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Abstrat

T
HIS thesis is devoted to the development of omputer vision methods whih must

be robust to variations due to aquisition onditions and proessing in real-time

in appliative ontexts.

The objetive is to reate a touhless human-mahine interfae (HMI). At �rst, we de-

sribe the various problems whih are spei� to the existing databases. At the same

time we present the prinipal postures that ompose the ditionary of gestures whih

we retained. This leads us to onlude that we need to reate our own database. In a

seond phase, we are interested in a gesture reognition system that an be deomposed

into 3 steps: detetion, haraterization and reognition.

In the detetion step we mentioned two types of detetion methods: one for stati

gestures and the seond for dynami gestures (movements), we adapt optial �ow teh-

niques to hand detetion. This adaptation allows us to extend the detetion of stati

gestures regardless of the olor of the skin and trak the trajetory of the hand in a

video stream.

The haraterization step ommits in transforming an image into a set of signals whih

haraterizes a learly de�ned posture by its ontour. We notie that a hand ontour

is generally non star-shaped, so we apply the methods adapted from array proessing

to this type of ontours whih have given previously onvining results. We propose a

new signature whih involves the generation of signals. We desribe the generation of

di�erent signals and we show the various invariane properties of this new harateri-

zation method.

The proposed signature is a sparse matrix of onsiderable size, hene our proposal to

apply prinipal omponent analysis (PCA) to redue the dimension of matrix signa-

ture. We also redue the dimension of the test voabulary set, through a �rst rejetion

test based on a geometri riterion (the isometri rate). The basi priniples of the

reognition step are as follows: a learning phase permits to de�ne a set of referene

signatures. In the subsequent test phase, the signature obtained from the tested images

is ompared with the referene signatures.

We present reognition results obtained with dimension redution by PCA and by

adopting the Eulidean and Mahalonobis distanes. Comparative methods are also

onsidered: we disuss the advantages and limitations of our methods, the reognition

rate and the omputational load.

Keywords: Hand posture; gesture reognition; lassi�ation algorithm; prinipal

omponent analysis; biometris; array proessing; optial �ow; hand database; human-

omputer interation.





Résumé

C
ETTE thèse est onsarée au développement des méthodes de vision par ordina-

teur robustes aux variations dues aux onditions pratiques et exploitable en temps

réel dans des ontextes appliatifs.

L'objetif est de réer une interfae homme-mahine sans ontat. Dans un premier

temps, nous dérivons les di�érents problèmes spéi�ques aux bases de données exis-

tantes et les prinipaux postures qui vont servir pour onstruire et �xer le ditionnaire

de gestes qui nous avons retenu. Ce qui nous à onduit à onlure à la néessité de

réer notre propre base de données. Dans un deuxième temps, nous nous sommes in-

téressés au système de reonnaissane gestuelle qui peut être déomposé en 3 étapes :

la détetion, la aratérisation et la reonnaissane.

Dans l'étape de détetion nous avons mentionné deux types de détetion: la première

pour les gestes statiques et la seonde pour les gestes dynamique (mouvements), nous

montrons l'adaptation des tehniques de �ux optique pour la détetion de la main.

Cette adaptation nous permet d'étendre la détetion de gestes statiques indépendam-

ment de la ouleur de la peau et de suivre la trajetoire de la main dans le �ux vidéo.

L'étape de aratérisation onsiste à transformer une image en un ensemble de sig-

naux qui aratérise une posture lairement dé�nie par son ontour et qui permet

de omparer es ritères ave des ritères de postures stokées et dé�nis à l'étape

d'apprentissage. Nous notons que le ontour de la main peut être un ontour non

étoilé, par onséquent, nous appliquons des méthodes de traitement d'antenne qui ont

déjà donné de bons résultats pour e type de ontours.

Nous détaillons la génération de di�érents signaux et nous montrons les di�érentes

propriétés d'invariane de ette nouvelle méthode de aratérisation. La signature pro-

posée est une matrie reuse de taille onsidérable, d'où nous avons proposé d'appliquer

l'analyse en omposantes prinipales (PCA) pour réduire la dimension des données.

Nous réduisons également la dimension de l'ensemble de voabulaire de test à travers

un premier rejet basé sur le ritère géométrique (taux isométrique).

Nous présentons les résultats de la reonnaissane obtenus ave rédution de dimension

par PCA et en adoptant les distanes eulidienne et de Mahalonobis, et nous les om-

parons ave d'autres méthodes. Finalement, nous disutons les avantages et les limites

de nos méthodes ainsi que le taux de reonnaissane et le temps de alul.

Mots lé: Posture de la main; reonnaissane des gestes; algorithme de lassi�ation,

analyse en omposantes prinipales; biométrie, traitement d'antenne, �ux optique, in-

teration homme-mahine.
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Introdution

General ontext

T
HE subjet of our researh onerns the oneption and the development of meth-

ods of omputer vision for hand gesture reognition. Our work is inserted in the

design of a human-mahine interfae whih aims transforming a lassial sreen in an

interfae without ontat and at allowing the use of the �nger as a pointing devie. The

hand gestures are a natural and intuitive way of ommuniation whih allow humans

to interat with their environment. They permit to designate or manipulate objets,

to enhane the speeh, or to ommuniate basially in a noisy environment. They an

also represent a language in its own right with sign language. Gestures an have a

di�erent signi�ation depending on the language and ulture : the sign languages in

partiular are spei� to eah ulture.

Thinking on what to use as gestures or postures is neessary, to ensure that users an

intuitively realize them, or with a limited period of learning. What gestures should

you use? Are they easy to reprodue? To what ations are they intuitively assoiated?

These are the questions that should be asked while building a gesture database.

In general, the gesture is assimilated to all the movements of a body part. The hand

gesture is both a means of ation, pereption and ommuniation.

For Cadoz [25℄, the gesture is one of the rihest way of ommuniation. Thus, in the

�eld of Human-Mahine Interfaes (HMI), the hand an be used to point (to replae the

mouse), to manipulate objets (for augmented or virtual reality), or to ommuniate

with a omputer through gestures. Compared to the a�uene of information onveyed

by hand gestures, the possibilities of ommuniation with omputers are redued today

with the mouse and keyboard. The man-mahine interation is urrently based on the

WIMP (Window, Ion, Menu, Pointing devie) paradigm that presents the funtional

basis for a omputer graphial interfae.

The majority of operating systems are based on this onept, with a pointing devie,

usually a mouse, whih allows to interat with graphial elements suh as windows,

ions and menus, we an say with a more intuitive way than the textual interfae

(ommand line). Using hand gestures, the interfae beomes pereptual (PUI 3).

The gesture reognition systems �rst used eletroni gloves with sensors providing the

hand position and angles of the �nger joints. But these gloves are expensive and
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bulky, hene the growing interest for the methods of omputer vision. Indeed, with

the tehnologial progress and the apparition of heap ameras, it is now possible to

develop systems of gesture reognition based on omputer vision, running in real time.

However, the hand being a omplex organ, deformable, having a many degrees of liberty

in the joints, it is di�ult to reognize its form images without some limits and priors.

Indeed, human beings an naturally perform a very large number of di�erent gestures.

With the development of aquisition tehnologies and gesture reognition teh-

niques, many appliation domains have emerged :

• Reognition of sign language.

• The Virtual reality, where the hand is used to manipulate virtual objets and

trigger ations, or navigate within a virtual environment.

• The Augmented reality, where the physial world is inreasing with virtual infor-

mation, for example by a retro-projetion.

• The Multimodal appliations, ombining gesture with other means of ommuni-

ation, suh as speeh or faial expressions.

• The Coding and the transmission of gestures with low output for Tele-onferene.

• The biometry, for the reognition of persons with the hand form.

Subjet of researh and industrial ontext

We aim at developing omputer vision methods that meet spei� riteria, in an

applied ontext. Indeed, omputer vision o�ers many possibilities, but some solutions

are not suitable for our appliation, mainly beause of a lak of robustness to the

atual onditions or too muh omplexity to be implemented in real time.

For eonomi and hygiene reason, this projet is based on the development

of a touhless human-mahine interfae, and allows to transform a lassi sreen

into a tatile one. Manipulating an interfae without having to touh it redues

the maintaining osts, generalizes its use thanks to hygiene standards, and makes

interation more onvivial. The industry ollaboration behind this thesis has guided

the hoie of the materials used, the seleted methods and onstraints to solve.

The thesis was onduted in the ontext of a projet funded by the PACA re-

gion (Provene-Alpe-Cote d'Azur) and the �rm Intui-sense tehnologies. Intui Sense

provides interative solutions with intuitive interfaes based on innovative touhless

tehnologies for retail appliations, in partiular for the vending industry.

Among the onstraints imposed and to resolve, we ite:
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• ameras of low-ost types,

• proessing in real-time,

• methods must be robust to aquisition onditions,

• onstraints imposed on users should be minimal,

• presene of other objets in the �eld of amera,

• treatment of fast and slow motion.

A study of the literature on the �eld is neessary and will allow us to analyze

the di�erent approahes and hoose the most suitable approah to our appliation.

We then propose tehniques to implement the various steps of a gesture reognition

system, deomposed aording to the following sheme:

1. for eah frame:

• detetion and segmentation of the hand,

• extration of features representing the posture of the hand,

• extration of the enter of the hand,

• reognition of gestures from a prede�ned set (ditionary).

2. for the video stream:

• trak of the enter of the hand to determine its trajetory

Organization of the manusript

This manusript is organized in two parts.

1. A �rst part onsists of two hapters:

• Chapter 1 presents the state of the art of the whole proess of gesture reog-

nition proess. This hapter is divided into three setions: setion 1.2 that

inludes various methods and tehniques used for the detetion and segmen-

tation, setion 1.3 is devoted to the aspet of haraterization and extration

of features that an well desribe the same posture with di�erent transfor-

mations, setion 1.4 shows the di�erent tehniques used in the literature to

disriminate and distinguish di�erent lasses.

• In Chapter 2 we desribe the di�erent problems of existing databases and

di�erent postures whih allows us to build and �x our ditionary of gestures.

We dedue from these issues the neessity to reate our own database with

our postures. It seems very important to us to ondut this projet properly

forward.
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2. The seond part onsists of four hapters:

• Chapter 3 is devoted to the tools of image proessing adopted from array

proessing. We remind in setion 3.2 the detetion of straight ontours in im-

ages and in setion 3.3 we extend these methods to irular ontours. Setion

3.4 shows the tehnique to determine a blurred ontour. In the last setion

(3.5) we disuss the adaptation of these methods of array proessing to dis-

torted irular ontours. We fous on the haraterization of star-shaped

ontours whih are strongly distorted. Notiing that the hand ontour is ap-

proximately irular and very distorted, we deided to inlude these methods

in the haraterization of hand postures. However, it has been neessary to

adapt these tehniques beause none of them handles the ase of non star-

shaped ontours.

• Chapter 4 is devoted to the de�nition of a new feature extration method for

hand postures. We propose a new signature whih involves the generation of

signals. We detail how the di�erent signals are generated and we prove the

di�erent properties of this new haraterization method. Finally, we explain

the tehnique of dimension redution with PCA and its relevane.

• In Chapter 5 we de�ne the optial �ow tehnique, whih is used for trak-

ing and smoothness and we prove the adaptation of this tehnique for the

detetion of the hand. This adaptation allows us to extend the detetion to

olored people hand, whih was not treated yet.

• The �nal hapter (6) ontains the di�erent results and the whole proess of

our algorithm. We detail the di�erent preproessings used to improve the

di�erent proess steps. We present the results obtained with the new ap-

proahes used for the reognition and we ompare them with other methods.

Eventually we disuss the advantages and limitations of our methods as well

as the reognition rate and the omputation load.

We �nalize the manusript by a general onlusion, as well as further prospets.



Part I

State of the art and hand database





CHAPTER

1 State of the art

1.1 Introdution of the hapter

W
ITH the development of omputer systems and their ever growing embedded

presene into our daily life, the question of onvenient and natural types of

human-omputer interation beomes ruial. If user-omputer relationships have al-

ready evolved in that sense, going from umbersome text-based ommand lines to ded-

iated devies suh as mouse or pen, they still remain restritive. One way to simplify

the means of interating with omputers onsists in using hand gesture interfaes.

Two ways exist to turn hand gestures understandable by omputers. The �rst one

relies on the use of extra sensors, suh as magneti ones or data gloves. If these instru-

ments often help in olleting aurate information, they also at as a brake upon free

movements. The load of ables onneted to the omputer, indued by this approah,

indeed hinders the ease of the user interation. A less intrusive solution resorts to

vision-based systems. Even though it is di�ult to intend a generi interfae using

this tehnique, this approah has many appealing advantages. The most interesting

among these is undoubtly the naturalness of interation, whih results in a muh more

intuitive ommuniation between human and omputers. Many appliation domains

take interest in gesture interation, one an quote among others : omputer games

development, virtual reality, robot ontrol or sign language interpretation.

Systems that employ hand driven Human-mahine interfaes (HMI) interpret hand

gestures and postures in di�erent modes of interation depending on the appliation

domain. Previous works have onentrated on hand gesture lassi�ation [19, 115℄,

where gesture ommand is based on slow movements with large amplitude (see for

instane in [115℄ the twelve types of hand gestures). To our knowledge, future applia-

tions should onern the lassi�ation of hand posture, for the purpose of automated

sign language deoding for instane. Contrary to hand gesture, hand posture desribes

the hand shape and not its movement.

A hand an exhibit a great variety of postures, and it is extremely di�ult to

reognize all possible on�gurations of the hand starting from its projetion on a 2-D

image. Indeed, some parts of the hand an be hidden. It is neessary to onsider

subsets of postures depending on the appliation. Di�erent tehnologies have been
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developed in order to reognize gestures. It is therefore di�ult to ahieve a state

of the exhaustive art of the �eld. We try, in this hapter, to present a state of the

art of some approahes based on omputer vision in the ontext of Human-Mahine

Interfaes. Generally, a gesture reognition system an be deomposed in several steps:

detetion, haraterization and reognition. The questions that arise here, and for

whih we have responded in di�erent setions are the following: how an we detet the

hand in any sene? How an we haraterize the hand numerially? What methods

are used to lassify or rather reognize the type of posture?

1.2 Hand detetion

A hand is the soure of a wide variety of postures. Di�erent devies allow intera-

tion with a omputer through the hand (mouse, data gloves, touhes sreens, ...).

However, these devies have some limitations. Moreover, the sienti� and tehnial

developments o�er new possibilities of interation, more natural and intuitive, based

on gestural hannel. There are many appliations suh as the augmented or virtual

reality, the reognition of sign language, the ontrol artiulated arms, or the biometris.

One of the more developed appliations onsists on making an interative surfae. In

detetion step we an distinguish two main ategories of gestures: stati gestures and

dynami gestures.

1.2.1 Stati gestures reognition

The basi aim of this step is to optimally prepare the image obtained from a amera in

order to extrat the features in the next step. How an optimal result looks like depends

mainly on the next step, sine some approahes only need an approximate bounding

box of the hand, whereas others need a properly segmented hand region in order to get

the hand silhouette. In general, some regions of interest, that will be subjet of further

analysis in the next step, are searhed in this phase.

The most ommonly used tehni to determine the regions of interest is skin olor

detetion. A previously reated probabilisti model of skin-olor is used to alulate

the probability of eah pixel to represent some skin. Thresholding then leads to the

oarse regions of interest. Analysis of the skin olor is used to detet the fae and

hands. Indeed, Jones and Rehg [63℄ have shown that skin olor has a harateristi

distribution in ertain olor spaes, and that this property an be used to segment

regions of skin olor, regions are delimited by ontours.

A rule of thumb about ontour haraterization methods suh as Fourier desriptors

[19, 34℄ is that they require a binary image I, possibly noise-free. The same onstraint

holds in the frame of our work. To perform hand ontour detetion, some lassial pre-

proessing methods have been applied in previous works [15, 16, 19, 34℄: the Y CbCr

mapping, using the Y CbCr spae, whih onsists of a luminane omponent (Y ) and
two hrominane (Cb and Cr) and the seletion of the Cb omponent, emphasize the
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hand surfae with respet to the bakground. The transformation is linear with the

RGB spae. The non-moving bakground is then removed, by substration of a frame

where the hand is not present.

Figure 1.1 � Hand segmentation examples: (a) and (b), on a gray image from the Triesh

database, with threshold; () and (d) from internal database, with thresholds on Cb and Cr .

There are many other olor spaes, the most used are RGB, HSV and YCbCr.

Phung et al. [89℄ ompared the performane of these spaes and they found out that

the results are very similar, regardless of the olor spae. Thus, the hoie of a olor

spae must be depending on the format of the images and any pre-treatment. Some

further analysis ould for example involve the size or perimeter of the loated regions

in order to exlude regions suh as the fae.

In [99℄, Soriano et al. propose a dynami skin olor model, for a segmentation

purpose. Their method opes with hanges in illumination. However, their method

is applied to faes and not to hands. In [112℄, a set of relevant grey level values are

seleted from hromati histograms to segment fae. To reate a hromati histogram,

an HSI mapping is performed, and a 2-D map of the ouples (H,S) for eah pixel is

omputed. The hromati histogram exhibits the advantage of being insensitive to

saling, and rotation. However, authors must ombine the hromati histogram with

the prior knowledge of the approximate shape of faes to detet them. The main

drawbak of Y CbCr or HSI mappings is that they do not handle hands of olored

people.

Yet another interesting approah is to use a previously aquired image of the bak-

ground, substrating it from the image with the posture, as proposed in [95℄. Based

on perimeter lengths, the hand region an then be extrated.

1.2.2 Dynami gestures reognition

A dynami gesture orresponds to a time variation in the shape and the position of

the hand. The �rst hallenge is to loate temporally the realization of a gesture, that

is to say, to determine the start and end of the gesture. A gesture is divided into three

stages: a preparatory phase, gesture, and withdrawal phase. A major di�ulty arises

from the variation of the period of exeution of a same gesture. It is therefore neessary

to perform temporally normalization of the duration of the observations.
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The Dynami Time Warping (DTW) ompares two temporally sequenes of di�er-

ent lengths, strething or reduing their length, implying that the beginning and end

of the gesture are determined. Darrell and Pentland [36℄ use this method: gestures are

modeled by sores of orrelation with a set of models, whih are aumulated to form

a signature. The Dynami Time Warping allows omparing signatures.

Figure 1.2 � Dynami gestures: (a) MEI and MHI [14℄, and (b) signature of a dynami gesture

by superimposing the skeletons of sequene images [59℄.

Bobik and Davis [14℄ use temporal models for the reognition of human movement:

the "image of the motion energy" (MEI), and the "image of the movement history

"(MHI). These images are formed by the aumulation of motions of eah pixel over

a time window (see �g 1.2 (a)). The images are desribed with the invariants of Hu,

and gestures are lassi�ed using the Mahalanobis distane. Ionesu et al. [59℄ propose

a method for dynami gesture reognition based on skeletons. Stati signatures of the

beginning and the end of gestures are alulated with a Histogram of Oriented Gradient.

The dynami signature is obtained by superimposing the skeletons of sequene images

(see �g 1.2 (b)). Zhu et al. [115℄ segment the hand with the olor, assoiated with

motion detetion.

The spatio-temporal representation of a gesture is made with motion estimation

based on a parametri model and a desription the shape of the hand with the geo-

metrial moments. After a temporal normalization with a method of linear sampling,

the reognition is performed with a distane with models that were learned previously.

In their appliation, 12 gestures are used to navigate with a panorami view. Kong

and Ranganath [68℄ use a hierarhial approah to reognize 3d trajetories, periodi

or not (see �gure 1.3). The detetion of periodiity is based on Fourier analysis. The

trajetories are then reognized with a variant of the ACP.

The Hidden Markov Models (HMM) have been suessfully used for long time in the

�eld of speeh reognition. By analogy, they have been used for gesture reognition

and interpretation of sign language, �rst with data gloves (Bra�ort [23℄), then with

omputer vision where di�erent models have been developed. Among the �rst studies

in this �eld, Starner and Pentland [100, 101℄ use the HMM for the reognition of 40

signs from the Amerian Sign Language (ASL), with a single amera.

The features used are the enter of the hand and elliptial bounding box, obtained

with the prinipal axes. Marel et al. [74℄ propose a hybrid approah between HMM
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Figure 1.3 � 3D trajetories [68℄ : (a) non-periodi and (b) periodi.

and neural networks, alled "Input-Output Hidden Markov Models", to reognize four

gestures in using the enter of gravity of the hand. Wilson and Bobik [109℄ propose

a HMM parametri form, to estimate the diretion of movement in a pointing gesture.

Vogler and Metaxas [105, 106℄ propose the "Parallel HMM " to model separately the left

and right hands, and to reognize 53 gestures of Amerian Sign Language, ontinuously.

Sato et al. [85, 93℄ trak a monitoring of the hand and the �ngertips, in two

dimensions, for Enhaned Desk system. An infra-red amera failitates the detetion

of the hands, and then eah �nger tip is deteted by orrelation with a irle, and

followed with a Kalman �lter. The thumb is deteted to di�erentiate a "handling"

mode from a "symboli gesture" mode. The symboli gestures reognition is based on

HMM with 12 di�erent gestures (see �gure 1.4). Similarly, Martin and Durand [79℄ use

HMM for handwriting reognition in 2D, with letters from an alphabet.

Figure 1.4 � The EnhanedDesk system [85℄ : (a) trak multiple �nger tips, and (b) trajetories

reognized by HMM.

