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Abstract

Hough transform and snakes methods retrieve straight lines and distorted contours but present limitations. In this paper, fast high
resolution methods are adapted to multiple contour estimation. Distorted contours are retrieved with a novel optimization method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Extracting the characteristics of lines or object contours
from a binary image has been a largely studied problem
over the past few years (Kiryati and Bruckstein, 1991;
Aghajan et al., 1999). This problem is faced for robotic
way screening and aerial image analysis. The image con-
tains contours composed of edge pixels with value ‘1’, over
a background of ‘0’-valued pixels. The time-consuming
Hough transform is used for straight line fitting, and
snakes type methods retrieve contours (Xu and Prince,
1997). The high resolution methods of array processing
are used in several technical fields. They led to efficient
algorithms such as MUSIC and ESPRIT (Bienvenu and
Kopp, 1983). In order to keep the resolution and to reduce
the computational load, a specific formalism (Kiryati
and Bruckstein, 1991; Aghajan et al., 1999) allows the
transposition of straight line characterization to an array
processing problem. The number of contours is supposed
to be known. Here, the high resolution method called
‘‘Propagator’’ (Munier and Delisle, 1991; Bourennane
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and Frikel, 1996), coming from array processing, is used
for the first time in the field of image processing. The pro-
posed method for offsets estimation combines a variable
speed propagation scheme (Aghajan and Kailath, 1994)
with ‘‘Modified Forward Backward Linear Prediction’’ –
MFBLP – which separates close-valued frequencies and
copes with frequency terms which have the same ampli-
tude. The proposed method is faster than the extension
of the Hough transform. After estimating the straight lines
that fit distorted contours, we use an optimization method
to retrieve the distortions between the expected contours
and the fitting straight lines: Propagator and fixed step
gradient methods are combined and applied to determine
a phase model starting from the data extracted from an
image. We compare the proposed method with Gradient
Vector Flow (Xu and Prince, 1997).
2. Data model and straight contour estimation

2.1. Data model, signal generation out of the image data

Let us consider an N · C digital image represented in
Fig. 1a. Y and X are vertical and horizontal axes respec-
tively. One pixel value of the digital image is I(i, l), where
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Fig. 1. Image data model: (a) Image-matrix provided with the coordinate
system and the rectilinear array of N equidistant sensors; (b) Contour
fitted by a straight line characterized by its angle h and its offset x0.
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i and l index the Y and X axes. We consider that I(i, l) is
composed of d contours, each fitted by a straight line.
We suppose that the digital image I(i, l) contains only pixels
‘1’ or ‘0’. The contours are formed by type ‘1’ pixels called
‘‘edge pixels’’, whereas type ‘0’ pixels are associated with
the background. Each straight line fitting a contour is asso-
ciated with offset x0, the intersection of the straight line
with X axis, and parameter h, the angle between this line
and the line of equation x = x0 (see Fig. 1b). At row i,
the pixel shift between a contour and corresponding fitting
straight line is denoted by Dx(i).

If we define an artificial propagation constant l, a signal
vector z of length N is generated out of the components
{I(i, l); i 2 {1, . . .,N}; l 2 {1, . . .,C}} of the image-matrix
of the recorded image. Each component of signal vector z
is defined as follows:

zðiÞ ¼
XC

l¼1

Iði; lÞ expð�jllÞ; i ¼ 1; . . . ;N : ð1Þ

When d lines are present in the image, there are up to d ‘1’
pixels on the ith line of the image-matrix, located on the
columns x1(i), . . .,xd(i), respectively. The signal received
by the sensor in front of the ith row, when no noise is
present in the image, is (Aghajan and Kailath, 1993):

zðiÞ ¼
Xd

k¼1

expð�jlxkðiÞÞ: ð2Þ

First, we consider one contour which is strictly a straight
line, with angle h and offset x0 (see Fig. 1b). The horizontal
coordinate of a pixel in front of the ith sensor is:

xðiÞ ¼ x0 � ði� 1Þ tanðhÞ: ð3Þ

Hence the signal received on the ith sensor reads:

zðiÞ ¼ expð�jlxðiÞÞ
¼ expð�jlx0Þ expðjlði� 1Þ tanðhÞÞ: ð4Þ

If d straight lines are expected and additive noise is
present, the signal received on sensor i reads:

zðiÞ ¼
Xd

k¼1

expðjlði� 1Þ tanðhkÞÞ expð�jlx0kÞ þ nðiÞ; ð5Þ
where n(i) is the noise due to random edge pixels on the ith
row.

