edge elements.
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Abstract. We present the modelling of twisted electromagnetic waveguides using helicoid co-ordinates.
This amounts to introducing equivalent inhomogeneous anisotropic materials which are however taken
into account easily by the finite element method. An interesting property of such helicoid co-ordinates is
to preserve the intrinsically two-dimensional nature of the problem.

PACS. 03.40.-Kf Waves and wave propagation: general mathematical aspects – 02.70.-Dh Finite-element
and Galerkin methods

1 Introduction

1.1 Industrial motivations

The object of our study came out from scientific collab-
oration we maintained with the opto-electronic group at
Bath University [6] (led by Prof. Russell), over the past
three years. There is indeed a keen interest nowadays in
Photonic Crystal Fibres [5,7], but it seems that nobody
addressed as yet the effect of a twist on the dispersive
properties of an electromagnetic signal localised in some
central defect in a PCF. Still, this issue is of importance,
since Prof. Russell and his co-workers observed experi-
mentally this phenomenon and expressed their concern
on its practical consequences: It is rather obvious that
one should make clear whether or not this effect becomes
preponderant on the long run. Here, of course, we pur-
sue a more humble goal: We only intend to show a simple
way to cope with such a spectral problem; But our study
will yet pave the way for further analysis in this exciting
direction.

Two companies, one of them being based in UK at
Bath University (‘http://www.blazephotonics.com’), have
already distributed sample quantities and will soon begin
volume production of PCF leading to a new generation of
overseas optical telecommunications.

1.2 The spirit of our modelling

In this study, we depart from fairly well covered material
on structures which present some translational invariance
(on both geometrical and material aspects) along one axis,
say z. Therefore, care has to be taken on the definition of a
mode (e.g. waveguides exhibiting some curvature or with
variation in their cross-section).

Let us consider a twisted closed waveguide of cross-
sectionΩ (in the micro-wave regime for instance, the model
of the metallic waveguide with infinite conducting walls
is fairly accurate). The analysis of modes propagating in
such waveguides amounts now to looking at non-trivial
square integrable solutions of the Maxwell system in the
following form

E(x, y, z, t) = <e{E(x, y)e−i(ωt−βz)} (1)

with ω the pulsation, β the propagation constant and
E(x, y) the variation of the electric field in the (x − y)
plane in z = 0 at time t = 0[7].

Here, we choose the electric field as the unknown, since
its tangential trace is null on the outer boundary of the
waveguide, unlike its magnetic counterpart. The differ-
ential operator associated to this spectral problem has
a compact resolvent and thus we only need look at a
countable set of eigenvalues and associated eigenvectors
to perform the analysis (they generate so-called disper-
sion curves) [3,7].

The key point in our study is that the differential oper-
ators consist of products by functions independent of z so
that we can perform some Fourier transform in the z di-
rection. Hence, we just need worry about derivatives with
respect to x and y (differentiating in z amounts simply
to multiplying by iβ). Therefore, if this situation arises in
other co-ordinate systems, we can still speak of modes.

This is obviously the case for cylindrical co-ordinates
and axi-symmetric structures: one can definitely find some
modes propagating along the azimutal co-ordinate θ.
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Fig. 1. The helicoidal structure under consideration.

2 Covariant approach of the problem

2.1 Helicoidal co-ordinates

Let us now play with a co-ordinate system u, v, w deduced
from Cartesian co-ordinates (x, y, z) in the following way

{
x = u cos(αw) + v sin(αw)
y = −u sin(αw) + v cos(αw)
z = w

(2)

where α is a parameter which characterises the torsion of
the waveguide. The idea is to define the electromagnetic
problem of twisted geometry as a problem whose geom-
etry (i.e. the limit conditions together with the material
properties ε, µ) only depends on co-ordinates u and v.

This change of co-ordinates amounts to replacing the
different materials (often homogeneous and isotropic, which
corresponds to the case of scalar piecewise constant per-
mittivities and permeablilities) by equivalent inhomoge-
neous anisotropic materials. This general co-ordinate sys-
tem is characterised by the Jacobian of the tranformation
(2):

J =
∂(x, y, z)

∂(u, v, w)
=




cos(αw) sin(αw) αv cos(αw) − αu sin(αw)
sin(αw) cos(αw) −αu cos(αw) − αv sin(αw)

0 0 1


 .