1.3 Hand haraterization

In this setion, we fous on the extration of a vetor or matrix of features to represent

the shape of the hand. Sine the appearane of the hand in an image an vary greatly

depending on the perspetive, for the same on�guration, we seek eulidean transfor-

mations (translation, rotation, saling), whih represent most of the hanges we fae.
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In order to haraterize an objet (various hand postures) that an appear at di�erent

sales and orientations, desriptors whih are invariant to these transformations must

be used.

The desriptors an be divided into four lasses: the global desriptors that work

on the entire image, the semi-loal desriptors that work on a set of sub-images repre-

senting uts of the omplete image, the loal desriptors that ombine interest points

detetion and haraterization of the neighborhood of eah deteted keypoint and the

geometri desriptors that utilize low level features to express objet shape. In the

following paragraphs, we detail some desriptors for eah lass.

1.3.1 Global approah

• Zernike moments [66℄ are built around a family of omplex polynomials forming

an orthogonal basis, de�ned in the unit irle. This orthogonal basis an redue the re-

dundany between the moments. Standardizations an turn these desriptors invariant

to transformations involving rotations, translations and saling.

Amn =
m+ 1

π

∑

x

∑

y

I(x, y)V ∗
mn(x, y) (1.1)

Where x2 + y2 ≤ 1, m = 0, 1, 2...,∞ is the moment's order and n is an integer

respeting the following onditions:

{

m− |n| is an even number

|n| ≤ m

The Zernike desriptor is among the most used in the literature (see equation (1.1)).

It is built from a set of Zernike polynomials. This set is omplete and orthonormal

inside the unit irle.

Vmn(r, θ) = Rmn(r)e
jnθ

(1.2)

with (r, θ) de�ned on the unit disk, and Rmn(r) is the radial polynomial.

Rmn(r) =

m−|n|
2

∑

s=0

(−1)s
(m− s)!

s!(m+|n|
2

− s)!(m−|n|
2

− s)!)
rm−2s

(1.3)

The Zernike moments have shown their performane in terms of robustness to noise

and near zero value in redundany of information. Modules of Zernike moments

are invariant to rotation. To obtain the translational invariane and saling, the

images are normalized using the moments of order 0 and 1. Aording to Kumar

and Singh [69℄, it is su�ient for the reognition to the moments of order 2 to 15,

whih represent 70 moments. The major drawbak of Zernike moments is their

elevated omputational load. Various methods have been proposed (Hwang and

Kim [56℄) to allow faster omputation times. Chong et al. [32℄ ompare di�erent
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methods available and o�er to alulate the moments up to order 24 in 50 millise-

onds instead of 1,10 seonds using the diret method for a binary image of 50×50 pixels.

• Hu moments [52℄, ompound a family of invariants whih have been used for a long

time for reognition. The knowledge of the enter of gravity (xG, yG) of the region is

required to alulate the entered moments, upq:

upq =
∑

(x,y)∈I
(x− xG)

p(y − yG)
qI(x, y) (1.4)

The entered moments are invariant to translations. To obtain invariane to saling

fator, normalized moments are alulated:

ηpq =
upq

uγ
pq

with γ =
p+ q

2
+ 1, ∀ p+ q ≥ 2 (1.5)

Using normalized moments up to order 3, we an alulate the seven Hu moment

invariants:

I1 = η20 + η02 (1.6)

I2 = (η20 + η02)
2 + 4η211 (1.7)

I3 = (η30 + 3η12)
2 + (3η21 − η03)

2
(1.8)

I4 = (η30 + η12)
2 + (η21 − η03)

2
(1.9)

I5 = (η30 + 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(1.10)

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2 + 4η11(η30 + η12)(η21 + η03)] (1.11)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(1.12)

The �rst six features haraterize the shape with invariane to translation, rotation

and saling. The seventh invariant distinguishes symmetrial shapes.

• Fourier desriptors (FD) were known thanks [35, 88℄. They are extensively used for
the haraterization and shape lassi�ation for a losed ontour, as they allow a good



14 CHAPTER 1. STATE OF THE ART

representation of shapes and have interesting invariane properties. FD are alulated

from the oe�ients of the Fourier transform of the ontour . Fourier desriptors have

been usually used for gesture reognition [31, 71, 84℄ as one omponent of a omplete

system of reognition. Thus, the performane of the FD has not been analyzed in

detail, and independently of other system omponents. In general, in existing work,

omplex signature is used, as well as the module of the Fourier oe�ients (FD1). The

seond family of desriptors (FD2) has not been used for gesture reognition.

FD are alulated on the ontour of the hand region, extrated from the segmented

image. Points of this ontour an be represented with various signatures (omplex

oordinates, entral distane, urvature, umulative angular funtion) [113℄. We on-

sider the ase of losed planar urves under the ation of Eulidean transformations. If

γ1(l) and γ2(l) denote the respetive arlength parametrization of two losed ontour

objets, having the same shape and di�erent poses, we an write [30,31℄:

γ2(l) = aejθγ1(l + l0) + b (1.13)

with a the sale fator, θ the rotation angle, b the translation and l0 the di�erene

starting between desription points , l0 ∈ [0, L] with L the length of the ontour.

The sale invariane is obtained by normalizing the ar-length parametrization with

an equal length of 1, leading to l0 ∈ [0, 1]. The translation invariane is given by

desribing the ontours aording to their enter of mass.

Before alulating the Fourier Transform, with the Fast Fourier Transform (FFT),

shape is �rst sampled to a �xed number of points. In general, objet shape and model

shape an have di�erent sizes. Consequently, the number of data points of the objet

and model representations will also be di�erent. For mathing purposes, the shape

boundary or the shape signature of objets and models must be sampled to have the

same number of data points. The sampling proess not only normalizes the size of

shapes but also has the e�et of smoothing the shape. The smoothing eliminates the

noise in the shape boundary and the small details along the shape boundary as well,

what may be a drawbak in a hand posture reognition method.

The number of resolution levels at whih the shape signature will be deomposed

is determined by the length of the shape boundary. By varying the number of

sampled points, the auray of the shape representation an be adjusted. The

larger the number of sampled points, the more details in the representation of the

shape; onsequently, the mathing result will be more aurate. In ontrast, a smaller

number of sampled points redue the auray of the mathing results but improve

the omputational e�ieny.

There are generally three methods of normalization : (i) equal points sampling; (ii)

equal angle sampling; (iii) equal ar-length sampling. Assuming N is the total number

of andidate points to be sampled along the shape boundary, the equal angle sampling

selets andidate points spaed at equal angle θ = 2 π
N
.

The equal points sampling method selets andidate points spaed at equal number of

points along the shape boundary. The spae between two onseutive andidate points



1.3. HAND CHARACTERIZATION 15

is given by P/N, where P is the total number of boundary points. The equal ar-length

sampling method selets andidate points spaed at equal ar length along the shape

boundary.

The spae between two onseutive andidate points is given by L/N , where L is

the perimeter of the shape boundary. Among the three sampling methods, the equal

ar-length sampling method apparently ahieves the best equal spae e�et, beause

the use of ar length as parameter in the signature ahieves the unit speed of motion

along the shape boundary [87℄.

We use the omplex oordinates, eah point Mi of the shape ontour is represented

by a omplex number zi, with N the number of points of the ontour:

∀i ∈ [0, N − 1],Mi(xi, yi) ⇔ zi = xi + jyi (1.14)

This number must be hosen as a ompromise between a reliable desription of the

shape, with enough details, and shape smoothing, whih eliminates the �nest details

more subjet to noise. Therefore, we hoose the equal ar-length sampling to normalize

the sizes of the shapes. For eah shape, we selet 64 andidate points with equal ar-

length spae between them. Another fator is the omputation time, whih inreases

with the number of points. For omputational e�ieny of the fast Fourier transform,

the number of points is hosen to be a power of two. Hene, the Fourier transform

leads to N Fourier oe�ients Ck :

Ck(γ) =

N−1
∑

i=0

zie
−j 2πik

N , k = 0, ..., N − 1. (1.15)

In the frequeny domain, Eq.(1.13) and Eq.(1.15) gives:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1) + bδk. (1.16)

where δk is the Kroneker delta. The �rst oe�ient C0 is disarded beause it ontains

only the position of the hand shape. Rotation of the shape a�ets only the phase

information, thus rotation invariane of the Fourier desriptors is ahieved by taking

the magnitude of oe�ients. Sale invariane is ahieved by dividing oe�ients by

the magnitude of the seond oe�ient, C1. Starting point invariane is also ahieved

by taking the magnitude, as a hange of the starting point a�ets only the phase. So,

Eq.(1.16) an be written as follows:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1), k = 0, ..., N − 1. (1.17)

A ommon way to obtain FD whih are invariant to similarities is to take the

magnitude of Fourier oe�ients [35, 88℄. Then, we obtain the N − 2 FD1 oe�ients:

Ik(γ) =
|Ck(γ)|
|C1(γ)|

, k = 2, ..., N − 1. (1.18)
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Figure 1.5 � Examples of reonstrution as a funtion of the uto� frequeny, with an initial

ontour sampled with N = 64 points

However, this set of invariants is not omplete as it does not hold the phase information

of the shape. The ompleteness of a set of invariant features (FD2) expresses the fat

that two objets have the same shape if and only if they have the same set of features.

A set of features whih is omplete but not stable is proposed in [35℄. Stability means

that a small distortion of the shape does not indue a notieable divergene in the

values of invariant features. The omplete and stable set of invariant desriptors is

de�ned by [43℄:

Ik0(γ) = |Ck0(γ)|, for k0 suh that Ck0(γ) 6= 0, (1.19)

Ik1(γ) = |Ck1(γ)|, for k1 6= k0 suh that Ck1(γ) 6= 0, (1.20)

Ik(γ) =
Ck(γ)

k0−k1Ck0(γ)
k1−kCk1(γ)

k−k0

Ik0(γ)
k1−k−pIk1(γ)

k−k0−q
(1.21)

with p, q ∈ R+ and k1 ≤ k0.

For experiments, in order to simplify the expression of Ik(γ), following [43℄, we take
k0 = 2, k1 = 1, p = q = 0.5.

Notie that the epstral desriptors an be investigated as used in speeh reognition

front-ends to enhane the robustness [45℄.

Figure 1.5 shows that the low frequeny oe�ients ontain information on the

general form of the shape and the high frequeny oe�ients ontain information on

the �ner details of the shape. We an notie that with more than 20 oe�ients the

hand shape is well reonstruted.

• legendre moments: Any shape may theoretially be haraterized by its set of

regular moments. However, this kind of desription is information redundant and prone
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to numerial instability. A better representation is obtained by using an orthogonal

basis [102℄, suh as Legendre polynomials. Assuming, without loss of generality, that

the image domain is [−1, 1]× [−1, 1], the (p, q)-th order normalized Legendre moment

is de�ned as:

λp,q = Cpq

∫∫

Ωix

Pp(x)Pq(y) dxdy, (1.22)

with normalizing onstant: Cp,q = (2p + 1)(2q + 1)/4. The p − th order Legendre

polynomial is given by:

Pp(x) =
1

2pp!

dp

dxp
(x2 − 1)p , x ∈ [−1, 1]. (1.23)

Legendre polynomials generalize regular moments in the sense that the monomial xpyq

is replaed by an orthogonal polynomial Pp(x)Pq(x) of the same order. Moreover, if

we rewrite Pp(x) as:

Pp(x) =

p
∑

k=0

apkx
k, (1.24)

then we ome up with a simple relationship between Legendre moments and normalized

entral regular moments:

λp,q = Cpq

p
∑

u=0

p
∑

v=0

apuaqvηu,v. (1.25)

Any referene shape, disretized on a su�iently �ne grid, an be desribed by the

vetor of its entral normalized Legendre moments up the order N : λref
p,q , p+ q ≤ N .

This desription inherits sale and translation invariane from normalized entral

moments. The invariane to rotation may be proved but it is not the purpose of

this work. For the omplexity of omputation (order to ensure sale, translation and

rotation invariane), this method an be onsidered more CPU onsuming ompared

to other desriptors of global approahes like fourier desriptors.

1.3.2 Semi-loal Approah

• Histogram of Oriented Gradient (HOG) desriptors are features widely used

by the objet detetion and objet reognition ommunity. They have been shown to

be distintive and robust under small a�ne transformations and illumination hanges.

They are onstruted by dividing the image into a dense grid of uniformly spaed ells

and then omputing the orientation histograms of the image gradient values on eah

ell. The illumination and ontrast hanges are taken into aount by loal normal-

ization of the gradient strengths whih requires grouping the ells together into larger,

spatially-onneted bloks.

The HOG desriptor is then the vetor of the omponents of the normalized ell his-

tograms for all the blok regions. Dalal et al. [82℄ have proposed Histogram of Oriented
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Gradients in the ase of human detetion. They have also been used for hand posture

reognition [38℄ and gesture reognition [64℄.

1.3.3 Loal Approah

• The Sale Invariant Feature Transform (SIFT) is a well known loal de-

sriptor reated in 1999 by Lowe [72℄, allowing to detet and extrat features whih

are invariant to rotation and sale and robust to some variations of illuminations,

viewpoints and noise. The SIFT desriptor is omputed in four steps. The two �rst

stages orrespond to the hoie of keypoints, �rst identifying potential interest points

that are sale and rotation invariant and then rejeting the ones that have low ontrast

and stability. The two last stages orrespond to the desriptor vetor omputation,

assigning one or more orientations to eah seleted keypoint based on loal image

gradient diretions and using a 4*4 loation Cartesian grid to ompute the gradient

on eah loation bin on the path around the keypoint.

The SIFT desriptor gives good results in the ase of objet reognition when it an

�nd relevant keypoints. It has been used by Wang et al. [107℄ for hand posture

reognition with the objetive of human-robot interation.

• Speeded Up Robust Feature (SURF) was �rst presented by Bay et al in 2006

[10℄. Partly inspired by the SIFT desriptor, SURF also onsists in interesting points

loalization followed by feature desriptors omputation. In both ases, the output is

a representation of the neighborhood around an interest point as a desriptor vetor.

SURF is based on the distribution of �rst order Haar wavelet responses [49℄. One of

the prinipal advantages of SURF is to be several times faster than SIFT while having

more disriminative power. It uses the integral images to simplify and to aelerate

the omputations. Yielding a lower dimensional feature desriptor, it redues the time

for feature omputation and mathing. In [39℄, a fast multi-sale feature detetion,

SURF-inspired, and a desription method for hand gesture reognition is proposed.

1.3.4 Geometrial Approah

• Varied Form Desriptor (Var). Full reonstrution of the hand is not essential

for gesture reognition. Many approahes have instead used the extration of low-

level image measurements for that purpose [83℄. Being fairly robust to noise, these

harateristis an be extrated quikly. In this approah we reated a geometry-based

feature vetor by gathering simple geometrial harateristis desribed hereunder:

Isometric rate =
hand′s perimeter2

hand′s area × 4× π
(1.26)

Lengthening =
radius of the biggest hand inscribed circle

radius of the smallest hand circumscribed circle
(1.27)



1.3. HAND CHARACTERIZATION 19

Concavity =
perimeter of the hand′s convex hull

hand′s perimeter
(1.28)

Elongation =
major axis of the hand′s smallest elliptical hull

minor axis of the hand′s smallest elliptical hull
(1.29)

1.3.5 Comparative Study

Collumeau et al. [33℄ assess that the geometrial approah Var and the geometry-based

global approah Hu moments perform best (see table 1.1) but require a segmentation

step prior to their omputation. They are followed by keypoint-based loal methods

(SIFT, SURF) whose performane is slightly enhaned by the segmentation step. HOG

proved to be espeially dependant on the orret framing of the hand, performing poorly

when faing a large bakground-enlosed hand but ahieving seond best reognition

rate when the hand is well-framed. Although less improved than Hu moments by

the segmentation step, HOG's performane nevertheless su�ers from its lak. Zernike

moments ome last with the smallest reognition rate.

These results outline the worthiness of simple, geometrial desriptors for de-

sribing a single objet, namely the user's hand, displayed in various on�gurations.

Predominane of suh desriptors onveying the hands shape will therefore fous

future researh on desriptors whose relevane have been established when dealing

with shapes.

`Gray-level hand `Gray-level hand `Binary

and bakground' on blak bakground' objet'

ZER 21.1 24.9 25.6

HU 19.7 52.5 68.1

HOG 33.2 44.3 38.2

SIFT 58.1 60.3 63.5

SURF 51.5 60.1 66.8

VAR - - 76.4

Table 1.1 � Mean reognition rates obtained over the 4 speakers with images presenting palmar

aspet [33℄

Bourennane et al. [19℄ have shown that Fourier desriptors (FD1) outperforms Hu

moments for all deformations (see table 1.2), they notie that Hu moment invariants

and Zernike's moment invariants are alulated on the global image spae. It has been

shown that the values of Hu's moment invariants and Zernike's moment invariants are

sensitive to noise [19℄.
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The FD1 outperforms the other shape desriptors in terms of disrimination

between visually lose gestures. Either moment invariants or Fourier oe�ients are

omputed from the segmented hand posture. When the postures lead to similar

segmentation results, some details of the hand ontour are smoothed, and both

moment invariants and Fourier oe�ients are a�eted.

`HU' `Zernike' `FD1' `FD2'

Learning set : 38.9 81.5 81.5 80.3

Test set : 37.1 74.9 77.8 77.0

Cross-validation : 30.5 76.7 77.0 76.2

Table 1.2 � Reognition rates (%) with Triesh database and Eulidean distane For FD1, 6

invariant features are used, and 4 for FD2 [19℄.

1.4 Hand posture lassi�ation

The lassi�ation represents the task of assigning a feature vetor or a set of features

to some prede�ned lasses in order to reognize the hand gesture. In previous years

several lassi�ation methods have been proposed and suessfully tested in di�erent

reognition systems. In general, a lass is de�ned as a set of referene features that

were obtained during the training phase of the system or by manual feature extration,

using a set of training images. Therefore, the lassi�ation mainly onsists of �nding

the best mathing referene features for the features extrated in the previous phase.

The lassi�ation onsists in maximizing or minimizing a disriminant funtion di(x)
between a vetor of measurements x and the N lasses of gestures. For example, in

the ase of a funtion to be minimized, suh as a distane, we look for the lass C

suh that: C = argmin
i∈[1,N ]

(di(x)).

The lassi�ation is usually performed with a distane, or methods suh as

nearest neighbors. The number of images used for learning is an important fator for

lassi�ation.

Chen et al. [31℄ use the FD and motion analysis to reognize dynami gesture with

Hidden Markov Models (HMM).

Wah Ng and Ranganath [84℄ use the FD and Radial-Basis Funtion (RBF) as

lassi�er-type to reognize �ve postures. They then propose to reognize fourteen

dynami gestures, some of whih are made with both hands, with HMM or neural

networks.

The Adaboost lassi�er, short for Adaptive Boosting, is a mahine learning

algorithm, formulated by [41℄. It is a meta-algorithm, and an be used in onjuntion



1.4. HAND POSTURE CLASSIFICATION 21

with many other learning algorithms to improve their performane. AdaBoost is

adaptive in the sense that subsequent lassi�ers built are tweaked in favor of those

instanes mislassi�ed by previous lassi�ers. AdaBoost is sensitive to noisy data

and outliers. In some problems, however, it an be less suseptible to the over�tting

problem than most learning algorithms.

Caplier et al. [27℄ use of Hu moments and a neural network "Multi-layer perep-

tron" to lassify eight gestures made by three people.

The Eulidean distane is the "ordinary" distane between two points that one

would measure with a ruler, and is given by the Pythagorean formula. By using this

formula as distane, Eulidean spae (or even any inner produt spae) beomes a

metri spae. The Eulidean distane between the measurement vetor x and the lass

i is de�ned by:

dE,i(x) =
√

(x− µi)T (x− µi) (1.30)

with µ the mean vetor of lass i. This is the usual metri for alulating a distane

between the invariants vetors Ik of ontours γ1 and γ2.

dE(γ1, γ2) =

√

∑

k

|Ik(γ1)− Ik(γ2)|2 (1.31)

Bayesian lassi�ation is based on Bayes' theorem:

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
(1.32)

with:

p(Ci|x) the posterior probability of the lass Ci knowing that the measurement vetor is x,
p(x|Ci) the onditional probability of x, knowing that the lass Ci,

p(Ci) the prior probability of the lass Ci

p(x) the onditional probability of measurement vetor x

p(x) =
N
∑

i=1

p(x|Ci)p(Ci) (1.33)

In this ase, the disriminator funtion is given by the maximum a posteriori :

di(x) = p(Ci|x) (1.34)

the Bayes Theorem (Eq. 1.32) an be rewritten as follows [78℄:

di(x) = dM,i(x) + log(Λi) (1.35)
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with dM(x) the Mahalanobis distane:

dM,i(x) = (x− µi)
TΛ−1

i (x− µi) (1.36)

the Mahalanobis distane appears as an Eulidean distane weighted by the inverse

of the ovariane matries for eah lass.

The K-nearest neighbors lassi�ation method uses the feature-vetors gathered in

the training to �nd the K nearest neighbors in a n-dimensional spae. The training

mainly onsists of the extration of (possible well disriminable) features from training

images, whih are then stored for later lassi�ation. Due to the use of distane

measuring suh as the eulidian or manhattan distane, the algorithm performs

relatively slowly in higher dimensional spaes or if there are many referene features.

In [114℄, an approximate nearest neighbors lassi�ation was proposed, whih provides

a better performane.

