a3

Engineering Analysis with Boundary Elements 13 (1994) 193-200
© 1994 Elsevier Science Limited

Printed in Great Britain. All rights reserved
0955-7997/94/%07.00

Boundary elements and singular integrals in
3D magnetostatics®

A. Nicolet

University of Liege, Department of Electrical Engineering, Institut Montefiore,
Sart Tilman-B 28-4000 Liege, Belgium

(Received 19 April 1993; revised version received 25 October 1993; accepted 12 November 1993)

Vector and scalar potential formulations of magnetostatics are compared and the
meaning of vector singular kernels is explained. The numerical computation of
the integrals involving those kernels is discussed and a method to avoid
computation of nearly singular kernels arising in the computation of thin

structures is presented.
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INTRODUCTION

The boundary element method! is now a well estab-
lished method in computational electromagnetics® and
particularly in magnetostatics. There are several formu-
lations of this problem depending on the choice of the
unknowns: fields, potentials, equivalent charges or
dipoles. Due to the structure of electromagnetism, for
each of these choices there are two dual possibilities.
For instance, potential formulations may be based
on a magnetic vector potential A such that B = curl A,
or on a magnetic scalar potential ¢ such that
H = —grad ¢.

Note that this latter formulation is only possible in a
current-free region. Moreover, topological constraints
must be imposed on this region in order to have a single
valued potential. The corresponding indirect methods
are based on a single layer of electric current for the
vector potential formulation and on a single layer of
magnetic monopoles for the scalar potential formula-
tion. The main difference between the two formulations
is that one is a vector formulation and the other is a
scalar formulation. While the scalar case may be con-
sidered as a paradigmatic problem of boundary element
analysis, the vector case is less studied. Nevertheless, the
meaning and the numerical evaluation of the singular
kernels require attention.

*This text presents research results of the Belgian programme
on interuniversity poles of attraction initiated by the Belgian
State, Prime Minister’s Office, Science Policy Programming.
The scientific responsibility is assumed by its author.
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SCALAR AND VECTOR FORMULATION OF 3D
LINEAR MAGNETOSTATICS

The problem of linear magnetostatics in a current-free
region is considered here. Topological problems are
required to be solved in order: to have a single valued
scalar potential. In such a region, the equations to be
solved are:

curlH=0 (1a)

divB =0 (1b)
The scalar potential ¢ is defined by:

H = —grad¢ 2)

in order to satisfy eqn (la) and the equation for ¢ is
found by introducing eqn (2) in eqn (1b):

—divgrad¢ = —-A¢p =0 (3)
The vector potential A is defined by:
B =curlA 4)

in order to satisfy eqn (1b) and the equation for A is
found by introducing eqn (4) in eqn (1a):

curlcurl A = —AA 4+ graddivA =0 (5a)

In magnetostatics, the Coulomb gauge div A = 0 is often
chosen in order to have unicity of A. In this case, the

equation for A is:
~AA =0 (5b)

The corresponding boundary integral formulations for
eqns (3) and (5b) are, for a domain D of boundary
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0D, respectively:
KP)o() = §[6(p,0)erad 8(0)-n(a)

- —(grad, G(p,q) -n(9))¢(¢)]dOD  (6)
h(p)A(p)
—G(p,q)(curl A(g) x n(g))
= +(A(q) -n(q)) grad, G(p, )
"L +(Ag) x n(@)) x grad, G(p,q)

where p is the field point; g the source point; and G( p, q)
is the free space Green function of the 3D (scalar)
Laplace operator (Fig. 1):

daD (7)

1

I
grad, G(p,q) = —grad, G(q,p) = )

withr=p—gandr=|p—gq|.
The various terms in eqn (7) may be rearranged to
obtain the following form:?

h(p)A(p)

—G(p,q)(curl A(g) x n(q))
- —A(q)(n(q) - grad, G(p,q))

+A(g) x (n(q) x grad, G(p,q))

h( p) is a coefficient depending on the position of point p
with respect to the domain D; 4( p) is equal to the solid
angle under which the domain D is seen from point p,
expressed in steradians, and divided by 4. If the point
is inside the domain A(p) =1, if the point is outside
h(p) =0 and if the point is on a smooth part of the
boundary A(p) = 1/2.