(3)

Even though this Jacobian matrix depends explicitely
on the third co-ordinate w, it is noticeable that the system
of helicoidal co-ordinates leads to a transformation matrix
T (describing the change in the material properties) which
does no longer depend on the third co-ordinate w, hence
the possibility to define properly the notion of propagating
modes in helicoidal structures.

2.2 Geometric Transformations

A neat way to derive T is to use differential geometry. Let
E be a 1-form and D a 2-form. They are expressed in the
(non-orthogonal) helicoidal co-ordinate system by:

E = Eudu+Evdv +Ewdw
D = Dudv ∧ dw +Dvdw ∧ du+Dwdu ∧ dv , (4)

where ∧ denotes the exterior product. Also, the scalar
product between p-forms is expressed with

∫
α∧?γ where

? is the Hodge operator. A simple way to evaluate this

product is to project our forms back onto familiar Carte-
sian co-ordinates:



Ex
Ey
Ez


 = J−1



Eu
Ev
Ew


 and



Dx

Dy

Dz


 =

J

det(J)



Du

Dv

Dw


 ,

(5)
and to use the good old scalar product in Cartesian co-
ordinates (keeping in mind the factor det(J)−1 for the
volume form). We obtain the following expression for the
scalar products:

∫
E ∧ ?E′ =

∫
(TE).E′dΩ , (6)

and ∫
D ∧ ?D′ =

∫
(T−1D).D′dΩ , (7)

where the right members involve the column vectors of
Cartesian co-ordinates and the matrix:

T =
JTJ

det(J)
=




1 + αv2 −α2uv −αv
−α2uv 1 + αu2 αu
−αv αu 1


 . (8)

In the particular case of an helicoidal transformation
det(J) = 1, which means that there is no change in vol-
ume. On a geometric point of view, the matrix T plays the
role of the metric tensor. The only thing to do for a finite
element formulation of the helicoidal problem is to replace
the materials (often homogeneous and isotropic) by inho-
mogeneous ones (their characteristics are no longer piece-
wise constant but merely depend on u, v co-ordinates) and
anisotropic ones (tensorial nature) whose properties are
given by ε′ = εT and µ′ = µT. We note that there is no

change in the impedance of the media, since the permit-
tivity and permeability suffer the same transformation.

In what follows, we will adopt a variational point of
view for our mathematical modelling. The salient conse-
quence of (6) and (7) is that we can work in Cartesian
coordinates, the Hodge operator ? being contained within
the scalar product.

3 Mathematical set up of the eigenvalue
problem

3.1 Governing equations in covariant co-ordinates

We consider a metallic waveguide with heterogeneous per-
mittivity and permeablity, of constant section Ω ⊂ R2

invariant along the z axis. We are looking for electromag-
netic fields (E ,H) solutions of the following Maxwell equa-
tions





rotH = ε
∂E
∂t

rotE = −µ∂H
∂t

(9)
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Here, ε and µ are two second order real symmetric tensor
fields, defined in Ω, with bounded coefficients satisfying
the ellipticity conditions for every vector ξ ∈ R3

∑

i,j=1,3

εijξiξj ≥ α| ξ |2 and
∑

i,j=1,3

µijξiξj ≥ γ| ξ |2 ,

with α, γ > 0. Furthermore, choosing a time dependance
in e−iωt, and taking into account the invariance of the
guide along its z axis, we define time-harmonic two di-
mensional electric and magnetic fields E and H by:

{
E(x, y, z, t) = <e(E(x, y)e−i(ωt−βz))
H(x, y, z, t) = <e(H(x, y)e−i(ωt−βz))

(10)

where ω is the angular frequency in the vacuum and β
denotes the propagating constant of the guided mode.