Support vetor mahines (SVM) are supervised learning models with assoiated

learning algorithms that analyze data and reognize patterns, used for lassi�ation

and regression analysis. The basi SVM takes a set of input data and predits, for

eah given input, whih of two possible lasses forms the output, making it a non-

probabilisti binary linear lassi�er. Given a set of training examples, eah marked as

belonging to one of two ategories, an SVM training algorithm builds a model that

assigns new examples into one ategory or the other.

An SVM model is a representation of the examples as points in spae, mapped so

that the examples of the separate ategories are divided by a lear gap that is as wide

as possible. New examples are then mapped into that same spae and predited to

belong to a ategory based on whih side of the gap they fall on.

The SVM is based on kernels that allow optimal separation of points into sets. The

solution is optimal in the sense that the margin between the hyperplane and vetors

of eah lass of the learning data is maximum. Also, SVM solve the problem of non-

linearly separable data by projeting the data into a spae of higher dimension. This

projetion is done with a polynomial kernel, Gaussian or hyperboli.

Bourennane et al. [19℄ prove that the results are signi�antly better when using

the Bayesian lassi�er on the Triesh database (100% see Table 1.3). For their internal

database, with Fourier desriptors (6 invariants), the reognition rates also inrease,

in omparison with Eulidean distane, and results are similar for the three lassi�ers

with a small advantage for k-NN.

The Hidden Markov Model (HMM) lassi�ers belong to the lass of trainable las-

si�ers. An HMM represents a statistial model, in whih the most probable mathing

gesture-lass is determined for a given feature vetor, based on the training data. In

order to train the HMM, a Baum-Welh re-estimation algorithm, whih adapts the

internal states of the HMM aording to some feedbak onerning the auray, was



1.5. CONCLUSION OF THE CHAPTER 23

`BAYES' `SVM' `K-NN' 'EUCL'

Triesh, test set : 100 89.1 93.3 77.8

Internal database, learning set : 99.9 99.9 100 96.8

Internal database, test set : 84.7 84.2 87.9 83.9

Table 1.3 � Reognition rates (%) with Triesh database and FD1, 6 invariant features are

used, and di�erent lassi�ers: Bayesian lassi�er (BAYES), support vetor mahine (SVM), k-nearest

neighbors (k-NN) and Eulidean distane (EUCL) [19℄.

used.

The Multi Layer Pereptron (MLP) lassi�er is based on a neural network. There-

fore, MLPs represent a trainable lassi�er (similar to Hidden Markov Models). They

use three or more layers of neurons that are all onneted. During the training phase,

the weights of the onnetions between the neurons are adapted, based on the feedbak

that desribes the di�erene between the output and the expeted result.

1.5 Conlusion of the hapter

In this hapter, we reviewed several existing methods for supporting vision-based

human-omputer interation based on the reognition of hand gestures. The provided

review overs researh work related to all three individual subproblems of the full

problem, namely detetion, haraterization and reognition or lassi�ation.

In the detetion step we mentioned two types of detetion: detetion for stati

gestures and detetion for dynami gesture:

• The detetion of postures (stati gestures) is usually based on the olor of the

hand. This detetion is very limited in the ase where there is a bakground of

the same olor as the hand or if there are other objets in the sene whih also

have the same olor. As it is known, to make a detetion based on the olor of

the hand, we must have prior knowledge and it will be limited if we try to extend

it to all users.

• Conerning dynami gestures we have mentioned several methods as HMM, DTW

or a method based on the skeleton. These methods give satisfatory results but

sometimes have a large omputational time or are limited to a small and although

aurate ditionary of gestures.

For these reasons, a new method of detetion must be found, or we have to

ombine existing methods to overome these limitations and make the detetion,

whih is the major step in our proess, very reliable.
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The purpose of haraterization, or features extration, is to transform an image

into a signature whih haraterizes a learly de�ned a ontour of posture and

whih permits to ompare, in the next step of proess, test postures with referenes

postures stored and haraterized in learning step. However, we have seen that the

haraterization needs to validate properties of invariane (rotation, translation, sale

fator), and we must be able bijetively reonstrut the image from these signals. We

mention many methods suh as desriptors or geometri methods but also loal or

semi-loal methods. As fast as possible, the main objetive is to �nd and ombine the

methods that give the best results and faster and whih also disriminates very lose

postures, thinking in this sense is highly essential.

Classi�ation is an important step in our proess, it is often based on the riterion

of distane (Eulidian, Bayesian, KNN) or on geometri riteria (SVM), but it will

be very di�ult to implement if the feature vetor or the harateristi matrix has

many parameters, or if there's multiple lasses. So our hoie will be set aording

to the number of parameters that haraterizes our gesture but also by the ompliity

of lassifying and omputational time. That's why we will perform the dimension

redution and derease the number of lasses. This seems to be a good strategy to use

the easiest and fastest lassi�er.
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2 Hand database

2.1 Introdution of the hapter

G
ESTURES are an important modality for human-mahine ommuniation, and

robust gesture reognition an be an important omponent of assistive environ-

ments and human-omputer interfaes in general. A key problem in reognizing ges-

tures is that the appearane of a gesture an vary widely depending on variables suh

as the person performing the gesture, or the position and orientation of the amera.

For example, the same handshape an look very di�erent in di�erent images, depending

on the 3D orientation of the hand and the viewpoint of the amera. Similarly, in the

domain of sign language reognition, the appearane of a sign an vary depending on

the person performing the sign and the distane from the amera. This database-based

framework is applied to two di�erent gesture reognition domains.

The �rst domain is handshape ategorization. Handshapes an hold important in-

formation about the meaning of the gesture, for example in sign languages, or about

the intent of an ation, for example in manipulative gestures or in virtual reality in-

terfaes. A large database of tens of thousands of images is used to represent the

wide variability of handshape appearane. A key advantage of the database is that it

provides a very natural way to haraterize the appearane of eah handshape lass.

Furthermore, databases ontaining tens or hundreds of thousands of images represent-

ing several people an ensure a learning more onsistent to the reality.

The seond gesture reognition domain where we apply the proposed approah is

reognition of signs in Amerian Sign Language (ASL).

2.2 Various hand databases

Aording to the literature, and best of our knowledge, there are a few publily available

gesture image databases. Athitsos and Slaro� [7℄ published a database for hands posed

in di�erent gestures. The database ontains more than 107000 images. Despite the

fat that the database overs 26 gestures and has ground truth tables, the images

atually present only the edges of the hands. Tests for algorithms that are not based

on edges are not feasible. Athitsos also ontributed to the reation of an Amerian
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Sign Language (ASL) video sequene database. These videos present the upper body

part of a person signaling short texts in ASL. The videos were reorded at a rate of

60 frames per seond. Some frames present the hands in a small sale and they are

sometimes blurred. It is also di�ult to luster sets of hands where the gesture is of

a ertain type. There are images from 4 di�erent ameras. This database would be

suitable for testing detetion algorithms, but it would be di�ult to use those images

for training.

Figure 2.1 � Exemple of ASL postures

In handshape reognition for ASL database, there are 20 postures to reognize as

shown on Fig. 2.1. For the evaluation of hand traking methods in sign language reog-

nition systems a database has been prepared. The RWTH-BOSTON-Hands database is

a subset of the RWTH-BOSTON-104 videos with additional annotation of the signer's

hand positions. The positions of both hands have been annotated manually in 15

videos. 1119 frames in total are annotated.

Figure 2.2 � The gestures base of Triesh and von der Malsburg [103℄

There are also some other databases that are not spei�ally related to gesture but

are partiularly related to the subjet.
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The gestures base of Triesh and von der Malsburg [103℄ is a base of referene used

in several studies, and made available on Internet. It ontains 10 hand postures (Fig.

2.2), realized by 24 people and in front of di�erent bakgrounds (white, blak and

omplex). Pitures are in gray level, PGM format, and in 128 × 128 size.

Figure 2.3 � Exemple of image with gestures "" in Triesh base[103℄

We an use sets of pitures with blak and white bakgrounds, but it's always a

white hand. The variation of the form of the gestures in terms of size, translation and

rotation is very limited. However, the form of the hand of di�erent users an be very

variable (see �gure 2.3).

Figure 2.4 � Some images of the samples from the Massey Hand Gesture Database

The Massey Hand Gesture Database is an image database ontaining a number

of hand gesture and hand posture images. The database has been developed by the

authors to evaluate their methods and algorithms for real-time gesture and posture

reognition. It is posted on the web with the hope of assisting other researhers in-

vestigating in the related domains. At this stage, the Database inludes about 1500

images of di�erent hand postures, in di�erent lighting onditions. The data was ol-

leted by a digital amera mounted on a tripod from a hand gesture in front of a dark

bakground, and in di�erent lighting environments, inluding normal light and dark

room with arti�ial light. Together with the original images there is a lipped version

of eah set of images that ontains only the hand image. The maximum resolution of

the images is 640 x 480 with 24 bit RGB olor. So far, the database ontains material

gathered from 5 di�erent individuals.
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2.3 Proposed hand database

As new hand detetion and gesture reognition algorithms are being developed, the

use of features suh as olor, size, and shape of the favorite objet are more likely to

be used. Currently available databases are either for speial purposes, or su�er from

the lak of the desired features (e.g. not being in olor or exhibiting a very small size

of the samples). Previous works show that olor is one of the important features in

body traking [31, 33, 34, 39, 113℄. Color an be found to be invariant to hanges in

size, orientation and sometimes olusion. In addition, aording to Moore's law, every

18 month the proessing speed and available memory size of proessors double. So,

possibly in the near future, using samples with higher details would be preferred by

researhers.

Di�erent gesture bases have several limitations: the number of images is small, the

angle of view, the size and orientation of the hand is always the same, the images are

graysale and ontain solely a hand without any other objet in the bakground. Or

even the database is not aessible. The ommon point of these bases is the use of white

hands only. Our goal was to reate a man-mahine interfae that applies everywhere

(non-uniform bakground), for any kind of hand (adult or hild, male or female, white

or olor).

This requires a muh better developed database, but also a database where you an

ombine stati and dynami reognition, with simple but various postures, whih are

easily ahievable by any user. Thus, to ahieve a more realisti test base whih ould

be the losest to our HMI on�guration, we established our own database.

Figure 2.5 � Examples of images in Simon Conseil's database

At �rst it was deided to use the database from Simon Conseil [34℄, although it

is limited to white hands (see �gure 2.5), but it allows, �rst, to test the e�etiveness

of our haraterization method before expanding them to other types of hands. Also,

with this database we an ompare the di�erent methods of shape desription with

our method of haraterization and dedue the ontribution and performane as well
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as the limitations of our signature. the most important in the hoie of database is to

hoose postures that are adapted to industrial appliations, but also simple, pratial

and realizable by any user.

This base is inspired by the 8 postures of Cued Speeh presented by Caplier et al

[27℄. The Cued Speeh is a language whih di�ers from the language of signs, and

whih aims at failitating lip reading for deaf and hard of hearing (see �gure 2.6).

However, postures "5" and "8" have been added to Cued Speeh database to assess

the performane of the methods we propose.

Figure 2.6 � The 11 postures of our database

This database is available within GSM group,where is performed by this thesis,

and was built with a monosopi video aquisition system. The video sequenes were

then split into images, to be proessed separately. This database is omposed of 11

postures performed by 18 persons (1000images/personne/posture) whih represents

roughly 200,000 images.

One of the relevane of this database is validated, it an be extended to olored

hands just by introduing new image in the learning base. The hand ontours hara-

terization is performed out of a binary image whih inludes only the ontours. So the

generalization and extension of the algorithm to a database inluding olored hands

will mainly the �rst images preproessing steps.

2.4 Conlusion of the hapter

One of the typial appliations for an image database is to use it as a training set

for learning algorithms. The same database ould also be used for the testing phase,

but it is more onvenient to perform tests with real images aquired separately from a

di�erent person.

In this hapter we are interested in various existing databases, that are either in-

tended for reognition of hands or for the language of signs where di�erent gestures

are used. it appears that these databases are limited by their format, the olor of the
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hand, or even the number of stored images. So we deided to reate our own database

with postures whih are easy to produe by all users, whih will be for us a universal

database without forgeting to ompare our method with referenes databases as the

Trieh database.



Part II

Reognition proess and results
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3 Array proessing models

and methods adapted to

ontour detetion

3.1 Introdution of the hapter

C
ONTOUR detetion is an important step in image proessing. After a low-level

proessing suh as denoising, it permits to enhane �tting lines, and the interest

is to delimitate strutures of interest suh as roads, buildings, vehiles, et. A

large amount of methods have been proposed to haraterize either parametrized or

free-form ontours. The most ommon method is still the derivative approah with

linear �ltering. Many derivative �lters have been studied and used to ompute the

intensity gradient of gray-level images: Roberts, Sobel, Prewitt or Canny operators

[26℄. Other approahes have followed, suh as mathematial morphology, Markov

random �elds, surfae models, histogram automati threshold [86℄.

General ontours are alled free-form. Deteting them is the purpose for instane of

snakes [65℄ whih have been improved in various ways suh as Gradient Vetor Flow

[110, 111℄. This type of method makes a single ontour evolve while ensuring an

attah to the image gradient, but also a ontrol of the properties of the snake suh

as elastiity. Free-form ontour detetion is also the purpose of levelset [8, 29, 58℄.

Levelsets exhibit the advantage of retrieving multiple ontours, in partiular blurred

ontours for some spei� version [29℄. It is however well-known that an elevated

number of parameters must be tuned and that they rely on an optimization strategy

whih is sensitive to initialization.

Very simple ontours whih are therefore enountered in many appliations an be

haraterized by a few parameters: straight lines with orientation and o�set, or irles

with enter oordinates and radius. The Hough transform for instane [37, 51, 67℄ was

proposed under di�erent versions, to retrieve straight lines. The generalized Hough

transform (GHT) provides an estimation of the irle enter oordinates when their

radius is known [9, 57℄. But in this hapter we onentrate on original methods for

the detetion of linear-like or irular-like ontours. These methods rely on the array
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ADAPTED TO CONTOUR DETECTION

proessing paradigm. This hapter is logially divided into four parts, starting from

the �rst issue of this framework, the estimation of straight lines with a linear antenna,

proposed in [6℄ in the early nineties, and onluding with the estimation of highly

distorted star-shaped ontours [61℄, whih inspired the method for the haraterization

of hand ontours exposed further in this manusript. In between, we also present the

estimation of irular ontours and blurred ontours.

3.2 Straight ontour retrieval

3.2.1 Data model, generation of the signals out of the image

data

To adapt array proessing tehniques to distorted urve retrieval, the image ontent

must be transripted into a signal. This transription is enabled by adequate on-

ventions for the representation of the image, and by a signal generation sheme[2, 5℄.

One a signal has been reated, array proessing methods an be used to retrieve the

harateristis of any straight line. Let I be the reorded image (see Fig. 3.1(a)).

                                        a)                                                                                                  b)

Figure 3.1 � The image model (see [5℄): (a) The image-matrix provided with the oordinate

system and the retilinear array of N equidistant sensors, (b) A straight line haraterized by its

angle θ and its o�set x0.

We onsider that I ontains d straight lines and an additive uniformly distributed

noise. The image-matrix is the disrete version of the reorded image, ompound of a

set of N ∗ C pixel values. A formalism adopted in [6℄ allows signal generation, by the

following omputation:

z(i) =

C
∑

k=1

I(i, k)exp(−jµk), i = 1, . . . , N (3.1)
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where {I(i, k); i ∈ {1, . . . , N}; k ∈ {1, . . . , C}} denote the image pixels. Eq. (3.1)

simulates a linear antenna: eah row of the image yields one signal omponent as if it

were assoiated with a sensor. The set of sensors orresponding to all rows forms a linear

antenna. We fous in the following on the ase where a binary image is onsidered. The

ontours are omposed of 1-valued pixels also alled "edge pixels", whereas 0-valued
pixels ompose the bakground. When d straight lines, with parameters angle {θk}
and o�set x0k (k = 1, . . . , d), are rossing the image, and if the image ontains noisy

outlier pixels, the signal generated on the ith sensor, in front of the ith row, is [6℄:

z(i) =

d
∑

k=1

exp(jµ(i− 1)tan(θk))exp(−jµx0k) + n(i) (3.2)

where µ is a propagation parameter [3℄ and n(i) is due to noisy pixels on the ith row.

De�ning: ai(θk) = exp(jµ(i− 1)tan(θk)), sk = exp(−jµx0k), Eq. (3.2) beomes:

z(i) =
d

∑

k=1

ai(θk)sk + n(i), i = 1, · · · , N (3.3)

Grouping all terms in a single vetor, Eq. (3.3) beomes: z = A(θ)s+ n, with A(θ) =
[a(θ1), · · · , a(θd)] where a(θk) = [a1(θk), a2(θk), · · · , aN(θk)]T , with ai(θk) = exp(jµ(i−
1)tan(θk)), i = 1, . . . , N , supersript

T
denoting transpose. SLIDE (Subspae-based

LIne DEtetion) algorithm [6℄ uses TLS-ESPRIT (Total-Least-Squares Estimation of

Signal Parameters via Rotational Invariane Tehniques) method to estimate the angle

values. To estimate the o�set values, the "extension of the Hough transform" [67℄ an

be used. It is limited by its high omputational ost and the large required size for the

memory bin. [20, 22℄ developed another method. This method remains in the frame of

array proessing and redues the omputational ost: A high-resolution method alled

MFBLP (Modi�ed Forward Bakward Linear Predition) [20℄ is assoiated with a spe-

i� signal generation method, namely the variable parameter propagation sheme [3℄.

The formalism introdued in that setion an also handle the ase of straight edge

detetion in gray-sale images [4℄.

3.2.2 Angle estimation, overview of the SLIDE method

The method for angles estimation falls into two parts: the estimation of a ovariane

matrix and the appliation of a total least squares riterion.

Numerous works have been developed in the frame of the researh of a reliable estimator

of the ovariane matrix when the duration of the signal is very short or the number

of realizations is small. This situation is often enountered, for instane, with seismi

signals. To ope with it, numerous frequeny and/or spatial means are omputed

to replae the temporal mean. In this study the ovariane matrix is estimated by

using the spatial mean [46℄. From the observation vetor we build K vetors of length

M with d < M ≤ N − d + 1. In order to maximize the number of sub-vetors

we hoose K = N + 1 − M . By grouping the whole sub-vetors obtained in matrix
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form, we obtain: ZK = [z1, · · · , zK ], where zl = AM(θ)sl +nl, l = 1, · · · , K. Matrix

AM(θ) = [aM(θ1), · · · , aM (θd)] is a Vandermonde type one of size M×d. Signal part of
the data is supposed to be independent from the noise; the omponents of noise vetor

nl are supposed to be unorrelated, and to have idential variane. The ovariane

matrix an be estimated from the observation sub-vetors as it is performed in [5℄. The

eigen-deomposition of the ovariane matrix is, in general, used to haraterize the

soures by subspae tehniques in array proessing. In the frame of image proessing

the aim is to estimate the angle θ of the d straight lines. Several high-resolution

methods that solve this problem have been proposed [92℄. SLIDE algorithm is applied

to a partiular ase of an array onsisting of two idential sub-arrays [4℄. It leads to

the following estimated angles [4℄:

θ̂k = tan−1[
1

(µ ∗∆)
Im(ln(

λk

|λk|
))], (3.4)

where {λk, k = 1, . . . , d} are the eigenvalues of a diagonal unitary matrix that relates

the measurements from the �rst sub-array to the measurements resulting from the

seond sub-array. Parameter µ is the propagation onstant, and ∆ is the distane

between two sensors. TLS-ESPRIT method used by SLIDE provides the estimated

parameters in losed-form, in opposite to the Hough transform whih relies on maxima

researh [67℄. O�set estimation exploits the estimated straight lines angles.

3.2.3 O�set estimation

The most well-known o�set estimation method is the "Extension of the Hough Trans-

form" [96℄. Its priniple is to ount all pixel aligned on several orientations. The

expeted o�set values orrespond to the maximum pixel number, for eah orienta-

tion value. The seond proposed method remains in the frame of array proessing:

it employs a variable parameter propagation sheme [2, 3, 4℄ and uses a high resolu-

tion method. This high resolution "MFBLP" method relies on the onept of forward

and bakward organization of the data [46, 90, 104℄. A variable speed propagation

sheme [3, 4℄, assoiated with "MFBLP" (Modi�ed Forward Bakward Linear Predi-

tion) yields o�set values with a lower omputational load than the Extension of the

Hough Transform. The basi idea in this method is to assoiate a propagation speed

whih is di�erent for eah line in the image [4℄. By setting arti�ially a propagation

speed that linearly depends on row indies, we get a linear phase signal. When the

�rst orientation value is onsidered, the signal reeived on sensor i (i = 1, · · · , N) is
then:

z(i) =

d1
∑

k=1

exp(−jτx0k)exp(jτ(i− 1)tan(θ1)) + n(i) (3.5)

d1 is the number of lines with angle θ1. When τ varies linearly as a funtion of the

line index the signal vetor z ontains a modulated frequeny term. Indeed we set

τ = α(i− 1).
z(i) =
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d1
∑

k=1

exp(−jα(i− 1)x0k)exp(jα(i− 1)2tan(θ1)) + n(i) (3.6)

This is a sum of d1 signals that have a ommon quadrati phase term but di�erent

linear phase terms. The �rst proessing onsists in obtaining an expression ontaining

only linear terms. This goal is reahed by dividing z(i) by the non zero term ai(θ1) =
exp(jα(i− 1)2tan(θ1)). We obtain then:

w(i) =

d1
∑

k=1

exp(−jα(i− 1)x0k) + n
′

(i), (3.7)

The resulting signal appears as a ombination of d1 sinusoids with frequenies :

fk =
αx0k

2π
, k = 1, · · · , d1. (3.8)

Consequently, the estimation of the o�sets an be transposed to a frequeny estima-

tion problem. Estimation of frequenies from soures having the same amplitude was

onsidered in [104℄. In the following a high resolution algorithm, initially introdued

in spetral analysis, is proposed for the estimation the o�sets.