The two terms in the second member of eqn (6) may
be interpreted respectively as the contributions of a
single and a double layer of magnetic monopoles. The
three terms in the second member of eqn (7) may be
interpreted respectively as the contribution of an equiva-
lent single layer of current, a term producing no
magnetic field (its curl is equal to zero and it is related
to the gauge choice) and the contribution of an equiva-
lent double layer of current.

doD (8)

Fig. 1. 3D Green function.

SINGULAR KERNELS

Integrals involving singular kernels must be carefully
defined. It is well known that the function 1/x% is
integrable on ]0,4q] if § < 1.

Nevertheless, an integral as:

b1
J ;dx a<0,6>0 9)
may be given a definite meaning.

The Cauchy principal value is defined as:*

b1 -1 b 1
va —dx = lim (J —dx+J —dx) (10)
aX e—0\Jg X e X
Although the individual terms of the right-hand member
are meaningless, the skewsymmetry of the integrand
with respect to the singularity leads to a cancellation
of the divergent parts and allows the convergence of
the whole expression.

Note that if the integrand is integrable in the classical
sense, the Cauchy principal value corresponds to the
value of the classical integral.

The problem is to generalise the concept of Cauchy
principal value to the multiple integrals of the vector
integral formula (7).

The Cauchy principal value is defined as:’

w j K(p,q)f(g)dOD
oD

= lim K(p,q)f(q)doD (11)

5_’0J3D—-{r55}
where:
p is a point in space, g is a point of 4D,
0D is the boundary of a domain D,
K(p,q)isa (possibly vector) kernel singular forp = q,
f(g) is a smooth and bounded function on dD.

This definition of the principal value is similar to the
one-dimensional one in the sense that an infinitesimal
symmetrical neighbourhood of the singularity is
removed where the divergent contributions are sup-
posed to cancel each other. Here, this neighbourhood
is the set of points of 8D whose distance from p is less
than e. The principal value is the limit for € tending to
zero. Again, this definition corresponds to the classical
integral when this one exists.

Definition (11) may be straightforwardly generalised
to the case of vector integrands by considering each
component separately.® In the case of a singular kernel
it is interesting to study the contribution of the e-neigh-
bourhood in order to obtain information on the nature
of the integral.

The boundary 9D is smooth and e is supposed to be
small enough in order to consider the neighbourhood
of the singularity as a disc D, of radius ¢ (Fig. 2).
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Fig. 2. Neighbourhood of the singularity.

As the function f(q) is smooth and bounded it may be
developed in series of the radial coordinate r:

f(@) =f(p) +rg(6) + 0(?) (12)

The interesting term is the constant f'( p) because higher-
order terms in r weaken the singularity of the integrand.
In this case, the constant factor f( p) may be taken out
of the integral. As the neighbourhood of the singularity
is a flat disc, n(q) is a constant vector and it is only
necessary to discuss the behaviour of the kernels for
n(g) =n(p) =n.

In the case of expression (8), it is only necessary
to consider the integral of the kernels G(p,q),
n-grad, G(p,q) and nx grad,G(p,q). The kernel
grad, G(p,q) which will be encountered in the indirect
formulation will also be discussed here.

The point p is at a distance S from the boundary and
P is its orthogonal projection on the boundary; n is the
exterior normal vector at point p'; D, is the disc of radius
¢ and centre p’; and ¢ is a point of the disc whose dis-
tances respectively with p and p’ are R and r (Fig. 2).
The contribution of D, to the integrals of eqn (8) will
be evaluated and the singular case will be considered
by taking the limit for p tending to p', i.e. S tending to
zero. Then the limit for ¢ tending to zero will be
taken. Note that the order of evaluation of those limits
is important.

Kernel G(p,q)

The contribution of D, for this kernel is:

2T e 1
Ce_ JDEG(p,q)dS J JﬁrdrdG

1 r LW 2‘
"2Jo r2+szd’“[2” +S]

0

=3(Vet+ 82 -18)) (13)

le]

lim lim C, = lim— =0 (14)

e—0S—0 e—0

The singular kernel G(p, ¢) is integrable and does not
lead to any discontinuity across the boundary.