For (E,H) satisfying (10), (9) can be written as:

{
rotβ H = −iωε(x, y)E
rotβ E = iωµ(x, y)H

(11)

where we define the curl of a vector field U as

rotβ U =

(
∂Uz
∂y
− iβUy

)
ex −

(
∂Uz
∂x
− iβUx

)
ey

+

(
∂Uy
∂x
− ∂Ux

∂y

)
ez . (12)

3.2 The spectral problem

We say that (E,H) is a guided mode if:




(β, ω) ∈ R2

(E,H) 6= (0,0)

E,H ∈ [L2(Ω)]
3

(13)

where the tangential trace n × E of E vanishes on the
boundary ∂Ω of Ω whereas the tangential trace of H gives
rise to an (unknown) surface current Js = n×H.

We choose an electric field formulation [3] because the
tangential trace of E is null, contrary to the trace of H.
Thus, divβ being an operator defined in a similar way to
rotβ in (12) as

divβ U =
∂Ux
∂x

+
∂Uy
∂y

+ iβUz , (14)

it is clear that divβ rotβ E = 0, for all E in Ω such that
n × E = 0. Hence, we are led to the following system of
Maxwell’s type:

{
rotβ(µ−1 rotβ E) = ω2εE
divβ(εE) = 0 .

(15)

Let (β, ω) be a solution of the spectral problem (15)
and E its associated eigenvector. Then (β,−ω) is a so-
lution of (15) with the same eigenvector E. Physically
speaking, this is induced by the time-invariance of the
wave equation when dealing with non dissipative media (ω
is not complex). Furthermore, (−β, ω) and (−β,−ω) are

also solutions of (15) with the eigenvector (E1, E2,−E3):
this is a space-invariance induced by the symmetry of the
guide along the z-axis (even in an helicoidal structure).
Roughly speaking, the physical nature of the problem re-
mains unchanged if a wave propagates along the z-positive
or negative, provided that the cross section of the guide is
constant. We therefore look solely for (β, ω) ∈ R+ × R+.

3.3 Weak form of the problem

The variational formulation associated to (15) is:

∫

Ω

rotβ(µ−1 rotβ E) ·E′dΩ =

∫

Ω

ω2εE · E′dΩ . (16)

Thanks to the Stokes theorem, we see that the left
member of (16) defines a bilinear form

a(β; E,E′) =

∫

Ω

µ−1 rotβ E · rotβ E′dΩ . (17)

3.4 Characterisation of the spectrum

We want to make it clear that this form is bilinear, sym-
metric, continuous and cœrcive on the Sobolev space

V (β) = {F ∈ [L2(Ω)]
3

; rotβ F ∈ [L2(Ω)]
3

divβ F = 0 , n× F = 0 on ∂Ω} .
We shall use the two following results:

Lemma 1:
Let F be a vector field in [H1(Ω)]

3
such that n×F =

0 on the boundary ∂Ω of Ω. We then have the Green
formula:
∫

Ω

(| rotβ F |2+| divβ F |2)dΩ =

∫

Ω

(| gradF |2+β2| F |2)dΩ

The functional space V (β) is then isomorphic to the Hilbert

space [H1
0 (Ω)]

3
.

Since n × F vanishes on ∂Ω, the result follows from an
integration by parts [3,7].

Lemma 2:
Let s be a positive real. Then, the two following sys-

tems are equivalent in V (β):

{
rotβ(µ−1 rotβ E) = ω2εE
divβ(εE) = 0

(18)

rotβ
(
µ−1 rotβ E

)
− s gradβ(divβ εE) = ω2εE .

A proof for this can be found in [3,7].
Our bilinear form a(β, ., .) in (17) is therefore bounded

and coercive on V (β) × V (β) thanks to the added term

∫

Ω

divβ(εE) divβ(E′)dΩ , (19)
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which acts in fact as a constraint which forces the nullity
of divβ(εE). It is worth noting that the operator associ-
ated to the variational problem (16) has a compact resol-
vent (compact embedding of H1(Ω) in L2(Ω) by Rellich
lemma). It can be shown that the spectrum consists of

a discrete set of eigenvalues belonging to [
β2

εµ
; +∞[. This

provides us with a numerical criterion to eliminate non
physical modes [3,7].

4 Discretisation with finite element method

From (18), we clearly see that the finite element formula-
tion amounts to minimizing the following residue (Galerkin
method):

∫

Ω

(
(µ′)−1 rotβ E · rotβ E′ − ω2ε′E ·E′

)
dΩ = 0 , (20)

where E′ are the (vector) weight functions, rotβ is defined
by (12), and µ′ = µT and ε′ = εT.