After adopting our signal model we adapt to it the spetral analysis method alled

modi�ed forward bakward linear predition (MFBLP) [104℄ for estimating the o�sets:

We onsider dk straight lines with given angle θk, and apply the MFBLP method. We

onsider dk straight lines with given angle θk, and apply the MFBLP method, to the

vetor w.

An outline of the method is as follows: 1) For a N-data vetor w, form matrix Q of

size 2 ∗ (N − L)× L, where 1 ≤ L ≤ N − 1. The jth olumn qj of Q is de�ned by:

qj = [w(L− j + 1), ..., w(N − j), w∗(j + 1), ..., w∗(N − L+ j)]T .
Then build a length 2 ∗ (N − L) vetor:
h = [w(L+ 1), ..., w(N), w∗(1), ..., w∗(N − L)]T . Calulate the singular value deom-

position of Q: Q = UΛVH
.

2) Form a matrix Σ, setting to 0 the L− 1 smallest singular values ontained in Λ.

3) Form vetor g from the following matrix omputation: g = [g1, g2, ..., gL]
T =

−V ∗Σ♯ ∗UH ∗ h where Σ♯
is the pseudo-inverse of Σ.

4) Determine the roots of polynomial funtion H , where H(γ) = 1 + g1γ
−1 + g2γ

−2 +
...+ gLγ

−L
.

5) One zero of H is loated on the unit irle. The omplex argument of this zero is

the frequeny value; aording to Eq. (3.5) this frequeny value is proportional to the

radius, the proportionality oe�ient being −α.
More details about MFBLP method applied to o�set estimation are available in [22℄.

MFBLP estimates the values of fk, k = 1, · · · , dk. Aording to Eq. (3.8) these fre-

queny values are proportional to the o�set values, the proportionality oe�ient being

−α. The main advantage of this method omes from its low omputational load. In-

deed the omplexity of the variable parameter propagation sheme assoiated with

MFBLP is muh less than the omplexity of the Extension of the Hough Transform as

soon as the number of non zero pixels in the image inreases. This algorithm enables

the haraterization of straight lines with same angle and di�erent o�set.
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3.2.4 Exempli�ation of the straight line retrieval methods

We propose an appliation of our method in the ase of roboti vision. Fig. 3.2 is a

photography taken by a amera and transmitted to the automati ommand of a vehile

moving on the railway. This vehile is used in partiular for serviing of railways, i.e.

for the replaement of the parallel rosspiees. The vehile, when moving along the

railway, determines �rst the position of the rails from the obtained piture. Then, the

position of the nearest rosspiee is deteted.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

a) b)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

)

Figure 3.2 � (a) - Image transmitted to the automati ommand of a vehile that is moving on

a railway for the serviing of the railways. (b) Detetion of the rails for the progress of the vehile. ()

Loalization of the �rst rosspiee that the vehile has to replae. The proess is iterated rosspiee

after rosspiee: photography, detetion of the rails and detetion of the next rosspiee.

3.3 Retrieval of irular ontours

Signal generation upon a linear antenna yields a linear phase signal when a straight

line is present in the image. While expeting irular ontours, we assoiate a irular

antenna with the proessed image. By adapting the antenna shape to the shape of the

expeted ontour, we aim at generating linear phase signals.
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3.3.1 Problem setting and virtual signal generation

Our purpose is to estimate the radius of a irle, and the distortions between a losed

ontour and a irle that �ts this ontour. We propose to employ a irular antenna

that permits a partiular signal generation and yields a linear phase signal out of an

image ontaining a quarter of irle. In this setion, enter oordinates are supposed

to be known, we fous on radius estimation, enter oordinate estimation is explained

further. Fig. 3.3(a) presents a binary digital image I. The objet is lose to a irle

with radius value r and enter oordinates (lc, mc). Fig. 3.3(b) shows a sub-image

extrated from the original image, suh that its top left orner is the enter of the

irle. We assoiate this sub-image with a set of polar oordinates (ρ, θ), suh that

eah pixel of the expeted ontour in the sub-image is haraterized by the oordinates

(r+∆ρ, θ), where ∆ρ is the shift between the pixel of the ontour and the pixel of the

irle that roughly approximates the ontour and whih has same oordinate θ. We

seek for star-shaped ontours, that is, ontours that an be desribed by the relation:

ρ = f(θ) where f is any funtion that maps [0, 2π] to R+. The point with oordinate

ρ = 0 orresponds then to the enter of gravity of the ontour.

Generalized Hough transform estimates the radius of onentri irles when their

enter is known. Its basi priniple is to ount the number of pixels that are loated

on a irle for all possible radius values. The estimated radius values orresponds to

the maximum number of pixels.

Figure 3.3 � (a) Cirular-like ontour, (b) Bottom right quarter of the ontour and pixel

oordinates in the polar system (ρ, θ) having its origin on the enter of the irle. r is the radius

of the irle. ∆ρ is the value of the shift between a pixel of the ontour and the pixel of the irle

having same oordinate θ.

Contours whih are approximately irular are supposed to be made of more than

one pixel per row for some of the rows and more than one pixel per olumn for some

olumns (see Fig. 3.3a)). Therefore, we propose to assoiate a irular antenna with
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the image whih leads to linear phase signals, when a irle is expeted. The basi

idea is to obtain a linear phase signal from an image ontaining a quarter of irle

(suh as in Fig. 3.3b)). To ahieve this, we use a irular antenna. The phase of the

signals whih are virtually generated on the antenna is onstant or varies linearly as a

funtion of the sensor index. A quarter of irle with radius r and a irular antenna

are represented on Fig. 3.4.

The antenna is a quarter of irle entered on the top left orner, and rossing the

bottom right orner of the sub-image. Suh an antenna is adapted to the sub-images

ontaining eah quarter of the expeted ontour (see Fig. 3.4). In pratie, the extrated

sub-image is possibly rotated so that its top left orner is the estimated enter. The

antenna has radius Ra so that Ra =
√
2Ns where Ns is the number of rows or olumns

in the sub-image. When we onsider the sub-image whih inludes the right bottom

part of the expeted ontour, the following relation holds: Ns = max(N − lc, N −mc)
where lc andmc are the vertial and horizontal oordinates of the enter of the expeted

ontour in a artesian set entered on the top left orner of the whole proessed image

(see Fig. 3.3). Coordinates lc and mc are estimated by the method proposed in [2℄, or

the one that is detailed later in this hapter.

Signal generation sheme upon a irular antenna is the following: the diretions

adopted for signal generation are from the top left orner of the sub-image to the

orresponding sensor. The antenna is omposed of S sensors, so there are S signal

omponents.

Figure 3.4 � Sub-image, assoiated with a irular array omposed of S sensors

Let us onsider Di , the line that makes an angle θi with the vertial axis and rosses
the top left orner of the sub-image. The ith omponent (i = 1, . . . , S) of the signal z
generated out of the image reads:

z(i) =
∑l,m=Ns

l,m=1
(l,m)∈Di

I(l, m)exp(−jµ
√
l2 +m2), (3.9)

The integer l (resp. m) indexes the lines (resp. the olumns) of the image. j stands

for

√
−1. µ is the propagation parameter [4℄. Eah sensor indexed by i is assoiated

with a line Di having an orientation θi =
(i−1)·π/2

S
.
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In Eq. (3.9), the term (l, m) ∈ Di means that only the image pixels that belong to Di

are onsidered for the generation of the ith signal omponent. Satisfying the onstraint

(l, m) ∈ Di , that is, hoosing the pixels that belong to the line with orientation θi, is
done in two steps: let setl be the set of indexes along the vertial axis, and setm the

set of indexes along the horizontal axis.

If θi ≤ π/4, setl = [1 : Ns] and setm = ⌊[1 : Ns] · tan(θi)⌋.
If θi ≥ π/4, setm = [1 : Ns] and setl = ⌊[1 : Ns] · tan(π/2− θi)⌋.
Symbol ⌊·⌋ means integer part.

The minimum number of sensors that permits a perfet haraterization of any

possibly distorted ontour is the number of pixels that would be virtually aligned on

a irle quarter having radius

√
2Ns. Therefore, the minimum number S of sensors is√

2Ns.

3.3.2 Proposed method for radius estimation

In the most general ase there exists more than one irle for one enter. We show how

several possibly lose radius values an be estimated with a high-resolution method.

For this, we use a variable speed propagation sheme towards the irular antenna.

We propose a method for the estimation of the number d of onentri irles, and

the determination of eah radius value. For this purpose we employ a variable speed

propagation sheme [4℄. We set µ = α(i− 1), for eah sensor indexed by i = 1, . . . , S.
From Eq. (3.9), the signal reeived on eah sensor is:

z(i) =

d
∑

k=1

exp(−jα(i− 1)rk) + n(i), i = 1, . . . , S (3.10)

where rk, k = 1, . . . , d are the values of the radius of eah irle, and n(i) is a noise

term that an appear beause of the presene of outliers. All omponents z(i) ompose

the observation vetor z. TLS-ESPRIT method is applied to estimate rk, k = 1, . . . , d,
the number of onentri irles d is estimated by MDL riterion. The estimated

radius values are obtained with TLS-ESPRIT method, whih also estimated straight

line orientations (see setion 3.2.2). A further setion is dediated to the estimation of

one-pixel wide nearly irular distorted ontours. Let us now onentrate on 'blurred'

ontours, that is, ontours whih are omposed of more than one pixel.

3.3.3 Linear antenna for the estimation of irle enter param-

eters

Usually, an image ontains several irles whih are possibly not onentri and have

di�erent radii (see Fig. 3.5). To apply the proposed method, the enter oordinates

for eah feature are required. To estimate these oordinates, we generate a signal with

onstant propagation parameter upon the image left and top sides. The lth signal
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omponent, generated from the lth row, reads: zlin(l) =
∑N

m=1 I(l, m)exp(−jµm),
where µ is the propagation parameter. The non-zero setions of the signals, as seen at

the left and top sides of the image, indiate the presene of features. Eah non-zero

setion width in the left (respetively the top) side signal gives the height (respetively

the width) of the orresponding expeted feature. The middle of eah non-zero setion

in the left (respetively the top) side signal yields the value of the enter lc (respetively
mc) oordinate of eah feature.

Figure 3.5 � Nearly irular or ellipti features. r is the irle radius, a and b are the axial

parameters of the ellipse.

3.3.4 Exempli�ation of the irle haraterization method

In Fig. 3.6, we exemplify the proposed method and the Hough tranform [67℄ on the

same type of hand-made image ontaining a single irle. In both ases, the image

is impaired with an additive Gaussian noise, with mean 0.02 and standard deviation

0.009, on 20% of the pixels.

The error on the radius value is 0.1 for the proposed method and 0.05 on the Hough

transform. In both ases, this error is less than 1 pixel.

3.4 Blurred ontour retrieval

3.4.1 Problem statement

In this subsetion, we provide the models that we adopt for the image and the blurred

ontours therein. We remind a spei� tehnique to generate a signal out of the image.

Let I(l, m) be an N × N reorded image (see Fig. 3.7(a) or Fig. 3.7(b)). We assume
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Figure 3.6 � One irle: radius estimation by the proposed method and GHT: (a) Proessed

image and result with our method, (b) Proessed image and result with GHT.

that I(l, m) is ompound of either several blurred linear ontours or one blurred iru-

lar ontour, and an additive uniformly distributed noise, whose gray level values follow

a Gaussian distribution. A linear-like ontour is supposed to have main orientation θ.
We de�ne its enter o�set x0 as the distane between the top left orner of the image

and the pixel with maximum gray level value Imax in the �rst row (see Fig. 3.7(a)). The

spread of the ontour is haraterized by the parameter σ, and we de�ne the parameter

G suh that Imax = G√
2πσ

. The value of G depends on the number of bits whih are

used to enode the image. When d blurred linear ontours are present, they are de�ned
by the set of parameters

{θk, x0k, σk, k = 1, . . . , d}. A irular-like ontour is supposed to have enter oordi-

nates {lc;mc}. The pixels with value

G√
2πσ

ompound a irle with enter oordinates

{lc;mc} and radius r0. In both ases the gray level values of the pixels derease grad-

ually aside the set of pixels with value

G√
2πσ

. Blurred linear ontours have width 2Xf .

A irular-like ontour has width 2rf .

To set the link between image data representation and sensor array proessing

methods, an array of sensors is assoiated with the image [6, 76℄, as previously explained

in this manusript. Fig. 3.8 represents the linear and irular arrays assoiated with

an image ontaining a blurred ontour. The shape of the array is adequately hosen,

onsidering the shape of the expeted ontour. To retrieve linear-like ontours, the

array sensors are supposed to be plaed in front of eah row (or eah olumn) of the

image [6℄ (see Fig. 3.8(a)). To retrieve irular-like ontours, the array sensors are

supposed to be plaed along a quarter of irle entered on the enter point of the
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Figure 3.7 � Contour models: (a) blurred ontours haraterized by main orientations θ1, θ2,

o�sets x01 and x02, and width 2Xf ; (b) blurred irular ontour haraterized by enter oordinates

{lc;mc}, radius r0, and width 2rf .

Figure 3.8 � Signal generation: (a) linear antenna for the generation of signal omponents

z(1), z(2), . . . , z(N) on left and bottom sides, blurred linear-like ontour with orientation θ and

o�set x0; (b) sub-image of size NS×NS irular antenna [76℄ for the generation of signal omponents

z(1), z(2), . . . , z(S) with ith sensor at angular position θi and assoiated diretion of generation Di ,

blurred quarter of irle

expeted irle [76℄. The intuition behind this hoie is to adapt the antenna shape

to the expeted ontour shape and get similar signal models. How to hoose between

linear or irular antenna is explained in subsetion 3.4.2. Fig. 3.8(b) shows part of

Fig. 3.7(b), whih is seleted to perform irle haraterization. The top left orner of

Fig. 3.8(b) oinides with the enter of the blurred irular ontour. The antenna is

ompound of S sensors, eah one related to the angular position θi =
(i−1)·π/2

S
, and to

the diretion of generation Di .

In the ase where linear-like ontours are expeted, we adopt the signal generation

sheme proposed in [6℄ and exposed previously in the manusript (see Eq. (3.1)).

Pixels along one row yield one signal omponent. Let i be any of the row indies

(i = 1, . . . , N). The ith row yields the signal omponent z(i) as in Eq. (3.1). The

signal omponents form the following signal vetor: z = [z(1), z(2), . . . , z(N)]T . In the

ase where irular-like ontours are expeted, an adequate signal generation proess

adapted to a quarter of the image also yields signal omponents. Pixels along the

diretion of generation Di (i = 1, . . . , S) yield the ith signal omponent z(i) (see Fig.
3.8(b)) whih reads as in Eq. (3.9).

The signal omponents form the following signal vetor: z = [z(1), z(2), . . . , z(S)]T .
The propagation parameter is further adapted so that the signal vetor �ts an array
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proessing model.

3.4.2 Signal models

In this setion, we derive exponential signal models for both linear blurred ontours

and irular blurred ontours, and show that both ontour types share the same signal

model. To get a model for the signals generated, we �rst need a model for the ontours,

that is, or equivalently for their grey level values. We assume the gray level values

I(l, m) evolve aside a entral position of the ontour as an exponential funtion of the

pixel position (see Fig. 3.7(a) and Fig. 3.7(b)). For linear-like ontours:

I(l, m) =
G√
2πσ

e−
x2

2σ2 , (3.11)

where x = m− (x0 − (l − 1)tan(θ)). For irular-like ontours, we get:

I(l, m) =
G√
2πσ

e−
(
√

(l−lc)2+(m−mc)2−r0)
2

2σ2
(3.12)

Referring to Eqs. (3.11) and (3.12),

G√
2πσ

is the maximum gray level value. We expet

that the exponential distribution, for instane a Gaussian distribution, of the gray

level values in both ases failitates the transfer of array proessing methods to the

onsidered parameter estimation issue.

Linear blurred ontour

Firstly, we assume that the image ontains only one blurred ontour of width 2Xf ,

main orientation θ, o�set x0, and spread parameter σ. Referring to Eqs. (3.1) and

(3.11), the signal generated on the ith sensor is expressed as:

z(i) = G√
2πσ

∑Xf

x=1 e
−jµ(x0+x−(i−1)tan(θ))e−

x2

2σ2

+ G√
2πσ

∑Xf

x=1 e
−jµ(x0−x−(i−1)tan(θ))e−

x2

2σ2

+ G√
2πσ

e−jµ(x0−(i−1)tan(θ))

(3.13)

That is:

z(i) = G√
2πσ

∑Xf

x=−Xf
e−jµ(x0+x−(i−1)tan(θ))e−

x2

2σ2

= G√
2πσ

e−jµx0ejµ(i−1)tan(θ)
∑Xf

x=−Xf
e−jµxe−

x2

2σ2

(3.14)

If σ is small enough ompared to the number of olumns in the image, we an turn

the onsidered disrete alulation into a ontinuous ase alulation. The intuition

behind this approximation is that the values of the term e−
x2

2σ2
derease rapidly when

x inreases, that is, when we get far from the pixels with gray level value

G√
2πσ

.

Therefore a summation between −Xf and Xf an be approximated as a summation

between −∞ and +∞. A deeper study of this approximation is proposed in [60℄ for

blurred irular ontours. Eq. (3.14) beomes:
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z(i) ≈

G√
2πσ

e−jµx0ejµ(i−1)tan(θ)
∫ +∞
x=−∞ e−jµxe−

x2

2σ2 dx (3.15)

A general formula provides the equality:

∫ +∞

x=−∞
e−ax2+jbxdx =

√

π

a
e−

b2

4a
(3.16)

Referring to Eq. (3.16), it is easy to express Eq. (3.15) by

z(i) = G e−jµx0ejµ(i−1)tan(θ)e−
µ2σ2

2
(3.17)

Eq. (3.17) is the signal reeived on the i-th sensor if one blurred ontour is present.

Seondly, we onsider the ase where the image ontains:

• d blurred ontours, with orientations θk, o�sets x0k, and spread parameters σk (k =
1, . . . , d);

• uniformly distributed noise pixels, whose gray level values follow a Gaussian dis-

tribution.

The expression of the signal reeived by ith sensor beomes:

z(i) = G
∑d

k=1 e
−jµx0kejµ(i−1)tan(θk)e−

µ2σk
2

2 + n(i) (3.18)

where n(i) is a noise term originated by the noise pixels during the signal generation

proess. It has been shown that this noise follows a Gaussian distribution [6℄. We

notie that, when σ tends to 0, Eq. (3.18) is equal to the equation obtained in the ase

of a one-pixel wide ontour (refer to [6℄). The signal omponents in Eq. (3.18) follow

an array proessing signal model, involving soure amplitudes and steering vetors.

Equation (3.18) an be expressed as:

z(i) =

d
∑

k=1

s(k)ci(θk) + n(i) (3.19)

For this we de�ne:

1. the soure amplitude assoiated with the k-th ontour as:

s(k) = G√
2πσ

e−jµx0k
∑Xf

x=−Xf
e−jµxe

− x2

2σk
2
, k = 1, · · · , d. When the ontinuous

approximation holds, the soure amplitude omponents are expressed as:

s(k) = Ge−jµx0ke−
µ2σk

2

2
(3.20)
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2. the steering vetor assoiated with the k-th ontour as:

(θk) = [c1(θk), c2(θk), · · · , cN(θk)]T , with ci(θk) = ejµ(i−1) tan(θk)
.

In a matrix form, we get:

z = C(θ)s + n (3.21)

where C(θ) = [(θ1), (θ2), . . . , (θd)]
T
, s = [s(1), s(2), . . . , s(d)]T , and n =

[n(1), n(2), . . . , n(S)]T .

Extension to a irular blurred ontour

In the ase of blurred irular ontours, it was shown in [60℄ that we get an array

proessing signal model if, instead of the �xed parameter µ, we hoose a parameter

whih depends on the sensor index µ = α(i− 1), where α is a onstant. As shown in

[60℄, a irular blurred ontour with spread parameter σ whih is small enough yields

the following signal omponents:

z(i) = exp(−jα(i− 1)r0)exp(−
σ2α2(i− 1)2

2
). (3.22)

We notie that, ontrary to Eq. (3.17), Eq. (3.22) ontains a quadrati term, whih is

the modulus of eah signal term. If we aount for noise and onsider the signal terms

z
′
(i) suh that:

z
′

(i) =
z(i)

|z(i)| = exp(−jα(i− 1)r0) + n(i) (3.23)

we get the following expression:

z

′

= (r0) + n (3.24)

with z

′
=

[

z
′
(1), . . . , z

′
(S − 1)

]T
, (r0) = [1, exp(−jαr0), . . . , exp(−jα(S − 1)r0)]

T
,

and n = [n(1), . . . , n(S − 1)]T being the noise vetor. In the next subsetion, we set

the link between linear-like ontours and irular-like ontours: we propose a ommon

signal model for both types of ontours.