Kernel n-grad, G(p,q)

The contribution of D, for this kernel is:

c —J n-grad, G( )ds—r”r“ R drde
e = D, grad, G(p,q = 0 R

sl - s
2Jo (VF +52 Vi + 52
1
=3 (sgn(S) 2+S ) (15)
hn}) lim C, = IIII(I) sgn(S) = $sgn(S) (16)

The smgular kernel n-grad, G(p,q) is integrable but
it introduces a discontinuity across the boundary.
Indeed, for an interior point:

Slina_ 1sgn(S) =-1 (17)

and for an exterior point:
lim _3sgn(S) = +3 (18)

The integral §5,A(q)(n(q)-grad, G(p,q))d0D has a
discontinuity equal to the one of h(p)A(p), the left-
hand member of eqn (7). Physically, this may be inter-
preted as a double layer of current that introduces a
discontinuity of the potential.

When the point p is on the boundary, sgn(S) = 0.

The kernel n(q) - grad, G(p, q) will be denoted G /dn
and the following notation is introduced for the
integrals:

* 8 1 BG
+ lim J Ag )-é)EdaD] (19)
— 0~ oD
Then
. oG
SILna_ LD A(q) Ed@D

= J A(q) (c?)n doD — %A(p) (interior limit) (20)

limJ A(q)——dc')D

ZJ* Al )—d8D+ A(p) (exterior limit) (21)

Kernels n x grad, G(p,q) and grad, G(p,q)

The kernels n x grad, G( p,q) and grad, G(p,q) are not
integrable. Nevertheless for every point ¢ of D, with
a position r corresponds a point ¢’ of D, with a position
—r and the kernels n x grad, G(p, q) and grad, G(p, q)
are  skewsymmetrical  because  grad, G(p,q) =
—grady G(p,q).

Thanks to this skewsymmetry, the global contribution
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C, of D, is equal to zero by cancellation of the divergent
contributions. This is a particular case of an important
class of improper integrals with a skewsymmetrical
kernel for which a principal value may be defined.

Contributions involving such kernels must be taken in
the Cauchy principal value sense. Note that this kind of
term arises only in the vector case.

In the case of a non-smooth boundary, the Cauchy
principal value may still be defined for a point on an
edge or on a corner.®

INDIRECT BOUNDARY ELEMENT METHOD

The principle of the indirect boundary element method
is to consider not the vector potential and its normal
derivative as unknowns, but rather the equivalent
surface currents as unknowns. It is therefore necessary
to find an integral equation for these currents.

A boundary 8D between a domain D, and a domain
D, is considered. The quantities related to these domains
are noted with the indices 1 and 2 of the corresponding
domain. The outer normal of the domain 1 is chosen as
the common normal (n = n; = —n,) and, for a smooth
part of the boundary, equation (7) can be written:

()= || [-6(pa)(cur Au(g) x n(g))] oD

+ [ 141@) 0@ grad, 6(p,0
(A1(g) x n(q)) x grad, G(p,q)]dOD (22)

+
1A, (p) = J [+G(p,q)(curl Ay(g) x n(g))]doD

- [ [(4ale) n@) 2rad, 65,0
D

+ (As(q) x n(q)) x grad, G(p,q)]ddD (23)

The vector potential is continuous across the boundary:
A = A, = A,, but its derivatives are not and the sum of
eqns (22) and (23) is:

A(p) = | 6(p@)leurlAs(q) n(o)

—curl A (g) x n(q)]doD (24)
The following notations are introduced:
curlA; x n =By
curlA; x n= B,
By — B, = AB; (25)

Note that the B, are not the tangent components of flux
densities, i.e. their projections on the tangent plane, but
their projections rotated by 90° in this plane. Equation
(24) can be written:

A(p) = LD G(p, 4)AB,() 4D (26)

In order to eliminate the vector potential from eqn (26),
the vector product of the curl of expression (26) is taken
with n( p):

curl, A(p) x n(p)

- LD curl,[G( p, 4)AB,(g)] x n(p)doD

- Lp[grad,, G(p,9) x ABy(g)] x n( p) ddD

T Jap[gradq G(p,q) x ABy(9)] x n(p)doD (27)

The integrand can be written:

(grad, G(p,q) x ABy(g)) x n(p)
= (n(p) - grad, G(p,q))AB(q)
— (n(p) - ABy(q)) grad, G(p, q) (28)