Although we are no longer in a Cartesian co-ordinate
system, the scalar product stressed by a dot is indeed what
we would write with the classical recipe which amounts to
adding the product of corresponding components of two
fields. This, because the matrix T contains already within
it the good entries, thanks to the modification of one of
the factors.

The weight vector field E′ is chosen in the same dis-
crete Hilbert space as the unknown field E i.e. a space
with finite dimension equal to the number of numerical
parameters to be determined. This formulation involves
both a transverse field Et in the section of the guide and
a longitudinal field El along its axis such that:

E = Et(u, v) +El(u, v)ez . (21)

In the isotropic case, the terms in (20) involving the scalar
product of a longitudinal component by a transversal com-
ponent cancel out. In the twisted case, all media become
anisotropic in nature and the matrix T change the orien-
tation of the components. We thus have to keep all the
terms in the scalar product in (20). This leads to slightly
more complicated expressions in the finite element pack-
age. It implies an increased number of non zero entries in
the matrices. Of course, the number of unknowns of the
numerical problem remains unchanged.

The section of the guide is meshed with triangles and
Whitney finite elements [1] are used i.e. edge elements for
the transverse field and node elements for the longitudinal
field:

E =





Et =
∑

edges i

χiw
e
i (u, v)

El =
∑

nodes j

γjw
n
j (u, v)

, (22)

where χi denotes the line integral of the transverse com-
ponent Et on the edges, and γj denotes the line integral of
the longitudinal component El along one unit of length of

Fig. 2. Transverse component of the electric field for a reso-
nance mode of angular frequency ωc = 3.78m (β = 0) in an
helicoidal metallic stucture of rectangular cross-section (thick-
ness = 1.02m, length = 2.29m, torsional parameter α = 1m−1).
The picture suggests that the twist confines the resonant mode
within the disc inscribed into the rectangular cross-section.

the axis of the guide (what is equivalent to a nodal value).
Besides, wnj (u, v) = λj(u, v) and

we
i (u, v) = λk(u, v) gradλl(u, v)− λl(u, v) gradλk(u, v) ,

(where λj is the barycentric coordinate of node j and the
edge i has nodes k and l as extremities) are respectively
the basis functions of Whitney 1-forms (edge element dis-
crete space W 1) and Whitney 0-forms (nodal element dis-
crete space W 0) [1].

Moreover, the use of the Whitney elements solves the
spurious mode problem in a way similar to the one of
the cavities [1]. To see that, it has to be noticed that the
penalty term (19) involving the divergence is not intro-
duced in the discrete formulation (20) because the use of
Whitney elements guarantees the nullity of the divergence
in a weak sense.

As the eigenvalue problem involves, on the one side, ω2

only and, on the other side, both β and β2, a more classical
(though generalized) eigenvalue problem is obtained by
fixing β ∈ R+ (rather than ω2) and looking for (ω2,E)
satisfying the discrete spectral problem AE = ω2BE

Such problems involving large sparse Hermitian matri-
ces can be solved using Lanczos algorithm that gives the
largest eigenvalues. Physically we are in fact interested in
the smallest eigenvalues and therefore A−1, the inverse of
A, instead of A itself must be used in the iterations. Of
course, the inverse is never computed explicitly but the
matrix-vector products are replaced by system solutions
thanks to a GMRES method. It is therefore obvious that
the numerical efficiency of the process relies strongly on
Krylov subspace techniques and the Arnoldi iteration al-
gorithm. The practical implementation of the model has
been performed thanks to the GetDP software [2].
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5 Perspectives

In this paper, we have presented a simple algorithm to
analyse twisted heterogeneous waveguides of constant cross-
section. We have illustrated our procedure with a simple
case of a homogeneous metallic rectangular waveguide,
but it goes without saying that our algorithm can tackle
more complex geometries such as micro-structured fibres.
On the long run, we wish also to relax somehow the as-
sumptions on the matrices of permittivity and permeabil-
ity to be able to explore the properties of waveguides with
negative refractive index such as so-called thin-loop wires.
This could be done by considering some small imaginary
part for ε and µ (hence complex frequencies).
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