Common signal model

The notations above permit to express the signal generated out of the image in a matrix

form:

z = C(ι)s + n (3.25)

where:

z = [z(1), z(2), . . . , z(NS)]
T
,

and C(ι) = [(ι1), (ι2), · · · , (ιd)]. In the ase of linear-like ontours, NS=N , and in

the ase of irular-like ontours, NS=S. Vetor n = [n(1), n(2), . . . , n(NS)]
T
repre-

sents noise resulting from possibly present outlier pixels. For linear blurred ontours,

s = [s(1), s(2), · · · , s(d)]T , and C(ι) = C(θ). For irular blurred ontours, s is a

salar: s = 1, and C(ι) = (r0).
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Estimation of prior information needed for ontour haraterization

The proposed method is entirely blind. We propose to distinguish between line and

irle with two linear antennas, plaed aside the image on the left or the bottom side.

A threshold value is applied to the generated signals to get rid of noise. When the

signals reeived on both antennas exhibit �rst and last omponents whih are zero-

valued, one or several irles are present. Their enter oordinate lc (resp. mc) are

the middle of the non-zero setions of the signal generated on the left (resp. bottom)

array. If only the left (resp. bottom) array signal ontains zero setions, at least

one nearly horizontal (resp. vertial) line is present. If no array signal ontain zero

setions, a diagonal line is present. If a horizontal line is present, the signal generated

on the bottom array is further used instead of the signal generated on the left array.

The number of lines is estimated by MDL (minimum desription length) riterion, as

explained in the following.

3.4.3 Subspae-based methods for the estimation of ontour

parameters

In this setion, we adapt subspae-based methods oming from array proessing to

estimate some of the parameters of blurred ontours. Firstly, we seek for linear blurred

ontours: a subspae-based method and Fourier proessing provide orientations and

o�sets {θk, x0k, k = 1, . . . , d}. Seondly, we seek for a irular blurred ontour, and a

subspae-based method provides the radius r0.

Linear blurred ontours

We adapt a subspae-based method oming from array proessing to retrieve the main

orientation of the ontour, and apply Fourier proessing to retrieve its enter o�set.

• Estimation of the blurred ontour orientation Equation (3.25) is exatly anal-

ogous to an array proessing equation [94℄. Therefore, an array proessing method

an be applied to the signals generated from the image. However, we do not a�ord

several signal snapshots, and an array proessing method suh as MUSIC [94℄ annot

be diretly applied. We have to simulate arti�ially multiple signal snapshots out of

a single sample array data by splitting the array (of length N) into smaller overlay-

ing sub-arrays (of length M). This is alled spatial smoothing tehnique. For more

information about spatial smoothing, refer to [6, 76℄. We get P snapshots, where P is

suh that: M = N − P + 1. From the observation vetor z we obtain P overlapping

sub-vetors. By grouping all sub-vetors obtained in matrix form, we obtain:

ZP = [z1, · · · , zP ] (3.26)

The ovariane matrix of all sub-vetors of Eq. (3.26) is de�ned by:

Rzz = ZPZP
H

(3.27)
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MDL riterion, when applied to Rzz, provides the number of dominant eigenvalues of

Rzz, whih is equal to the number of ontours d [6℄. We estimate the parameters θk,
k = 1, . . . , d through the maxima of the pseudo spetrum F (θ) [94℄:

F (θ) =
1

‖ H (θ) ·U2 ‖2
(3.28)

where θ is the parameter upon whih the optimization is done, and  (θ) is a model for

the signal subspae vetors: (θ) = [c1(θ), c2(θ), · · · , cM(θ)]T , with ci(θ) = ejµ(i−1) tan(θ)
.

Matrix U2 olumns span the noise subspae of the data: it is omposed of the M − d
olumns of the ovariane matrix Rzz assoiated with its M − d smallest eigenvalues.

We notie that a onstraint on M and P with respet to the number of expeted

soures is the following: M > d and P ≥ d (to get a full rank ovariane matrie).

From M = N − P + 1 we also get: M ≤ N − d+ 1.
• Estimation of the blurred ontour o�set The estimation of the o�set parameters

of linear ontours falls into two steps: �rst, an approximation is made to get a rough

value of the o�sets, whih is needed to estimate the spread parameters. Supposing we

have at disposal the spread parameters (whose estimation is presented further in this

hapter), it is possible to get a more aurate estimate of the ontour o�sets. They are

�rst grossly estimated, and then the aurate estimate is retrieved with the knowledge

of the spread parameters.

One the orientation values are known, the o�set values an be estimated by variable

speed generation sheme [21℄ and TLS-ESPRIT algorithm [6℄. We set µ = α(i − 1).
Eq. (3.18) beomes:

z(i) = G Σ + n(i)
(3.29)

with Σ =
d

∑

k=1

e−jα(i−1)x0kejα(i−1)2tan(θk)e−
(α(i−1))2σk

2

2

Then, eah ontour is onsidered suessively. We an onsider for instane the �rst

orientation θ1. As θ1 value has been estimated, we an divide z(i) by the term

ejα(i−1)2tan(θ1)
. We obtain:

w(i) = z(i)/ejα(i−1)2tan(θ1) =

G e−jα(i−1)x01e−
(α(i−1))2σ1

2

2 + n′(i) (3.30)

where n′(i) is a noise term resulting from the in�uene of noisy pixels and all but

the �rst ontour. At this point, the value of σ1 is not known and we propose an

approximation whih permits to get a gross estimate of x01 without the prior knowledge

of σ1. If the propagation parameter α is hosen suh that α(i−1) << 1, ∀ i = 1, . . . , N ,

we an adopt the following approximation:

w(i) ≈ w̃(i) = G e−jα(i−1)x01 + n(i) (3.31)
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The signal w̃ = [w̃(1), w̃(2), . . . , w̃(N)]T an be analysed by Fourier transform, whih

provides the estimated o�set value x̂01:

x̂01 = argmax
x01

(|FT(w̃)|) (3.32)

where FT denotes Fourier transform. The term argmax
x01

means that we seek for the

value of x01 whih maximizes |FT(w̃)|. The division proess of Eq. (3.30) and the

Fourier analysis of Eq. (3.32) are repeated for eah value k = 1, . . . , d. Fourier analysis
is fast and easy to implement. At this point a gross estimate of the o�set values is

available, whih will be used to estimate the spread parameter values σk, k = 1, . . . , d.
The estimation of the spread parameters out of the grossly estimated o�set values is

explained further in this hapter. Let's assume that all spread values are available,

and avoid the approximation of Eq. (3.31).

Starting from the expression of w(i) in Eq. (3.30), we derive the signal ω(i), i = 1, . . . , d:

ω(i) = w(i)/(e−
(α(i−1))2σ1

2

2 )

= G e−jα(i−1)x01 + n′(i) (3.33)

where n′(i) is a noise term resulting from the in�uene of all but the �rst ontour. The

signal omponents ω(i) form the signal vetor

ω = [ω(1), ω(2), . . . , ω(N)]T whih an be analysed by Fourier transform to provide

the estimate x̂01 of the o�set value:

x̂01 = argmax
x01

(|FT(ω)|) (3.34)

The division proesses performed in Eqs. (3.30) and (3.33) are applied d times, that

is, for eah ontour, to retrieve the re�ned estimates x̂0k, k = 1, . . . , d.

Cirular blurred ontours: estimation of the radius

At this point the enter oordinates {lc;mc} are known (see subsetion 3.4.2). From

Eq. (3.24), we notie that the problem of radius estimation is similar to the retrieval of

harmonis in several signal proessing �elds suh as radar, sonar, ommuniation. The

resulting signal appears as a single sinusoid with unitary amplitude and frequeny:

f = −αr0/2π (3.35)

MFBLP method (Modi�ed Forward-Bakward Linear Predition), whih was previ-

ously presented in the manusript, in subsetion (3.2.3), is adequate for frequeny

retrieval from oherent signals, in partiular signals with unitary amplitude. We adapt

it to the signal vetor z

′
(see Eq. (3.24)) to estimate the radius of a single irle. To

redue the omputational load of radius estimation, and on ondition that still one

irle is solely expeted, the Fourier transform with adequate frequeny an yield the

radius value.
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3.4.4 Optimization strategy for spread parameter estimation of

the blurred ontours

In this subsetion we propose least-square riteria whih involve the generated signals

and either the signal model of Eq. (3.25) for linear ontours, or the signal model of

Eq. (3.22) for irular ontours. The proposed optimization strategy should provide

the spread parameter σ for either eah of the blurred linear ontours or for the blurred

irular ontour.

Linear blurred ontours

The ontour orientations estimated by MUSIC algorithm are used to ompute the

steering matrix C(θ) (see Eq. (3.25)). The soure vetor s depends not only on

the o�set parameters x0k (k = 1, . . . , d), but also on the spread parameters σk (k =
1, . . . , d). Therefore we propose to retrieve the omponents of the soure vetor s,

through the following riterion minimization:

ŝ = argmin
s

(||z−Cs||2) (3.36)

where ||.|| represents the norm indued by the usual salar produt of CN
. It is easy

to show that the density funtion of the measurement noise is Gaussian if the noise

pixels are identially distributed over the image [6℄. Therefore, the above least-squares

problem provides the maximum likelihood estimate for the soure vetor. We remind

that the relationship between the soure vetor omponents and the spread parameter

values is given by (see Eq. (3.20)):

s(k) = f(σk) = G e−jµx0ke−
µ2σk

2

2
(3.37)

We denote by σ = [σ1, . . . , σd]
T
the vetor ontaining all spread parameter values,

and by f(σ) = [f(σ1), . . . , f(σd)]
T = [s(1), . . . , s(d)]T the soure vetor. We denote by

σ̂ = [σ̂1, . . . , σ̂d]
T
the vetor ontaining the estimates of all spread parameter values.

From Eqs. (3.36) and (3.37), we get:

σ̂ = argmin
σ

(||z−Cf(σ)||2) (3.38)

whih an be expressed as:

σ̂ = argmin
σ

(Jline(σ)) (3.39)

where Jline denotes the riterion to be minimized. To solve Eq. (3.38) and minimize

riterion Jline, we adopt a reurrene loop to modify reursively the vetor σ̂. The

series vetors are obtained from the relation

σ̂q → f(σ̂q) → Jline(σ̂
q), ∀ q ∈ N (3.40)
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When q tends to in�nity, the riterion Jline tends to zero and σ̂q
k = σk, ∀ k = 1, . . . , d.

The riterion Jline presented in Eq. (3.39) is a Lipshitz ontinuous funtion of the

vetor of variables σ and therefore ful�ls the requirements of the DIRECT (DIviding

RECTangles) method [62℄. Therefore, to arry out this reurrene loop, we an adopt

the robust DIRECT optimization method [62℄. DIRECT method is initialized by σ̂0
,

and a researh spae whih is an aeptable interval for eah value. Vetor σ̂0
and

the researh spae are a priori �xed by the user. The main property of DIRECT is

that it is able to obtain the global minimum of a funtion. DIRECT normalizes the

researh spae in a hyperube and evaluates the solution whih is loated at the enter

of this hyperube. Then, some solutions are evaluated and the hyperube is divided

into smaller ubes, supporting the zones where the evaluations are small. When the

required number of iterations q = It is reahed, DIRECT provides the estimated vetor

of spread parameters σ̂It = [σ1, σ2, . . . , σd].

Extension to a blurred irular ontour

In the ase of a blurred irular irle, we propose the following algorithm: we start

from the signal z = [z(1), z(2), . . . , z(S)]T whose omponents z(i) are de�ned in Eq.

(3.22). The value of r0 is known at this point, and an be used to obtain the signal

omponents z
′′
(i) de�ned as follows: z

′′
(i) = z(i)/exp(−jα(i−1)r0). Let's then denote

by z

′′

model the signal whose omponents are de�ned by z
′′

model(i) = exp(−σ2α2(i−1)2

2
),

and let's denote by z

′′

image the signal whose omponents are de�ned by: z
′′

image(i) =
z(i)/exp(−jα(i− 1)r0) and obtained from the signal omponents z(i) generated out of

the image. With these notations, the spread parameter σ an be estimated as follows:

σ̂ = argmin
σ

(||z′′

image − z

′′

model||2) (3.41)

whih an be expressed as:

σ̂ = argmin
σ

(Jcircle(σ)) (3.42)

where Jcircle denotes the riterion to be minimized. Contrary to the ase of linear

blurred ontours desribed in subsetion 3.4.4, the global optimization method DI-

RECT [62℄ is not adequate to minimize the riterion Jcircle presented in Eq. (3.42).

An advaned well-known loal minimizer is adapted: the Nelder-Mead Simplex Method

[70℄. It is meant to minimize a salar-valued nonlinear funtion of n real variables. It is

then adequate to minimize the riterion Jcircle(σ), whih onstitutes a nonlinear fun-

tion of the parameter σ. Nelder-Mead method involves four salar parameters: the

oe�ients of re�etion (ρNM), expansion (χNM ), ontration (γNM), and shrinkage

(σNM).

3.4.5 Exempli�ation of the blurred ontour retrieval methods

In the following experiment, we analyse an image inluding two linear blurred on-

tours, with di�erent spread values (see Fig. 3.9). The image has size 400 × 400. The
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enter o�sets of the two blurred ontours are x01 = 200 and x02 = 170, and the main

orientation of two ontours are θ1 = −18◦ and θ2 = 18◦. The spread values are σ1 = 8
and σ2 = 1.
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Figure 3.9 � Blurred linear ontours: (a) proessed image with a blurred ontour and a one-

pixel wide ontour; (b) pseudo spetrum when MUSIC algorithm is exploited; () enter ontours;

(d) �nal result

The estimated orientations of the blurred ontours are θ̂1 = −18◦ and θ̂2 = 18◦.
The o�sets are estimated as x̂01 = 200.5 and x̂02 = 211 pixels. The estimated spread

parameters are σ̂1 = 10.9 and σ̂2 = 2.4. Fig 3.9(b) shows that the ontour with low

spread value is hardly deteted by MUSIC algorithm. The dominating in�uene of the

most blurred ontour in the generate signals of Eq. (3.26) also explains the slight bias

(41 pixels) obtained on the o�set of the least blurred ontour.

We present a result obtained from an image of size 200 × 200 pixels (see Fig. 3.10),

ontaining a blurred irle. The experimental onditions and expeted values for the

blurred irular ontour are as follows: the enter oordinates are {lc, mc} = {70, 60};
the radius is r0 = 45 pixels; the spread value is σ = 5. The proposed methods yield

the following estimated parameters out of the generated signals: the estimated enter

oordinates are

{

l̂c, {lc, mc}mc

}

= {70, 60}, the estimated radius value is r̂0 = 45.4

pixels, and the estimated spread value is σ̂ = 5.6. As a omparative method we hose

Chan and Vese levelset algorithm. As expeted, this method manages to fous on

the blurred ontour boundaries, but it does not haraterize the blur, ontrary to the

proposed method.
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Figure 3.10 � Blurred irular ontours: (a) initial image; (b) initialisation irle; () �nal

result; (d) results by Chan and vese method

3.5 Retrieval of distorted ontours

3.5.1 Nearly retilinear ontour retrieval

We keep the same signal generation formalism as for straight line retrieval. The more

general ase of distorted ontour estimation is proposed. The reviewed method relies

on onstant speed signal generation sheme, and on a reursive optimization method.

Initialization of the proposed algorithm

To initialize our reursive algorithm, we apply SLIDE algorithm, whih provides the

parameters of the straight line that �ts the best the expeted distorted ontour. In

this setion, we onsider only the ase where the number d of ontours is equal to one.

The parameters angle and o�set reovered by the straight line retrieval method are

employed to build an initialization vetor x0, ontaining the initialization straight line

pixel positions:

x0 = [x0, x0 − tan(θ), . . . , x0 − (N − 1) tan(θ)]T

Fig. 3.11 presents a distorted urve, and an initialization straight line that �ts this

distorted urve.
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Figure 3.11 � A model for an image ontaining a distorted urve

Distorted urve: proposed algorithm

We aim at determining the N unknowns x(i), i = 1, . . . , N of the image, forming a

vetor xinput, eah of them taken into aount respetively at the ith sensor:

z(i) = exp(−jµx(i)), ∀ i = 1, . . . , N (3.43)

The observation vetor is

zinput = [exp(−jµx(1)), . . . , exp(−jµx(N))]T (3.44)

We start from the initialization vetor x0, haraterizing a straight line that �ts a

loally retilinear portion of the expeted ontour. The values x(i), i = 1, . . . , N an

be expressed as: x(i) = x0 − (i − 1) tan(θ) + ∆ x(i), i = 1, . . . , N where ∆ x(i) is

the pixel shift for row i between a straight line with parameters θ and x0 and the

expeted ontour. Then, with k indexing the steps of this reursive algorithm, we aim

at minimizing

J(xk) = ||zinput − zestimated for xk
||2 (3.45)

where ||.|| represents the CN
norm. For this purpose we use �xed step gradient

method: ∀k ∈ N : xk+1 = xk − λ∇(J(xk)), λ is the step for the desent. At

this point, by minimizing riterion J (see Eq. (3.45)), we �nd the omponents of ve-

tor x leading to the signal z whih is the losest to the input signal in the sense of

riterion J . Choosing a value of µ whih is small enough (see Eq. (3.1)) avoids any

phase indetermination. A variant of the �xed step gradient method is the variable step

gradient method. It onsists in adopting a desent step whih depends on the iteration

index. Its purpose is to aelerate the onvergene of gradient. A more elaborated

optimization method based on DIRECT algorithm [62℄ and spline interpolation [75℄

an be adopted to reah the global minimum of riterion J of Eq. (3.45). This method

is applied to modify reursively signal zestimated for xk
: at eah step of the reursive

proedure vetor xk is omputed by making an interpolation between some "node"

values that are retrieved by DIRECT. The interest of the ombination of DIRECT

with spline interpolation omes from the elevated omputational load of DIRECT. De-

tails about DIRECT algorithm are available in [62℄. Reduing the number of unknown

values retrieved by DIRECT redues drastially its omputational load. Moreover, in
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the onsidered appliation, spline interpolation between these node values provides a

ontinuous ontour. This prevents the pixels of the result ontour from onverging

towards noisy pixels. The more interpolation nodes, the more preise the estimation,

but the slower the algorithm.

After nearly linear ontours, we fous on nearly irular ontours.

3.5.2 Nearly irular ontour retrieval

To retrieve the distortions between an expeted star-shaped ontour and a �tting quar-

ter of irle, we work suessively on eah quarter of irle, and retrieve the distortions

between one quarter of the initialization irle and the part of the expeted ontour

that is loated in the same quarter of the image. As an example, in Fig. 3.3, The right

bottom quarter of the onsidered image is represented in Fig. 3.3(b).

The optimization method that retrieves the shift values between the �tting irle

and the expeted ontour is the following:

A ontour in the onsidered sub-image an be desribed in a set of polar oordinates

by: {ρ(i), θ(i), i = 1, . . . , S}. We aim at estimating the S unknowns ρ(i), i = 1, . . . , S
that haraterize the ontour, forming a vetor:

ρ = [ρ(1), ρ(2), . . . , ρ(S)]T , (3.46)

The basi idea is to onsider that ρ an be expressed as: ρ = [r + ∆ρ(1), r +
∆ρ(2), . . . , r + ∆ρ(S)]T (see Fig. 3.3), where r is the radius of a irle that approxi-

mates the expeted ontour. The parameters ∆ρ(1), . . . ,∆ρ(S) an be estimated by a

gradient-type algorithm or DIRECT ombined with spline interpolation, as was per-

formed in [77℄. However, these two methods exhibit limitations when the onsidered

ontour is highly distorted. The omputational load required by gradient is elevated,

and the regularity onstraints on spline interpolation prevent from providing to the dis-

tortions their atual shape. Hene the method proposed in [61℄, whih is summarized

in the next subsetion.

3.5.3 Highly distorted star-shaped ontour retrieval

In this subsetion, we onsider star-shaped ontours. On the one hand, this is a limiting

model beause for one angle value in a polar set of parameters, there must be only one

pixel of the ontour. On the other hand, this allows the distortion amplitudes to be as

elevated as possible, as soon as the ontour remains in the proessed image. The signal

generation method is still based on virtual sensors plaed along a irular antenna, but

the formula providing the signal omponents is slightly di�erent.

Problem formulation

Assume that a losed irular ontour is in an N×N reorded image Il,m (see Fig. 3.12).

The most simple star-shaped ontour is the irle. A irle is supposed to have enter
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oordinates (lc, mc) and radius r. Note that, for a binary image, Il,m = 1 on the ontour
and Il,m = 0 otherwise. The signal omponent for a given sensor i is generated by the

pixels in every Di diretion as follows:

zi =
∑Ns

l=1

∑Ns

m=1
(l,m)∈Di

Il,m
√
l2 +m2, i = 1, · · · , S

(3.47)

where Ns is the maximum number of rows and olumns in the sub-image. The

signal omponents form the signal vetor z = [z1, z2, . . . , zS]
T
.

Figure 3.12 � A model for an image ontaining a highly distorted irle

The onsidered signal generation proess requires the knowledge of the enter o-

ordinates (lc, mc). We explain in subsetion 3.3.3 how to estimate these enter oor-

dinates. When a single one-pixel wide irular ontour with radius r is present, the

signal omponents read:

zi = r, i = 1, . . . , S (3.48)
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When a distorted nearly irular ontour is onsidered, the signal omponents read:

zi = r +∆ρ(i), i = 1, . . . , S (3.49)

In the rest of the subsetion, we denote ∆ρ(i) as xi, i = 1, . . . , Q.