According to the discussion of singular kernels, the first
term of the right-hand member of eqn (28) leads to a
discontinuity across the boundary while the second
term must be understood in the Cauchy principal
value sense. (Nevertheless, n( p) - AB;(g) vanishes when
p =gq and this weakens the singularity.) Introducing
the starred integrals, eqn (27) splits in:

Ba(p) = - | [grad, G(p.g) x ABy(g)
x n( p)ddD + ABZ( ?) (29a)

Ba(p) = - | [erad, G(p,g) x ABy(g)
x n(p)ddD — é%(—@ (29b)

The average value on the boundary of the tangential flux
density is defined by:

Ba(p) =522 = [ larad, G(p.q) x ABy(g)
x n(p)doD ‘ (30)

The tangential magnetic field is continuous and that can
be written:

By Pty By Pom 61)

H1 2 H2 H2
Equation (31) shows that the value of the discontinuity
of the tangential flux density is proportional to the
average value:

Hy — [
AB; = -2 B, = —20B 32
(=2t 2, — 08, (32)
One poses AB; = K, with g the free space magnetic
permeability, in eqn (30) in order to bring about
equivalent currents (the dimension of K is the one of a
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surface current density):

%(P) —q J;D[gradq G(p,q) % 1oK(g)]

x n(p)doéD (33)

This is a Fredholm vector integral equation of the
second kind for the equivalent currents. This result
may be interpreted in terms of an equivalent system: if
the medium D, of permeability px; and the medium D,
of permeability u, are replaced by a uniform medium
of permeability uo (free space) and by a surface current
density satisfying eqn (33), then the vector potential and
the magnetic flux density will be the same in both cases
(but not the magnetic field).

Note: K = 0 is obviously a solution of eqn (33). This is
because no excitation has been introduced in the prob-
lem. The influence of sources is taken into account by
introducing their contribution Bj, to By:

E&ISZ_(_’Q =0 U;D[gradq G(p,9) x noK(q)]

x n(p) daD —B:o(p)] (34)

In the case of the scalar potential, the indirect formula-
tion leads to a single layer of magnetic monopoles pp,.
In this scalar case, the computations are strictly identi-
cal to the two-dimensional ones. They can be found
for the two-dimensional vector potential in Ref. 7. The
difference between the scalar potential and the vector
potential is that the vector potential A, the magnetic
flux density B, the tangential flux density By, the
magnetic permeability g and the equivalent current
density K exchange their roles with the scalar potential
¢, the magnetic field H, the normal magnetic field H,,
the magnetic reluctivity v (the inverse of the magnetic
permeability) and the equivalent magnetic monopole
density py,, respectively. Moreover:

1 1
=W _pa M1 _ M —#2=_Q (35)
ntu i_l_i K1t Ko

Ha2

and the integral formula for p, is:

E‘i’@ = -0 H* [grad, G(p, q) -n(p))

2u0 oD
x Pm(@) 4op _ Heo( p)] (36)
Ho
NUMERICAL INTEGRATION

The practical use of formulae (6) and (7) in numerical
computations involves the numerical integration in the
Cauchy principal value sense.

Fig. 3. Triangular meshing and neighbourhood of p.

As an example consider a surface mesh of triangular
linear elements and a point p located on one of its
nodes. The surface around p is then made with pieces
of planes (Fig. 3). On each of them, the vector potential
A varies linearly and may be expressed as:

A(gq) = A(p) +ra(0) (37)

where A(p) is a constant vector; a(f) is a vector field
that depends on the nodal values of A; and r is the
distance between the points p and q.

The term of eqn (7) that requires a principal value
evaluation may be expressed on an element A as:

JA A(g) x "—(%—rcm

- JA Alp) x MDXEgn 4 JA ra(9) x %’Sm

r

— A(p) x L%«m

6, (1(6)
+J|J ra(9)x2£g)3—x-—1:rdrd9
0 r

6o

— A(p) x JA%M

+ r' J;(o) a(6) x Mdrde (38)

0

Because of the cancellations by skewsymmetry, a section
of a finite disc may be removed from the integration
domain of the first term. This operation is only
meaningful when all the elements are gathered together
with a unique given radius for the sections removed.
Considering all the elements, this corresponds to
removing a finite part of the integration domain whose
contribution is equal to zero. The remaining part of
the integration domain does not contain any singularity
and may be easily evaluated. The second term is an
integral that may be taken in the classical sense.
Another possibility to evaluate numerically such a
principal value is to fold the integration domain such
that the divergent terms cancel each other.?

For the other kinds of integrals that must not be
considered in the Cauchy principal value sense, there
exist several more or less classical methods based on
changes of variable and adaptive quadrature rules.’
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ELIMINATION OF NEARLY SINGULAR
INTEGRALS IN THIN MAGNETIC STRUCTURES

Nearly singular integrals arise when analysing thin struc-
tures. Moreover, care is necessary in the numerical evalua-
tion of these integrals because the equations for nodes
close together are very similar and the algebraic system
is ill-conditioned. The error on the numerical coefficients
must be at least one order of magnitude inferior to their
small difference. While there exist efficient methods for
the evaluation of nearly singular integrals,9 the most effi-
cient and robust way to deal with thin structures is prob-
ably to eliminate those nearly singular integrals in the
theoretical formulation of the method.>”!® The purpose
of this section is to design such a method in the case of
vector and scalar three-dimensional magnetostatics.

The starting point is the application of the indirect
boundary element method to a thin magnetic plate
(Fig. 4). In this case, a thin magnetic plate of thickness
e and of permeability p3, which separates two media
of respective permeabilities p; and u,, is replaced by a
surface current density K; on one side and by a surface
current density K, on the other side.

As the two layers of current are extremely close to
each other, the approximation is to consider those two
layers K; and K, as the superposition of a single layer
of current Kg and a double layer of current Kp at the
middle of the plate and defined by (see the signs of K;
and K, on Fig. 4):

KS = K1 - K2 (39)

Kp = (K; +K3)/2 (40)
The equations for Kg and Ky must of course take into
account the mutual influence of K; and K,.

Using starred integrals with singular kernels, integral equ-
ations for K; and K, can be written (see eqns (33) and (34)):

—L [grad, G(p1,q) x 1oK,(q)]
xmy(p;)dl’

poKi(p1) _ Q13

2 - L [grad, G(p1,q) % 1oKa(q)]
xny(p;)dl — By (py) i

(41)

L lgrad, G(p2,9) X 1oKa(q)]

1
1oKa(pa) Q x my(py)dl’
——— =1y

2
- J; [grad, G(p2,q) x 1oKy(q)]
2
xmy(py) AT — By p2) i
(42)
with
H1— M3

Q=0"8 43
BT+ s “3)
Qp = Ha — U3 ( 44)

M2 + 3

Fig. 4. Equivalent currents for a thin magnetic plate.

In eqns (41) and (42), the first term of the right-hand
member represents the self influence of the current
layer of the corresponding side, while the second term
is the influence of the other layer on the opposite side.
The third term is the influence of all the other sources.

In order to obtain a dipole approximation, the limit is
taken of the thickness e of the plate tending to zero. In
this case, the two sides I'; and I'; tend towards the mid-
dle surface I' of the plate and points p; and p, tend
towards a common point p. As the two sides merge,
the integrals of the second term of the right-hand
member of eqns (41) and (42) become singular. This is
the point of the method: the nearly singular integrals
are replaced by singular integrals but which are already
involved in the boundary element formulation. The
normal n; = —n, to face 1 is chosen as the common
normal n for both equations. As the points p; and p,
merge, the exterior tangential flux density due to
external sources is the same on both sides:

lim By (p1) = lim By (py) = Bi(p) (45)
py—p p2—=p
Equations (41) and (42) can be written with starred
integrals:

+ J;[gradq G(p,q) x uoKi(q)]

I— oKz (p)

poKi(p) xn(p)d >

[l AV 7 o)
) 13

- J: [grad, G(p, q) % poKa(q)]
x n(p)dl’ — B{(p)

(46)
- J;[gradq G(p,q) % 1oKs(q)]
M=Qz3 Xn(p)dl‘_w
2 *
+ JP[gradq G(p,q) x poKi(9)]
x n(p)dl’ — Bi(p) ]
(47)

Common terms in eqns (46) and (47) are put together
and definition (48) is used:

- [ ferad, 6(p,0) x ki)