From the signals z = [z1, z2, · · · , zQ]T of Eq. (3.49), we wish to retrieve the radius

value r, and the osillations xi, i = 1, · · · , Q, in partiular from ontours presenting

a strong onavity. Without loss of generality, we de�ne r as the mean value of the

omponents zi i = 1, . . . , Q. r is estimated as:

r = z̄ (3.50)

where z̄ is de�ned as: z̄ = 1
S

∑S
i=1 zi. Then, we an ompute:

xi = zi − r, i = 1, . . . , Q (3.51)

The values xi, i = 1, · · · , Q are exatly the edge osillation values in the ase where the

image is not impaired with noise. If the image is impaired with uniformly distributed

noise, the omputation of Eq. (3.51) provides signal omponents xi, i = 1, . . . , Q whih

are impaired by random noise, due to the in�uene of random noise pixels on the signal

generation proess. Therefore, we seek for a method whih retrieves the osillations of

possibly strongly onave ontours, and whih is robust to noise. For this, we propose

in the following a model for edge osillations xi, i = 1, · · · , Q. We will further adapt

an advaned damped frequeny retrieval method to haraterize the edge osillations,

in aordane with the proposed model.

Edge osillations modelled as damped sinusoids

For the edge osillations of a star-shaped ontour, the pixel oordinates in a polar

representation are supposed to follow a generalized version of the sinusoidal model,

that is, K damped sinusoidal omponents, eah of whih has respetive amplitude,

frequeny and damping fator. So we model the edge osillations as follows:

xi =
2K
∑

k=1

ake
jφke(−dk+jωk)(i−1) =

2K
∑

k=1

ckw
(i−1)
k , i = 1, . . . , Q (3.52)

where j =
√
−1. In Eq. (3.52), xi represents the osillation magnitude for

i = 1, . . . , Q, ak is amplitude of the k-th sinusoidal omponent, dk its damping fator,

ωk its angular frequeny, and φk its initial phase. Note that damping fator dk
may be negative. In this ase, the amplitude of k-th omponent grows with index

i. ck = ake
jφk

is the omplex-valued amplitude of k-th omponent, and wk = e(−dk+jωk)
.

The observed signal segment x = [x1, x2, . . . , xQ]
T
is entirely haraterized by the

parameters ak, dk, ωk, φk, k = 1, . . . , 2K. The number K of sinusoidal omponents
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an be estimated by MDL riterion [108℄.

We then have to determine the parameters ited above by applying a variant of the

parameter estimatorFirstly, we rearrange the signal segment x in a Hankel matrix with

L×M as follows:

X =











x1 x2 . . . xM

x2 x3 . . . xM+1
.

.

.

.

.

.

.

.

.

xL xL+1 . . . xQ











(3.53)

where L, K, and Q are related by: L ≥ 2K, M ≥ 2K and Q = L+ 2K − 1.

Then, by implementing the Vandermonde Deomposition (VD) for Hankel data

matrix of Eq. (3.53) with rank of 2K, X an be written as:

X

VD

= SCT

T ,
where (·)T denotes matrix transposition, C = diag(c1, c2, . . . , c2K),

S =











1 1 . . . 1
w1

1 w1
2 . . . w1

2K
.

.

.

.

.

.

.

.

.

wL−1
1 wL−1

2 . . . wL−1
2K











,

T =











1 1 . . . 1
w1

1 w1
2 . . . w1

2K
.

.

.

.

.

.

.

.

.

wM−1
1 wM−1

2 . . . wM−1
2K











.

Aording to the shift-invariant property in olumn spae,

S

L = S

F
Z, (3.54)

where S

L
is a matrix ontaining all but the �rst row of S, and S

F
is a matrix ontaining

all but the last row of S. Z is a diagonal matrix whose nonzero terms depend on the

expeted parameters. By performing SVD, X an be deomposed as:

X

SVD

=
[

U1 U2

]

[

Σ1 0

0 Σ2

] [

V

H
1

V

H
2

]

(3.55)

where (·)H is the Hermitian transposition, Σ1 ontains the largest 2K singular values

of X and Σ2 the L − 2K singular values of X. The matries U1 and V
H
1 ontain the

�rst 2K left and right singular vetors, and their dimension is L × 2K and M × 2K,

respetively. Beause the rank of X is 2K, all values of Σ2 are null. Therefore, we an

express X as:

X = U1Σ1V
H
1 , (3.56)
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and we get the following equation from Eq. (3.54) by orthogonal basis transforma-

tion.

U

F
1 Z

u = U

L
1 (3.57)

where U

F
1 ontains all but the last row of matrix U1, U

L
1 ontains all but the �rst

row of matrix U1, and Z
u
is a similarity transform of Z. The damping fators dk and

frequenies ωk (k = 1, . . . , 2K) of the exponential sinusoidal model (see Eq. (3.52))

are estimated from the eigenvalues of Z

u
. Then we substitute these estimated dk and

ωk in Eq. (3.52) and ompute the least-squares solution of the N linear equations.

Finally, the amplitude ak and phase φk of eah omponent are determined from the

magnitude and angle of ck in Eq. (3.52). Aording to these estimated parameters, we

an reonstrut the ontour with osillations. The pixel oordinates in the ontour are

given as:

ρi = r + x̂i, i = 1, · · · , Q
where x̂i is initial estimation of xi, i = 1, · · · , Q. We now a�ord the values of the

ontour distortions, for any angle oordinate θi. We also a�ord, r, the radius of the

�tting irle. With the knowledge of the enter, whose estimation is the purpose of

subsetion 3.3.3, we reonstrut perfetly the expeted ontour.

3.5.4 Exempli�ation of the distorted ontour retrieval meth-

ods

We onsider two approximately linear distorted ontours, with di�erent distortion am-

plitude. These ontours are the ones of Figs. 3.13(a) and (b). The pixel of the least and

most distorted ontours, and their estimation by the proposed method and by GVF

[111℄ are drawn on Figs. 3.13(a) and (b).

We now onsider highly distorted approximately irular ontours. We denote by

ME
x

the mean error between atual and estimated radial oordinate osillations. In

some ases, due to the aquisition onditions or the image quantization, the ontin-

uous form of ontour edge is not perfet. It is therefore very interesting to evaluate

the robustness of the proposed method to pixel loation errors. We produe test im-

ages by initially reating a star-shaped ontour (see Fig. 3.14 (a)); and then adding

pixel displaement by modifying the atual pixel radial oordinates with a Gaussian

random variable with mean value 0 and standard deviation 1 (see Fig. 3.14(b)). We

assume there exists equally distributed random noise in the image, with mean value

0 and standard deviation 10−2
. Referring to Figs. 3.14 (d)-(i), when the proposed

method is applied, the mean error is ME
x

= 1.61 when small random displae-

ments are added; and ME
x

= 1.86 when larger random displaements are added.

When Gradient method is applied, the mean error value is inreased dramatially from

ME
x

= 1.78 to ME
x

= 2.25. When GVF is applied, the mean error value is inreased

fromME
x

= 1.90 toME
x

= 2.42. So, Figs. 3.14 (d)-(i) show that the proposed method
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Figure 3.13 � (a) Least distorted ontour: initialization, results obtained (b) Most distorted

ontour: initialization, results obtained by the proposed method and GVF respetively.

is not sensitive to the random pixel displaements, ontrary to Gradient method and

GVF method. This is due to the fat that the proposed method proesses the sig-

nal generated from the image as a whole, providing parameters of interest, whereas

Gradient method and GVF are loal methods, whih may fous on random pixels.

This type of ontour, though being rigourously star-shaped, makes us think about

the outside borders of hands, aptured on video frames. In the next setions of this

manusript, we will show how this intuition yields a spei� signature inspired by the

signal generation methods presented above.

3.6 Conlusion of the hapter

This hapter presents an overview of an original approah of ontour detetion whih

has been proposed during the past years. Array proessing signal models and methods

have been adapted to various aspets of ontour detetion. Originally, this approah

onsisted in onsidering a ontour as a wavefront and the image bakground as a

propagation medium [6℄. In this framework, a signal generation sheme along the rows

of the image yields signal omponents. Eah row is assoiated with a virtual sensor, and

the whole set of sensors forms a uniform linear antenna. This approah was extended

to irles, by adapting the shape of the antenna [76℄, and hoosing radial diretions for

the generation of signal omponents.

An extension of these methods, inspired from real-world issues, was proposed there-

after: it onsists in haraterizing blurred ontours. Blur an indeed our beause of

de-fous, transmission media inhomogeneities, et. We reminded what are the prini-

ples of haraterization of either linear of irular blurred ontours. An outline of the
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Figure 3.14 � (a) proessed image: κ = 2.7 10−3
, with small edge perturbation and noise

(0, 10−2); (b) proessed image, with large edge perturbation and noise (0, 10−2); () initialization of

the methods for both proessed images; (d-f) superposition proessed and result obtained on 'a' by the

proposed method (ME
x

= 1.58), Gradient method (ME
x

= 1.78), and GVF method (ME
x

= 1.90);
(g-i) result obtained on 'b' by the proposed method (ME

x

= 1.86), Gradient method (ME
x

= 2.25),
and GVF method (ME

x

= 2.42).

proposed blurred ontour estimation methods is as follows:

• �nd out the mean position of the pixels of the ontour:

For blurred linear ontours:

� hoose µ as a onstant value, and estimate the orientations θk (k = 1, . . . , d)
through Eq. (3.28);

� hoose µ as a variable value µ = α(i− 1), and estimate the o�sets x0k (k =
1, . . . , d) through Eq. (3.32), for eah orientation value.

For blurred irular ontours: hoose µ as a variable value µ = α(i − 1), and
estimate the radius r0 by determining the roots of the polynomial funtion H ;
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• estimate the spread parameters σk (k = 1, . . . , d) by DIRECT optimizationmethod

(see Eq. (3.39) for linear ontours) or Nelder-Mead method (see Eq. (3.42) for

irular ontour);

• obtain a re�ned estimation of x0k (k = 1, . . . , d), knowing σk values (linear on-

tours, see Eq. (3.34)).

The methods dediated to straight line estimation and irle retrieval were extended

to distorted linear ontours and distorted irular ontours. For this, a pixel shift

term was introdued in the model whih is followed by the signal generated on the

uniform linear antenna or the irular antenna. In the ase of linear ontours, an

optimization method, based either on gradient [21℄ or on the ombination of DIRECT

and spline interpolation [76℄. Table 3.1 provides the diretions for signal generation,

the parameters whih haraterize the initialization ontour and the distortions when

either linear or irular ontours are expeted.

Straight Cirular

Diretion for signal generation row i Di

Initialization parameters θ, x0 r, enter

Pixel shift ∆x(i) ∆ρ(i)

Table 3.1 � Similarities between nearly straight and nearly irular distorted ontour estimation

A summary of the estimation nearly retilinear distorted ontour is given as follows:

• Signal generation with onstant parameter on linear antenna, using Eq. (3.1);

• Estimation of the parameters of the straight lines that �t eah distorted ontour

(see subsetion 3.5.1);

• Distortion estimation for a given urve, estimation of x, applying gradient algo-

rithm to minimize a least squares riterion (see Eq. 3.45).

The optimization method based on gradient or DIRECT ombined with spline in-

terpolation yield satisfatory results when the distortions are of low amplitude. In the

ase of any star-shape ontour, with either low amplitude or high amplitude distortions,

a method proposed in [61℄ is preferable. It models the pixel radial shifts as damped

sinusoids. A method dediated to the estimation of the damp fator, the frequeny

and the phase shift of multiple sinusoids was adapted in [61℄. It permits to retrieve the

ontour distortions with a omputational load whih is independent from the distortion

amplitude, ontrary to the optimization methods whih were proposed previously. The

proposed method for star-shaped ontour estimation is summarized as follows:

• Variable speed propagation sheme upon the proposed irular antenna : Esti-

mation of the number of irles by MDL riterion, estimation of the radius of

eah irle �tting any expeted ontour (see Eqs. (3.9) and (3.10)) or the axial

parameters of the ellipse;
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• Estimation of the radial distortions, in polar oordinate system, between any ex-

peted ontour and the irle or ellipse that �ts this ontour. In the ase of low

amplitude distortions, either the gradient method or the ombination of DIRECT

and spline interpolation may be used to minimize a least-squares riterion. In

the ase of star-shape ontours with possibly large distortions, a damped sinu-

soid haraterization method is adapted to the signals generated on the irular

antenna.

Now, the methods presented in this hapter ope with either linear, or star-shape

ontours. The results presented above while exemplifying the methods for strongly dis-

torted star-shape ontours lead to an intuition: this kind of methods ould be adapted

to hand ontour haraterization. However, we will show further in this manusript

that, although this intuition is justi�ed, a ompletely new signal generation method is

neessary to haraterize hand ontours, whih are most often non star-shape. This is

the purpose of a next hapter of this manusript.



CHAPTER

4 Novel signature for hand

haraterization

4.1 Introdution of the hapter

H
AND haraterization appears to be a neessary and important step in the hand

reognition proedure. Several methods have proven suessful and have given

promising results but they are applied on a redued base of postures. Thinking in this

diretion is more essential than ever beause existing desriptors based for instane on

moments exhibit drawbaks.

From the omments provided in setion 1.3, it appears that a new haraterization

method is now required. It must ensure maximum disrimination between the postures

that are very lose, it must also ensure the properties of invariane suh as rotation,

translation and the sale fator. Finally it must guarantee the onsisteny between the

reonstruted image (with the vetor or matrix haraterization) and the initial image.

With the experiene of the GSM team in the �eld of antenna treatment and the

transfer of array proessing to image proessing using the tools of signal proessing (see

setion 3), we managed to �nd a new method of haraterization, but the questions

that arise are as follows:

how ould antenna tools proessing be adapted to the generation of a disriminative

hand signature? how does this method guaranteed the invariane properties? And

�nally, what are the required preproessings whih permit to respet the onditions of

use of this novel signature?

4.2 Signature generation

A planar objet shape an be haraterized through two-dimensional moment invari-

ants, obtained for instane with Hu [53℄, Zernike [28, 66℄, or Legendre [40℄ moments.

One-dimensional moment invariants an also be used as signatures to haraterize

ontours, for instane Fourier desriptors [30, 88℄, whih are obtained by Fourier

transform of the arlength parametrization, in omplex oordinates, of a losed
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ontour. The image san in [98℄ provides a ontour signature as a matrix involving

the ontour polar oordinates.

An equivalent desriptor alled shape ontext desriptor is presented in [44℄ as a

ompat human pose representation. The proessed image is divided into di�erent

ranges of radius and angle values. Eah range ouple ompounds a bin. Counting

the number of pixels in eah bin yields a 2-D histogram. The main drawbak of

suh a desriptor is that it does not provide a 1-pixel preision: it is impossible to

distinguish between the pixels of a given bin, so details whih are smaller than the

bins are skipped. And, the more aurate the desription, the smaller the regions, but

the higher the omputational load and the storage plae. On the ontrary, we propose

a ontour signature whih o�ers a resolution of one pixel.

The proposed novel san is inspired from [98℄ but also from [61, 77℄. In [77℄ and

[61℄, an image san is proposed to haraterize star-shaped ontours. In a system of

polar oordinates with adequately hosen pole, a ontour is star-shaped if the radial

oordinates (ρ) of its pixels are funtion of their angular oordinates (θ): ρ = f(θ). In
the general ase, hand ontours are not star-shaped: it is impossible to �nd a pole for

whih the relation ρ = f(θ) holds for all ontour pixels. That is why we seek for a

haraterization method whih handles non-star-shaped ontours.

The proposed method for ontour haraterization splits the image into several

rings entered on a referene point. The requirements on the loation of this referene

point are low, ontrary to the ondition imposed by the method in [61℄. With

this haraterization method, we aim at distinguishing very similar postures with a

omputational load whih is lower than what the generally used Fourier desriptors

would require.

The image Ic, denoted by I in the following for onveniene, is supposed to have size

N ×N , and its pixels are referred to, starting from the top left orner of the image, as

Il,m (see Fig. 4.1.a). The 1-valued pixels ompound the expeted ontour. The ontour

pixels are loated in a system of polar oordinates with pole {lc, mc} (see Fig. 4.1.a).

Contrary to the methods proposed in [61℄, where the enter must be hosen in suh

a way that the ontour is star-shaped, the omputation of the enter oordinates is not

essential. For instane, this pole an be the enter of mass obtained in the previous

setion. What we all signature in this thesis is a set of data whih haraterizes the

orresponding ontour. The novel signature that we propose in this thesis is based

on the generation of signals out of an image. As in [61℄, a irular array of sensors is

assoiated with the image. The sensor array is supposed to be plaed along a irle

entered on the pole {lc, mc}. The number of sensors is denoted by Q and one sensor

orresponds to one diretion for signal generation Di , whih makes an angle θi with
the vertial axis. See for instane the ith and the Qth

sensors in Fig. 4.1.b. The other

sensors are not represented for sake of larity.
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(a) (b)

Figure 4.1 � Image and edge model (a); signal generation proess (b).

The method proposed in [61℄ is valid only for ontours exhibiting at most one

pixel for one diretion Di . We wish to overome this limitation and haraterize

non star-shaped ontours, beause the hand ontours onsidered in this thesis are

mostly non star-shaped. To separate the in�uene of eah pixel loated along a

given diretion Di , we no longer generate one 1-D signal, but a number P of 1-D

signals on the antenna. Eah signal orresponds to one 'ring' represented on Fig. 4.1.b.

We assume that, for eah diretion Di , there is only one pixel in eah of the P
intervals. P di�ers from one diretion Di to another. Its maximum theoretial value

is, for instane,

N√
2
, if lc = N/2 and mc = N/2. In these onditions also, the value

of Q should not exeed

√
2πN : it is su�ient to take into aount all pixels of a

given interval p. So, we generate P signal vetors for eah diretion Di . For the pth

interval (p = 1, . . . , P ) and the diretion Di (i = 1, . . . , Q), the signal omponent zp,i
is omputed as follows:

zp,i = Ilp,i,mp,i

√

(lp,i − lc)
2 + (mp,i −mc)

2
(4.1)

The omponents zp,i (p = 1, . . . , P , i = 1, . . . , Q) an be grouped into a matrix Z

of size P ×Q:

Z =









z1,1 z1,2 · · z1,Q
z2,1 · · · ·
· · · · ·

zP,1 · · · zP,Q









(4.2)
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where several zp,i = 0

Z =













0 z1,2 · 0 z1,Q
z2,1 · · 0 0
· · · · ·
0 0 · · 0

zP,1 0 · · zP,Q













(4.3)

All olumns of Z should have the same number of rows, so for the diretions Di

whih ross less than P intervals, 0-valued omponents are set in Z for the orrespond-

ing indies i. If the width of the intervals is hosen suh that there is at most one

pixel per diretion Di and per interval, this matrix permits to reonstrut exatly the

ontour: it ontains the radial oordinates of the ontour in the system of pole {lc, mc}.

However the purpose of the signature is not obligatorily to reonstrut exatly the

ontour: it should haraterize a ontour so that all postures an be distinguished.

Also, the signature should be invariant to rotation. To ensure this, the omponents zp,i
of a given interval p are sorted. As a onsequene, all non-zero values of the pth row

of Z, issued by ontour points, are turned as the last omponents of the pth row. This

method di�ers from the method proposed in [15℄, where the images were straightened

up through several rotations and the maximization of the hand Feret's diameter in

the horizontal diretion. This proess was muh more time onsuming.

Before getting the image I whih is fed to the method of haraterization, we apply

some adequate preproessings.

From the initial proessed image, we selet the smallest subimage ontaining the

expeted ontour. This subimage is alled "enlosing box". The enlosing box is

obtained in the following way: the image ontent is projeted onto the left and the

bottom sides (it ould be also the right and the top sides). We get two signals,

zleft and zbottom, from this projetion: Their omponents are obtained as follows:

zleftl =
∑N

m=1Il,m l = 1, · · · , N and zbottomm =
∑N

l=1Il,m m = 1, · · · , N . For eah

signal, a non-zero setion indiates the presene of the expeted feature. The l and
m indies of the non-zeros setions yield a box enlosing the ontour. Extrating this

box redues the omputational load of the signature generation.

Eventually, through the following remarks (•) we an assess that the rows of matrix

Z ompose a omplete set of invariant features:

• They desribe entirely the hand ontour: the rows of matrix Z ompose a

omplete set of invariant features when only ouple (p, i) orrespond to only one

pixel.

Fig. 4.2 illustrates this by showing a segmented hand posture (see Fig. 4.2(a)),
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(a) (b)

Figure 4.2 � Segmented ontour (a); ontour reonstruted from the signature Z (b).

and the ontour whih is reonstruted out of its signature Z (see Fig. 4.2(b)).

• They are invariant to translation: the box whih enloses the ontour is blindly

estimated, whatever the hand position in the initial image.

• They are invariant to saling: whatever the size of the subimage (small number

of pixels if the amera is far from the hand, large number of pixels if the amera

is near to the hand), the number of intervals for the radial oordinate values P is

always the same. Also, the number of diretions for signal generation is always

the same. As a onsequene, the size of matrix Z will be onstant, whether the

user's hand is near to or far from the amera. This makes the method invariant

to saling. Hene, the signature depends on the shape of the hand, not on its size.

• They are invariant to rotation: whatever the initial orientation of the hand,

straightening up the hand ontour makes the proposed method invariant to

rotation.