Biou(p) = x*n(p) @ 48)
+ L[gradq G(p,q) x 1K2(q)]

x n(p)dl’ + B{(p)
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The quantity B, ,,, may be physically interpreted as the
external tangential flux density on I, i.e. due to all the
sources except the local influence of K; and K,. As the
discontinuity of the tangential flux density is due to
this local influence, B o is continuous and well defined
on I'. Expressions (46) and (47) can be simply written:

Ki/2 = ~Q13(Btou/ko +K2/2) (49a)
K3/2 = =3 (B ou/Ho + K1/2) (49b)
After performing some algebra,z’7 the definitions (43),
(44), (39) and (40) of Qy3, 23, K5 and Kp and formulae
(49a) and (49b) for K; and K, lead to the following final

expressions for the equivalent single and double layers
KS and KD:

KS — _2/'1’1 — 2 BIOUI (50)
My Ho Mo
mim
2 t out
Kp =— 51
D H +:u'2 Lo ( )
2

A model for thin magnetic plates has been obtained in
terms of equivalent currents. It is now possible to
extend this model to the direct boundary method by
finding equivalent transmission conditions for the
vector potential and tangential flux density. Those con-
ditions may be directly deduced from the current
densities. The single layer density Kg in the equivalent
situation corresponds to a discontinuity of the tangen-
tial flux density in the real situation, and the double
layer density Kp corresponds to a discontinuity of the
vector potential. That can be written as:

poKs =By, — By (52)
roeKp = Ay — Ay (53)

where the indices 1 and 2 are for the opposite sides of
the plate. Note that in this case the relevant quantity is
not Ky, but the dipole moment eKp, i.e. the product of
the double layer density with the thickness of the plate.
It is in fact here and only here that the actual thickness
of the plate reappears as a parameter of the formulation.

B, ou:, defined by eqn (48), is the sum of all the exter-
nal influences except the local influence of the currents
K, and K,. B,,, combines with the discontinuous
contributions of K; and K, to the tangential flux
density to give the values B;; and By, for the opposite
sides outside the plate and the value B;, inside the
plate. The following relations are obtained:

Btin = Btout + l"OKl/2 + I—"OKZ/2

= Bt out T /J'OKD (54)
By = By ou — 10K1/2 + 10Ky /2
= Biou — HoKs/2 (55)

By =Biou+ NOKI/2 — poK32
= Btout +/‘LOKS/2 (56)

Bll=Btoul+u 2K -k 2K

\ |
< ‘\r
\

o Kp | 1 K
S Bun =By +HR R0

Fig. 5. Flux densities inside and outside the plate.

Those relations are graphically illustrated in Fig. 5. By,
B, and B,;, are the physical values of the tangential
flux densities inside and outside the plate while B oy
is only a fictitious quantity used in the computations.

The difference between eqns (56) and (55) gives eqn
(52) while their arithmetic mean gives:

Biow = (Bt2 + Btl)/z (57)

The combination of eqns (50)—(53) together with eqn
(57) gives transmission conditions involving only the
vector potential and the tangential flux density:

Bt py b (B B,)
2 11 +Bple _
T o 2 =A2 =4 (58)
2
B/ =Bo/u, (59)

This last equation is the classical relation expressing the
continuity of the tangential magnetic field across a
boundary between two media with different perme-
abilities. The tangential magnetic field is not perturbed
by the presence of the plate. The modelling of a thin
magnetic plate by the direct boundary element method
consists of considering the plate as a boundary between
two media and imposing the discontinuity of the vector
potential according to eqn (58) instead of its continuity.
Note that only the tangential part of the vector potential
is concerned with the discontinuity.

The modelling of thin magnetic plates in the frame-
work of the scalar potential model is also possible. In
this case, the computations are exactly the same as in
the two-dimensional case®’ but with ¢, H, and v
instead of A, B, and p, and they give:

v+ 1y ~
2 3 (Hy+Hple
ST 5 =¢,— ¢ (60)
2
Hy /vy = Hy /vy (61)
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CONCLUSION

The vector formulation of the three-dimensional mag-
netostatics requires a careful definition of the integrals
of the vector singular kernels involved. Beyond its
importance from a theoretical point of view, this is
necessary for the numerical computation of the
integrals. On the basis of these theoretical develop-
ments, a workable method for three-dimensional thin
magnetic plates which avoids the numerical computa-
tion of nearly singular integrals has been developed.
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