These invariane properties permit to use the proposed ontour signature (matrix

Z) as for hand posture lassi�ation purpose.

4.2.1 Dimensionality redution and Bayesian distane ompu-

tation

Let's onsider H lasses of hand postures. For the purpose of hand posture lassi-

�ation, Eulidean and Bayesian distanes are used in [15℄. We will ompare the
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results obtained with Eulidean and Bayesian distanes. We vetorize any matrix

Z haraterizing a posture into a P.Q vetor x. For eah lass h, a subset of hand

photographs is available. The H subsets ompose the learning set. This set was

reated by an expert who knows exatly what position his �ngers should have to

�t eah posture in Fig. 2.6. Let Xh be the matrix whose olumns are the vetors

xnh
, nh = 1, . . . ,Mh obtained from the images belonging to lass h. It is obvious from

Fig. 4.1.b that, the higher P and Q, the more details we keep in the signature Z, and

the more aurate the hand posture lassi�ation method involving this signature.

However, for large values of P and Q, Xh exhibits a large number of rows, and it

is a sparse matrix. The priniples of posture lassi�ation are as follows: a test set is

reated from persons who are not the expert. We aim at assoiating a label with any

image hosen from the test set. This label is one of the 11 postures presented in setion

2.3. To improve the reognition rate with respet to the work presented in [15℄, we

propose in the following to redue the number of andidates for a posture and, in sub-

setion 4.2.1, to redue the dimensionality of matrixXh obtained from the learning set.

For a lassi�ation purpose, two main distanes may be hosen: the Eulidean

distane and the Bayesian (Mahalanobis) distane. Let xc
nh
, nh = 1, . . . ,Mh denote

the olumns ofXc
h. The mean invariant vetor is omputed as µh = 1

Mh

∑Mh

nh=1 x
c
nh
, and

the ovariane matrix is omputed as Λh = 1
Mh

∑Mh

nh=1(x
c
nh

−µh)(x
c
nh

−µh)
T
, for eah

lass h = 1, . . . , H . Even if there are small variations from one posture provided by the

expert to another, these variations are smoothed through the omputation of the mean

invariant vetor µh. Any image oming from the test set and haraterized by vetor x

is lassi�ed by minimizing the Mahalanobis distane applied to the ompressed vetor

UT
hx:

Dm = (UT
hx− µh)

TΛ−1
h (UT

hx− µh) (4.4)

Computing the Bayesian distane involves, as shown in Eq. (4.4), the inversion of the

ovariane matrix Λh. This is not the ase for the Eulidean distane whih is then

easier to implement than the Bayesian distane, but the Bayesian distane usually

provides better lassi�ation results, whih has been veri�ed in the frame of hand

posture reognition in [34℄.

Consequently, we propose to use the Bayesian distane. To enable the inversion of

matrix Λh, and thereby the omputation of this distane, Λh should not exhibit a too

large dimension. That is why we perform dimensionality redution of the data, with

prinipal omponent analysis (PCA).

Let K (K < P.Q) be the number of dominant singular values in Xh. Let Uh be

the matrix whose olumns are the K singular vetors assoiated with the K largest

singular values of Xh. Eah singular vetor orresponds to a mode of variation of the

onsidered hand posture of lass h, and its orresponding eigenvalue is related to the

variane spei�ed by the eigenvetor.
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In [81℄, suh a data ompression is also performed on human motion desriptors.

In [81℄, eah singular vetor re�ets a natural mode of variation of human gait. In our

ase eah singular vetor re�ets a natural mode of variation of presenting the hand

in the desired posture in front of the amera. The ompressed version of the data is

obtained by: Xc
h = UT

hXh, where
T
denotes transpose. With this ompressed version

of the data, we obtain a lower-dimensional representation of referene hand postures

whih is more suitable to desribe any test posture: in [81℄, eah dimension on the

PCA spae desribes a natural mode of variation of human motion, in the ase of

hand posture, eah dimension desribes a natural mode of variation of how the user

presents its hand in front of the amera.

Dimensionality redution permits to redue the omputational load dediated to

matrix inversion in Eq. (4.4): matrix Λh was omputed from the ompressed data and

has low K × K dimensionality. This also prevents from inverting an ill-onditioned

matrix. For sake of omparaison, the proposed signature an be also exploited with

Eulidian distane, omputed as follows: ||UT
hx − µh||, where ||.|| denotes Frobenius

norm.

4.3 Pre-seletion of best posture andidates

Through a areful look at the ditionary of posture (see Fig. 2.6), we an distinguish

two large ategories of postures. To haraterize these ategories, we introdue a

isometri rate, denoted by S, whih involves the geometri hand riterion omputed

from If and the length of the hand ontour, omputed from Ic. S is the hand ontour

length divided by the hand surfae. In pratie, we ompute the isometri rate as

S = hand′s perimeter2

hand′s area ×4×π
. Postures 2, 3, 7, 8, 9 and 11 exhibit a high spheriity riterion,

and postures 1, 4, 5, 6, and 10 a low isometri rate.

Our purpose is then to pre-selet one of these two large ategories of postures, and

to look for the referene posture whih is the losest to the test image posture inside

of this ategory. For this, we ompute the distane Dm of Eq. (4.4) with respet to

a low number of referene postures, whih are pre-seleted from the ditionary by

onsidering the isometri rate.

The riterion S is omputed for all images of eah lass in the learning set. Then

we hoose the following riterion: |St − Sh| where St is the isometri rate for the test

image and Sh the mean isometri rate for all images of lass h in the learning set. We

selet the 6 lasses (about half of the total number of referene postures) whih yield

the minimum riterion value. They ompose a new ditionary with a redued number

of andidates, and distane Dm of Eq. (4.4) is omputed only six times to perform

lassi�ation.
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4.4 Conlusion of the hapter

We propose a novel signature for the haraterization of hand postures. This signature

is made of several 1-D signals. Eah signal ontains radial oordinates of the pixels in

an image region whih has the shape of a ring. This signature permits to reonstrut

the orresponding ontour with a preision of one pixel.

By applying some preproessing, we ensure that this signature forms a omplete set

of features whih are invariant to translation, saling and rotation. This makes this

signature �t for hand posture reognition, we failitate the lassi�ation step with

dimensionality redution by PCA beause we redue the size of harateristi matrix

to K x K.

The new matrix an be used to improve lassi�ation and learning steps. In the learning

step we should represent all user(adult, hild,male, female, left hand, right hand and

olor hand) to alulate the referent matrix whih an be used in lassi�ation.



CHAPTER

5 Optial Flow

5.1 Introdution of the hapter

W
HILE deteting hand ontours, the diversity of users is one of the onstraints to

solve. Indeed, the detetion and reognition must be arried out for all hands

(white or olored, with or without gloves), and we found that most of the methods

used for the detetion step are based on the skin olor. In [91℄ for instane, the authors

use green-olored gloves to detet easily a moving hand. In [99℄, Soriano et al. propose

a dynami skin olor model, for a segmentation purpose. Their method opes with

hanges in illumination. However, their method still relies on relevant olor properties

of the skin. No result is presented onerning dark skins or hands wearing gloves. In

[80℄, the authors modelled their objet olors as a Gaussian mixture and reursively

adapted the mean, ovariane and prior probabilities of eah Gaussian luster. In [112℄,

a set of relevant grey level values are seleted from hromati histograms to segment

faes. To summarize these approahes, either the user a�ords a prior knowledge of the

sene and the target or he assumes that the hand is white.

On the ontrary, we aim at deteting the ontour of a hand, whatever its olor.

Thinking in this diretion leads us to look for other methods that allow us to solve

this problem. A promising method for the detetion of hands, whatever their olor,

onsists in adapting optial �ow (as used in Fig. 5.1). It appears to us as a reliable

tehnique espeially beause we ombine stati and dynami hand reognition.

Therefore, questions arise while implementing and using this method. They are on-

sidered suessively in setions 5.2, 5.4, 5.3 of this hapter: what are the onditions

and assumptions required to use the optial �ow algorithm? How to adapt the optial

�ow for the reognition of hand postures ? What is the e�ay of this tehnique for

the determination of hand movements in any sene ?

5.2 De�nition and onditions of use

Optial �ow is the pattern of motion, as it appears to a amera, of objets, surfaes,

and edges in a visual sene aused by the relative motion between an observer (an

eye or a amera) and the sene. The onept of optial �ow was introdued by the
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Figure 5.1 � Example of motion detetion with optial �ow.

Amerian psyhologist James J. Gibson in the 1940s to desribe the visual stimulus

provided to animals moving through the world. As already mentioned, optial �ow

may often want to assess motion between two frames (or a sequene of frames) without

any other prior knowledge about the ontent of those frames. Typially, the motion

itself is what indiates that something interesting is going on.

Figure 5.2 � Optial Flow

Movement, haraterized by optial �ow, has been exploited by robotiists, who use

optial �ow tehniques (inluding motion detetion, luminane, motion enoding, and

stereo disparity measurement) for image proessing and ontrol of navigation.

As already mentioned, optial �ow may often want to assess motion between two frames

(or a sequene of frames) without any other prior knowledge about the ontent of those

frames. A result that an be obtained by optial �ow is illustrated in Figure 5.2.

The priniples of optial �ow are as follows: if olor images are onsidered, a

onversion to one hannel is done. For instane, we an selet the Cr omponent of the

Y CbCr representation, but this is valid only when white hand are onsidred. We also

an retain only the luminane omponent from the HSL (Hue, Saturation, Lightness)

representation of the RGB image. We an assoiate some kind of veloity with eah

pixel in the frame or, equivalently, some displaement that represents the distane a

pixel has moved between the previous frame and the urrent frame. It assoiates a

veloity with every pixel in an image. There exist two approahes to alulate the
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optial �ow.

The �rst approah is the dense tehnique whih tries to math large windows around

eah pixel of an image to another, as the algorithm of Horn and Shunk [50℄. This al-

gorithm was developed in 1981; it puts aside the hypothesis of onstany of brightness

by minimizing the regularized Laplaian of optial �ow veloity omponents. This

turns as a valid one the hypothesis of smoothness onstraint on the veloities. Also,

there exists a whole lass of similar algorithms in whih the image is divided into

small regions alled bloks [11, 55℄.

These bloks are generally square and may overlap. These algorithms attempt to

divide the two previous and urrent images in bloks and then alulate the movement

of these bloks. Suh algorithms are of great interest in many video ompression

tehniques and in omputer vision. Blak and Anadan have reated dense optial

�ow tehniques [12, 13℄ that are often used in movie prodution, where, for the sake

of visual quality, the movie studio is willing to study in detail the �ow information,

in pratie the movement of the ators or objets. The blok-mathing algorithms

operate on aggregates of pixels, not on individual pixels.

If the overlap between bloks is very important, the returned images of "�ow" are

usually of a lower resolution than the input images. Algorithms of this approah have

superior quality but are slow and annot be applied in real time and annot resolve

the ase of large displaements. In pratie, alulating dense optial �ow is not easy.

Let's onsider the motion of a white sheet of paper. Many of the white pixels in the

previous frame will simply remain white in the next. Only the edges may hange, and

even then only those orthogonal to the diretion of motion. Hene the idea of reating

a sparse optial �ow, developed originally in [73℄.

The seond approah is a popular sparse traking tehnique, Luas-Kanade (LK)

optial �ow. This version of optial �ow relies on some means of speifying beforehand

the subset of points that are to be traked. If these points have ertain desirable

properties, suh as the "orners", then the traking will be relatively robust and

reliable. The LK algorithm [73℄, as originally proposed in 1981, was an attempt to

produe dense results. However, beause the method is easily applied to a subset of

the points in the input image, it has beome an important sparse tehnique. The LK

algorithm an be applied in a sparse ontext beause it relies only on loal information

that is derived from some small windows surrounding eah of the points of interest.

This ontrasts with the intrinsially global nature of the Horn and Shunk algorithm.

The basi idea of the Luas-Kanade algorithm is based on three assumptions (see

Fig. 5.3):

• Brightness onstany : A pixel from the image of an objet in the sene does not

hange in appearane as it (possibly) moves from frame to frame. For graysale images

(LK an also be done in olor), this means we assume that the grey level of a pixel

does not hange as it is traked from frame to frame.
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• Temporal persistene or �small movements�: The image motion of a surfae path

hanges slowly in time. In pratie, this means the temporal inrements are fast enough,

relative to the sale of motion in the video sequene, to prevent the objet from moving

muh from frame to frame.

• Spatial oherene: Neighboring points in a sene belong to the same surfae, have

similar motion, and projet to nearby points on the image plane.

Figure 5.3 � Assumptions behind Luas-Kanade optial �ow

As mentioned above, the disadvantage of using small loal windows in Luas-Kanade

approh is that large motions an move points outside of the loal window and thus

beome impossible for the algorithm to �nd. Indeed large and non-oherent motions

are often observed in pratie. The key idea in the Luas-Kanade approah is to avoid

this problem, by traking �rst over larger spatial sales, by using an image pyramid

and then by re�ning the initial motion veloity assumptions by working its way down

the levels of the image pyramid until it arrives at the raw image pixels.

Hene, this problem led to the development of the "pyramidal" LK algorithm, whih

traks an objet starting from the highest level of an image pyramid (lower detail

resolution) and working down to lower levels (�ner detail resolution). Thus we minimize

the violations of our motion assumptions and we an trak faster and longer motions.

This more elaborated funtion is known as "pyramidal Luas-Kanade" optial �ow

and is illustrated in Figure 5.4. Hene, traking along the resolution levels as downhill

along pyramids allows large motions to be haraterized by loal windows.

In the following setion, we detail the initial purpose of optial �ow, whih is orig-

inally meant to haraterize movements.

5.3 Optial Flow: an algorithm originally dediate to

trajetory detetion

The �rst and most ommon appliation of optial �ow is to trak a target between

two frames. Motion estimation and video ompression have been the most ommon
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Figure 5.4 � Pyramid Luas-Kanade optial �ow

appliation �elds of optial �ow. A diret appliation of optial �ow onsists in traking

a hand in a video sequene. Starting from the moving points, as represented in Fig.

5.1, whih are essentially part of the hand ontours, but may also be outliers, we aim

at �nding some representative points of the hand. For this, we �rst remove outliers:

we suppress the points whih ontain at least one extreme oordinate: these outliers

are the nearest to the image orners. The enter of mass of the remaining points is

onsidered as the most representative to loate the hand.

Therefore, studying the overall trajetory of the hand is equivalent to studying the

trajetory of this representative point. However, we notie that this method is not

su�ient to haraterize the hand shape, and thereby the hand posture itself. The

moving points provided by optial �ow ompose part of the hand ontour points. A

method must be found to get a ontinuous hand ontour. We address this issue in

setion 5.4.

5.4 Optial �ow adapted as a ontour detetion

method

A promising method for the detetion of hands, whatever their olor, onsists in adapt-

ing optial �ow. Indeed, as it is based on movement properties and not on intrinsi grey

level values, optial �ow may haraterize indistintly white-skin hands and olored-

skin hands. Moreover, optial �ow attrats the interest of the image proessing om-

munity, showing its adaptability. It has been reently improved to ope with dense

optial �ow �elds by integrating rih desriptors [24℄, and to fae disontinuities on

motion boundaries [47℄. We wish to adapt this method to segmentation purposes. Our

idea is to take pro�t from the information provided by optial �ow to isolate a target

whih is moving in the sene, namely the hand.

There are many kinds of loal features that one an trak. If we pik a point on a

large blank wall then it won't be easy to �nd that same point in the next frame of a
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Figure 5.5 � Seletion of good features without prior knowledge: 'Lena' image under study

video. If all points on the wall are idential or even very similar, then we won't have

muh luk traking that point in subsequent frames. On the other hand, if we hoose

a point that is unique then we have a good hane of �nding that point again. In

pratie, the point or feature we selet should be unique, or nearly unique, and should

be parameterizable in suh a way that it an be ompared to other points in another

image. Or if we onsider that the hand olor and the bakground olor are di�erent,

we are ertain that the hand ontour by itself represents good points to trak, and

this feature limits properly the region of the hand. This permits to highlight the main

onstraint on the appliability of optial �ow: it an be used as detetion method if

the bakground olor is di�erent from that of the hand.

In our aquisition onditions, a hand may ross the whole aquired sene rather

rapidly, hene, we adapt a pyramidal version [18℄ of Luas-Kanade optial �ow. This

pyramidal version inludes a multi-sale strategy, whih permits to handle larger

displaements, while keeping the redued omputational load of Luas-Kanade sparse

method [73℄.

If strong derivatives are observed in two orthogonal diretions then we an hope

that this point is more likely to be unique. For this reason, many trakable features are

alled orners. Intuitively, orners are the points that ontain enough information to be

piked out from one frame to the next. The most ommonly used de�nition of a orner

was provided by Harris [48℄. This de�nition relies on the matrix of the seond-order
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Figure 5.6 � Seletion of good features without prior knowledge: deteted orners

derivatives of the image intensities. Corners, aording to Harris de�nition, are plaes

in the image where the autoorrelation matrix of the seond derivatives has two large

eigenvalues. In essene this means that there are texture properties (or edges) going in

at least two separate diretions entered around suh a point, just as real orners have

at least two edges meeting in a point.

It was later found by Shi and Tomasi [97℄ that good orners were seleted as long

as the smaller of the two eigenvalues was greater than a minimum threshold. See for

instane the orners that were obtained, in Fig. 5.6, from the 'Lena' piture (Fig. 5.5).

If we have a prior knowledge on the loation of the expeted orners, we an delim-

itate a searh box to an area de�ned beforehand, alled a mask, whih an limit the

region of good features to trak. This is illustrated in Fig. 5.8, whih was obtained

with the mask presented in Fig. 5.7.

In the ontext of hand posture haraterization, the region of interest an be seleted

through least square ellipse �tting. The implementation of this algorithm will be

detailed further in the manusript.
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Figure 5.7 � Seletion of good features with prior knowledge: mask seleting the region of

interest

5.5 Conlusion of the hapter

In this hapter we present a method used to trak movements in a video sequene or

between two suessive frames, and we try to adapt it to hand detetion. Respeting

the various onstraints in this work, this adaptation exhibits huge advantages.

In setion 5.1, we remind the main goal of optial �ow, and the problematis that

arise while applying this method. In setion 5.2, we present optial �ow in a historial

ontext. We present the di�erent optial �ow tehniques and their onditions of use,

insisting on the version from Luas-Kanade [73℄, whih is the one that we have hosen

for our hand detetion appliation. In Setion 5.3 we state the essential role of optial

�ow for traking a moving objet. We explain brie�y how it an be adapted to the

loalization of the hand. Optial �ow thereby haraterizes dynami gestures in a video

sequene. In setion 5.4, we disuss a novel way to use optial �ow, as we adapt it to

the detetion of hand ontours. Optial �ow thereby haraterizes stati gestures, also

alled postures, in a series of frames extrated from a video sequene.
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Figure 5.8 � Seletion of good features with mask: resulting deteted orners, appearing only

in the region seleted by the mask
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6 Overall algorithm, results

and disussion

6.1 Introdution of the hapter

I
N this hapter we propose the hole hand posture reognition method, whih over-

omes the main drawbaks of existing methods [19, 53, 115℄: our method should

be valid whatever the hand olor; for this, we adapt optial �ow, whih is originally

meant to detet moving objets, to improve hand detetion. Also, we wish to improve

reognition rate, espeially for very similar postures, while keeping the omputational

load and the memory requirements as low as possible; for this we have proposed a novel

approah for hand posture haraterization in 4.

Our overall approah is based on the optial �ow as a detetor, and signature gen-

eration as haraterization, ombined with the redution of matrix harateristi by

PCA, but also to the redution of ditionary of gestures with the geometri riterion

(isometri rate).

To validate this approah a omparison with other existing approahes in the litera-

ture is needed, but the questions that arise, what are the di�erent preproessing used

to improve our approah? how is it organized this algorithm? is that we have good

reognition rate ompared to other methods? and eventually the onstraints imposed

by the industrial ontext are resolved?

6.2 Preproessing and proposed algorithm

We proess images of size 320×240 with a 2-ore proessor �3.2 GHz, using Matlab

r
.

This result setion falls into two subsetions: we �rst present the results of hand

ontour segmentation with optial �ow; and seondly we present the results of hand

posture reognition obtained with Bayesian distane from the images ontaining the

hand ontours.
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6.2.1 Hand image aquisition setup

This setup ontains a CMOS amera (see Fig. 6.1). It has the size of a webam, and

ould further be integrated in an embedded system. The amera is plaed over the

desk surfae, it axis is orthogonal to the desk surfae. Wide angle optis (90◦) are used
so that the �eld of vision is wide enough. The aquisition format an be either CIF, or

VGA. The video stream is transmitted to the omputer by a USB onnetion in RGB

format. The user an then interat with his omputer, and follow the evolution of his

experiment diretly on the sreen.

Figure 6.1 � Camera

6.2.2 Preproessing and algorithm

As we will show in the result setion, only the hand ontour is retrieved by optial

�ow. Thus, this result is not used as �nal hand ontour. It is however essential for the

seletion of a region of interest, whih is the �rst preproessing applied to the proessed

image: Let NOF be the number of moving points of interest, retrieved by optial �ow,

from two frames: one obtained at time t, the other at time t
′
> t. The oordinates of

these points are denoted by {(xo, yo), o = 1, . . . , NOF}.
The seletion of a region of interest (ROI) is based on ellipse least-squares �tting

[42℄. Beause of the sensitivity of least-squares �tting methods, and to ensure the

robustness of the ROI seletion, the moving points of interest whih inlude an ex-

treme (minimal or a maximal) oordinate value are removed. Let Ip denote the image

ontaining the remaining moving points.

Firstly, a rather large ROI is extrated. Indeed the ellipse might not inlude

the whole hand, so we hoose as ROI a retangle whih is somehow larger than the

retangle whih stritly inludes the ellipse.

The seond preproessing is hand surfae segmentation: �rstly, we ompute the

enter of mass of the pixels of interest; seondly, we dedue the hand pixel grey level

distribution in eah RGB band from the region next to the enter of mass; thirdly,

aording to this distribution, we perform histogram threshold to eah RGB band

of the ROI. The ombination of eah threshold image provides a binary image. The
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binary image obtained at this point, denoted by ITh
, ontains the hand surfae �lled

with 1-valued pixels and noise, that is, 1-valued pixels randomly distributed in the

image.

Figure 6.2 � Improved algorithm for hand gesture reognition

The third preproessing onsists in removing isolated pixels and �lling out holes.

First, we selet the largest set of onnexe pixels, assuming that this objet is the hand.

Then, we remove the pixels whih are onneted to the hand but unexpeted with

morphologial �ltering operations -erosions and dilations [115℄. These mathematial

morphology operations remove the possibly remaining unexpeted pixels from the

bakground. This third preproessing turns the whole algorithm robust to variations

in illumination and inlusion of unexpeted objets in the bakground. We then selet

one again a region of interest: the smallest square subimage ontaining the whole

hand. The number of rows or olumns of this image is max(FDh,FDv) where FDh

and FDv are the horizontal and vertial Feret diameters of the hand. Extrating

this ROI, independently of ourse from its loation in the proessed image, ensures

the invariane to translation and saling. We get an image If whih is supposed to

ontain only a �lled hand.

The fourth preproessing onsists in retrieving the hand ontour, with a linear
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'roberts' �lter. This yields an image Ic where the hand ontour onsists in 1-valued

pixels, over a bakground of 0-valued pixels. This image will be used to ompute a

ontour signature.

The preproessing operations presented in this subsetion permit to fous on a region

of interest and isolate the hand ontour, but also to ensure invariane proprieties of

the haraterization method whih is presented in setion 4.2.

6.3 Results and Disussion

Adapting optial �ow exhibits advantages but also requirements on the experimental

onditions and spei� preproessings. The required experimental onditions for whih

the optial �ow works properly are as follows: the hand whose posture must be re-

ognized should be moving between two frames of the database, the bakground olor

must be di�erent from the hand olor, and the variations of luminosity should be as

low as possible. This may be the ase for instane if all images are subsequent frames

of a video sequene where the user's hand is moving. However, optial �ow may still

yield poor results if the luminosity varies too muh between frames.

A test permits to get rid of the images whih are not in ompliane with these require-

ments: it involves the ellipse whih is supposed to �t the moving points of interest.

The image is skipped by the program and not onsidered for posture reognition in the

following ases: if one axis of the �tting ellipse is larger than the image size, or if the

large axis is larger than 3 times the small axis. The onsequene for the user of the

hand posture reognition method is that he may wait a bit longer for the reognition

result, until the luminosity does not vary too muh, or until his hand, while exhibiting

a novel posture, is moving fast enough for optial �ow to onsider it as a moving objet.

6.3.1 Performane assessment on olored hands

The main advantages of the proposed method, whih adapts optial �ow [17℄ instead

of the lassially used Y CbCr mapping, are as follows: it handles the ase of olored

hands, suh as those wearing gloves of any olor, or hands of oloured people. This is

a great advantage respet to the existing method whih are supposed to fail as soon as

the hand surfae annot be distinguished from the bakground in the Cb omponent.

Figures 6.3 and 6.4 show the results obtained by optial �ow on a white and a blak

hand. It onsists in pixels whih are about to move between the urrent and the next

frame. These pixels of interest math part of the the hand ontour pixels.

As shown in Figs. 6.3 and 6.4, the optial �ow method provides a set of points,

among the moving points of the sene. As a sparse version of optial �ow was hosen,

these points are mainly foused on the hand ontour.

In Fig. 6.5 we exemplify the steps of the proposed method, on a hand posture of

type '3'. Fig. 6.5 shows how the moving points provided by optial �ow ontribute

to the image threshold: in Fig. 6.5(b) we show the moving points deteted by optial
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Figure 6.3 � Motion detetion with optial �ow: white hand.

Figure 6.4 � Motion detetion with optial �ow: olored hand.

�ow, their enter of mass, and the �tting ellipse. The hand grey level distribution is

omputed around the enter of mass, and its knowledge permits to apply a threshold

and obtain the image ITh
of Fig. 6.5).

In Fig. 6.6 we exemplify the method in the same way, with a hand wearing a blak

glove.

The results obtained on these two hands show the ability of the proposed method

to handle white, but also olored hands. The preproessings permit to remove the

undesired pixels whih are present in the threshold image ITh
(see Fig. 6.5) and (Fig.

6.6)).

To exemplify the proposed method for hand ontour segmentation on more examples,

inluding all postures for both white and olored hands, a website presents the image

I ontaining the hand ontour obtained from eleven ases -one for eah posture type-,

for a white and a olored hand [1℄.
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Figure 6.5 � White hand, Steps of the proposed method. (Read from left to right. First row:

proessed image; moving points, �tting ellipse, and enter of mass. Seond row: threshold image ITh

in the ROI de�ned from the �tting ellipse; result obtained after mathematial morphology operations.

Third row: If -square ROI whose height is the maximum Ferret diameter of the hand; Ic, obtained
from Roberts linear �ltering, and ontaining the expeted hand ontour).

6.3.2 Statistial of posture reognition performane

In this subsetion, we present a statistial study involving a database of hand posture

images. We study the performane of hand posture reognition of the proposed method.

We remind that it inludes optial �ow for hand ontour detetion. This turns the

method adequate for olored hands, but we hose a database of white hands to enable

the omparison with existing methods.

To generate the signature Z whose omponents are zp,i, with p = 1, . . . , P , and i =
1, . . . , Q (see Eq. (4.1)), a value P = 24 levels is large enough to get an exlusive

signature for eah posture and small enough to get a reasonable omputational load.

To ensure the invariane to saling, the number Q of diretions depends only on the

maximum size of the enlosing box. To perform dimensionality redution we hose

K = 12, that is, the size of the posture ditionary +1. This value yield the best

results, whih was observed empirially.

We ompare the proposed method with two omparative methods: The �rst

method ombines Gabor �lter, PCA, and SVM (support vetor mahine) [54℄. The

seond omparative method relies on Fourier desriptors [19, 34℄. The third ompar-

ative method relies on the same proess for signature generation [15, 16℄, but di�ers

in the obtention of the binary image I whih is used as an input for the omputation

of the ontour signature: in [15, 16℄, this binary image is obtained mainly through a
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Figure 6.6 � Colored hand, steps of the proposed method. (Read from left to right. First row:

proessed image; moving points, �tting ellipse, and enter of mass. Seond row: threshold image ITh

in the ROI de�ned from the �tting ellipse; result obtained after mathematial morphology operations.

Third row: If -square ROI whose height is the maximum Ferret diameter of the hand; Ic, obtained
from Roberts linear �ltering, and ontaining the expeted hand ontour).

Y CbCr mapping and a threshold applied to the Cb omponent. In [16℄, PCA is already

used to redue the dimensionality of the data.

In Table 6.1, we present the results obtained with Y CbCr mapping and Fourier

oe�ients as invariant harateristis. This table shows that Fourier desriptors en-

ounter di�ulties with postures 4 (60.8%), 8 (64.8%), and 10 (74.4%). This is due

to the unability of Fourier oe�ients to preserve details: ontours are smoothed, and

subtle di�erenes suh as the presene of one supplementary �nger as ours between

posture 4 and posture 5, and between posture 8 and posture 9, are not deteted when

Fourier oe�ients are used. On the ontrary, our method based on the proposed sig-

nature generation tehnique o�ers a 1-pixel resolution, and does not enounter suh

problems.

In Table 6.2, we present the onfusion matrix of the omparative method based on

Y CbCr mapping [16℄ and using the signature generation proess presented in [17℄. It

shows that it exhibits good results, exept that: posture 4 is reognized as 5 in 11.3 %
of the ases, posture 8 is reognized as posture 9 in 25.6 % of the ases; posture 5 as 4

in 5.5 % of the ases.

The onfusion matrix obtained with the proposed method [17℄ is presented in Table

6.3.
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`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

1 86.6 0 0 0 0 0 0 0 0 0 0

2 0 90.8 0.4 0.4 0.2 0.2 0.1 0 1.7 0.1 0.1

3 0 0.7 96.4 0.5 0.4 1 0.4 0 0.7 0.1 3.3

4 5.5 0 0 60.8 0 0.1 0.4 0 0 0 0

5 2.9 1.8 0.5 35.9 97.8 0.9 7.8 3.2 4.9 20.2 0.1

6 4.6 0.1 0 0.1 0.3 94.3 0.8 0 0.2 2 0

7 0.2 0.4 0.1 0.7 0.5 1.1 80.6 8.3 0.3 2.8 0

8 0 0.2 0 0.3 0.3 0.1 1.9 64.8 2.8 0.5 0

9 0 5.9 1.7 0.9 0.3 0.4 6 23.2 88.6 0.9 0.4

10 0 0.1 0.1 0.3 0 0.2 0.8 0.4 0.2 73.4 0

11 0.2 0.2 0.8 0.1 0.1 1.6 1.1 0.1 0.7 0 96.2

Table 6.1 � Confusion matrix (in %, preision 0.1). Obtained with: Fourier oe�ients, and

Bayesian distane [34℄

`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

'1' 97.7 0 0 0 0 0 0 0 0 0 0

'2' 0 100 0 0 0 0 0 0 0 0 0

'3' 0 0 90.8 0 0 0 2.3 4.7 2.4 0 0

'4' 0 0 0 86.4 5.5 0 0 0 0 0 0

'5' 2.3 0 2.3 11.3 91.7 0 0 0 0 0 0

'6' 0 0 0 0 0 95.5 0 0 0 0 0

'7' 0 0 0 0 0 0 93.1 2.3 0 0 0

'8' 0 0 0 0 0 0 2.3 67.4 2.4 0 0

'9' 0 0 4.5 2.3 2.8 0 2.3 25.6 92.8 2.1 0

'10' 0 0 0 0 0 4.5 0 0 2.4 97.9 0

'11' 0 0 2.4 0 0 0 0 0 0 0 100

Table 6.2 � Confusion matrix (in %, preision 0.1). Obtained with: proposed signature, PCA,

and Bayesian distane.

This onfusion matrix obtained with the method proposed in this thesis, shows

that our method involving optial �ow exhibits better reognition results for postures

1, 3, 4, 5, 6, 7, 8, and 9. The obtained results are better in partiular for the similar

posture ouples {4, 5} and {8, 9}, and even muh better for posture 8, for whih

the rate of good reognition inreases from 67.4% to 82.8%. In the ase where the

omparative method exhibits better reognition results, they were exellent (100%,

97.9%, and 100% for postures 2, 10, and 11 respetively), and they are still very good

when the proposed method is applied (99.2%, 96.7%, and 99.3%).

In the following in Table 6.4, we onsider the performane of the proposed and

omparative methods in terms of speed, and overall reognition results.

The method ombining Gabor �lter, PCA, and SVM (support vetor mahine) [54℄

proesses 6 frames per seond as well (see Table 6.4a). Fourier desriptors programmed
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`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

'1' 98.2 0 0 1.0 0 0 0 0 0 0 0

'2' 0 99.2 0 0 0 0 0 0 0 0 0

'3' 0 0 93.1 0 0 0 0 0 0 0 0.7

'4' 0.6 0 0 87.7 7.6 0 0 0 0 0 0

'5' 0 0 0 9.3 92.4 0.8 0 0.8 0 0 0

'6' 0 0 0 0 0 95.8 0 0 0 2.5 0

'7' 0.6 0 0 0 0 0 94.3 3.1 0 0 0

'8' 0 0 0 1.0 0 0 2.5 82.8 5.6 0 0

'9' 0.6 0.8 4.9 1.0 0 0 3.2 13.3 93.6 0.8 0

'10' 0 0 2.0 0 0 3.4 0 0 0.8 96.7 0

'11' 0 0 0 0 0 0 0 0 0 0 99.3

Table 6.3 � Confusion matrix (in %, preision 0.1). Obtained with: optial �ow, proposed

signature, PCA, and Bayesian distaneite [17℄.

'Classif. method' 'Speed' 'System' 'Soft' '%' 'Database'

a) PCA+SVM 4 frames/se 3.4 GHz C 93.7 11*120

b) Fourier + Bayesian 20 frames/se 2 GHz C 84.6 11*1000

) PCA + Bayesian 6 frames/se 3.1 GHz Matlab 91.8 11*45

d) OF + PCA + Bayesian 4 frames/se 3.1 GHz Matlab + C 94.1 11*110

Table 6.4 � Proposed and omparative methods, omparison of performanes. a) Gabor �ltered

+ PCA + SVM [54℄ ; b) Fourier desriptors (FD1) + Bayesian; ) Y CbCr mapping, PCA and

Bayesian distane [16℄; d) proposed method involving optial �ow (OF) [17℄.

in C++ [34℄ are faster, namely 20 frames per seond (see Table 6.4b). The method

involving Y CbCr, PCA and Bayesian distane [16℄ (see Table 6.4) mapping is faster

(6 frames per seond) but it exhibits a major drawbak as all methods using Y CbCr

mapping: it does not handle olored hands. Also, the overall reognition rate is lower

(91.8%). When we onsider the method that we propose [17℄ (see Table 6.4d), we

notie that the omputational load dediated to the reognition of the 1210 images of

the database is 302 se., that is, a mean rate of 4 frames per seond. Our method

exhibits the best overall reognition rate (94.1%) of all onsidered method. This good

performane relies on the quality of the binary images I whih are provided to the

signature generation method: whereas the Y CbCr mapping tended to blur the frontiers

and redue the ontrast between hand surfae and bakground on the Cr hannel,

optial �ow permits to apply a threshold to the R,G, and B hannels of the RGB olor

image, where the ontrast between hand surfae and bakground is elevated. Currently,

the programmes dediated to optial �ow, that is, 15% of the programs, are written

in C++. we an expet that transferring all our programmes from Matlab

r
to C++

would derease the required omputational time.
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6.4 Conlusion of the hapter

The issue of hand posture reognition is onsidered in this hapter. This work is based

on a signature generation whih divides the image into rings and signal generation

diretions, thereby getting a matrix. To generate this signature, a binary image on-

taining the ontour of the onsidered hand must be available. To get this binary image

from any input image, whih is any frame of a video sequene, we adapt, for the �rst

time, optial �ow as a ontour detetion method: we avoid the lassially used Y CbCr

mapping, whih turns the proposed algorithm �t for olored hands.

Ellipse �tting of the moving points deteted by optial �ow permits to selet a region

of interest, thereby ensuring the invariane of the signature to saling and translation.

We assume the enter of gravity of the moving points is loated in the hand, whih

provides the grey level distribution for eah RGB hannel and permits to apply the

adequate threshold whih segments the hand surfae. We then remove the unexpeted

pixels, whih are either isolated or onneted to the hand, by retaining the largest

onnexe region and applying mathematial morphology operations.

The proposed signature is a sparse matrix, hene our proposal to apply prinipal om-

ponent analysis to redue the data dimensionality. We also redue the dimension of

the test set through a �rst rejetion test based on geometri riterion (isometri rate).

Hand posture reognition is eventually performed by omputing a Bayesian distane

between test and pre-seleted referene signatures. The visual results show that, de-

spite a omplex bakground, a hand ontour is orretly retrieved.

Statistial results summarized as a onfusion matrix show that the di�ult ases of

lose postures yield a orret reognition result in more than 82% of the ases. Overall,

the mean reognition rate reahes 94.1%, whih is more than the rate obtained with

the seleted omparative methods, in similar testing onditions involving white hands.

Our method o�ers a good ompromise between reognition rate and omputational

load. Our hand posture reognition method has been ombined with movement trak-

ing. This ould yield a omplex but e�etive set of instrutions, in the frame of a

Human-mahine interation system.



Conlusion and

perspetives

I
N this thesis we are interested in ahieving a gesture reognition system as part

of the design of a touhless Human-mahine interfae. We studied the various

omponents of suh a system and we proposed solutions taking into aount important

appliative onstraints, inluding the proessing of a video stream in real-time. The

addressed issues onern hand detetion in a video stream, extration of features

representing the shape and position of the hand, reognition of postures from a

previously determined voabulary. This summary outlines the main results of this

study and the ontributions of our work to ahieve a system of reognition. We then

give some traks to further our work.

To evaluate and ompare the reognition results, we reated a database onsisting

of 11 postures performed by di�erent people. This database is representative of

gestures that an be used in our appliation, and easy to perform by all users.

We �rst presented the di�erent methods used for gesture reognition in the

literature, and we disussed the onstraints in omputer vision in general and the

industrial ontext of this thesis in partiular. We then proposed a set of methods to

ahieve these goals.

The �rst step onerns the detetion of the hand in a video stream with a robust

method for hand movement and the presene of other objets of same olor as the

hand in the sene. We found that the segmentation of the hand is a sensitive phase

of hand posture reognition. The obtained ontour is sometimes too vague, espeially

beause of brightness variations, whih a�et feature extration and the reognition

of postures (based on the ontour). To solve this problem we used the tehnique of

optial �ow that we adapted to ontour detetion. It has allowed us to detet the

hand espeially for olored people, assuming that the hand moves in the sene in the

video stream even if its slightly, but espeially more than the other objets.

The extration of moving points, ombined with a least-squares �tting method, allows

to determine the ROI of the hand. Then we ompute the histogram on the ROI, and

apply histogram threshold, with some preproessings to provide a perfet segmentation

of the hand.

For the �rst time to our knowledge, we handle, by adapting optial �ow, the ase of

olored hands, either wearing gloves or of olored people. Also, we get a dynami

gesture reognition system, whih ombines hand traking and hand posture hara-
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terization.

The seond phase of our work relates to the haraterization of postures and

feature extration of the hand. We studied and ompared several shape desriptors to

alulate a feature vetor representing the shape of the hand, taking into aount the

invariane to Eulidean transformations (translation, rotation and saling). We notie

that the hand ontour is generally approximately irular and non star-shaped. Hene,

we apply spei� methods inspired from array proessing. We propose, for the �rst

time in this thesis, a review of all possible types of ontours and the orresponding

haraterization methods inspired by array proessing models and methods. Suh

methods have given, in the past, good results in the frame of possibly distorted linear

and irular ontours. We insist on the ase of highly distorted star-shaped ontours,

and notie their shape is similar to a hand ontour's one. This yielded us to propose a

novel 2-D signature whih involves the generation of signals. The main di�erene with

respet to the previously existing methods whih are inspired from array proessing

method is that this signature handles the ase of non star-shaped ontours. We detail

how the signals are generated and we prove the di�erent properties of invariane of

this new haraterization method.

In this step, reviewing all the variants of the methods of array proessing transferred

to image proessing is an important ontribution. However, the most novel aspet is

our 2D-signature. This signature ensures essentially the invariane to rotation, but

also the invariane to the axial asymmetry whih allows us reognize both left and

right hands, whatever the learning phase.

The proposed signature is a matrix with very large size, whih turns very di�ult

the lassi�ation with a geometri lassi�er. To solve this problem, we have redued

the size of the matrix using the prinipal omponent analysis. This dimensionality

redution allowed us to lassify the postures with a Bayesian distane riterion, whih

involves a matrix inversion that sales the omponents of referene and test vetors.

This distane gave us the best results. Also to further improve our results and espeially

the omputational load (0.04 se/frame), we make a �rst seletion of andidates among

the voabulary through a geometri riterion, the isometri rate.

In this step it an be estimated that the ombination of signature generation method

and the method of geometri riterion has yielded exellent e�ets.

The results obtained show that we have reahed the best ompromise between

omputational load (4 frames/se) and reognition rate (94.1%) and we prove that

the di�ult ases of lose postures yield a orret reognition result in more than 82

% of the ases. This ompromise orresponds perfetly to the wishes of our interfae

utilization, in solving onstraints as the presene of another objet in the sene and

variations in aquisition onditions. We an onlude that our proess perfetly meets

the requirement of our problem.

Among the various prospets of our work an extension and enlargement of voab-
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ulary of postures to reognize are desired. The PCA has allowed us to redue the

dimension of our matrix signature, but we ould also apply other methods of dimen-

sionality redution suh as linear disriminant analysis (LDA). Other methods ould be

applied. For instane adaptive dimension redution ombines dimension redution and

unsupervised learning (lustering) together to improve the redued data (subspae)

adaptively. To ontinue this work and improve it, we an also attempt to solve the

olusion problem or solve the ases of the presene of multi-target (two hands). For

this we ould turn our detetion method into a multi target one. We an also per-

form lassi�ation by the ombination of di�erent lassi�ers or by SVM (in asade

or multi-lass SVM). An optimization of the algorithm, using a single programming

language (C++ language), is always possible to aelerate the proess and failitate

the industrialization of our algorithm. In the long term, ooperating with institutions

and organizations whih take are of deaf and dumb persons ould help building an

adequate voabulary of postures and gestures whih is suitable to de�ne a ditionary

of sign language.
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