Setting ai(hk) = exp(jl(i � 1)tan(hk)), sk = exp(�jlx0k),
Eq. (5) becomes:

zðiÞ ¼
Xd

k¼1

aiðhkÞsk þ nðiÞ: ð6Þ

From the data vector z = [z(1), . . .,z(N)]T we build K

vectors zl = [z(l), . . .,z (M + l � 1)]T, l = 1, . . .,K, of length
M with d < M 6 N � d + 1. We define matrix AM(h) as:

AMðhÞ ¼ ½aðh1Þ; . . . ; aðhdÞ�; ð7Þ

where aðhkÞ ¼ ½1; fk; . . . ; fM�1
k �T, with fk = exp(jltan(hk)).

With Propagator method (Munier and Delisle, 1991), we
estimate the orientations {hk} of the straight lines.

2.2. Propagator method applied to angle estimation

Propagator method (Munier and Delisle, 1991) relies on
the partition of matrix AM(h):

AH
MðhÞ ¼ AH

1 j AH
2

� �
: ð8Þ

A1 is a (d · d) matrix and A2 is a (M � d) · d matrix.
Matrix AM(h) has d columns and then its rank is up to d.
If we suppose that the rows (or columns) of A1 are linearly
independent, there exists a linear relationship between
matrix A1 and matrix A2:

A2 ¼ PH A1; ð9Þ

where P is a matrix of size (d · (M � d)).
Defining as the ‘‘propagator operator’’ an (M ·

(M � d)) matrix Q such that:

QH ¼ PH j � I
� �

; ð10Þ

where I is the ((M � d) · (M � d)) identity matrix, we get:

QH AMðhÞ ¼ PH A1 � A2 ¼ 0: ð11Þ

The operator P has to be estimated in order to build the
propagator matrix Q. Let Rzz be the covariance matrix of
signals {zl}. We partition the covariance matrix of the
received signals as follows:

Rzz ¼ G j H½ �; ð12Þ

where G is of size M · (M � d). Matrix P is obtained from
G and H by minimizing the Frobenius norm of (H � GP),
which results in (Munier and Delisle, 1991; Bourennane
and Frikel, 1996):

P ¼ ½GH G ��1
GH H : ð13Þ

The angle values are such that they lead to the d
strongest local maxima of function f defined as:
f(h) = (jQHa(h)j2)�1 over the interval Jh, defined by:
Jh = ]�tan�1(p/l), tan�1(p/l)[. As angle values are avail-
able, offset values can be estimated.



1558 J. Marot, S. Bourennane / Pattern Recognition Letters 28 (2007) 1556–1562
2.3. Estimation of the offsets

An existing time-consuming method for offset estima-
tion is the extension of the Hough transform (Sheinvald
and Kiryati, 1997). We use a variable parameter propaga-
tion scheme (Aghajan and Kailath, 1994); least-squares
minimization is one method for finding the offsets (Agha-
jan and Kailath, 1994) but this method cannot provide sev-
eral closed-valued offsets. So we propose here to adapt a
high resolution method called MFBLP which solves the
case of several close parallel straight lines. Let dk be the
number of offset values corresponding to the orientation
having index k (k = 1, � � �,d). Considering the first orienta-
tion value, the signal received on sensor i is:

zðiÞ ¼
Xd1

k¼1

expð�jlx0kÞ expðjlði� 1Þ tanðh1ÞÞ þ nðiÞ; i ¼ 1; . . . ;N :

ð14Þ

If we set l = a(i � 1), where a is a constant, signal z con-
tains a modulated frequency term. After some algebraic
operations (Bourennane and Marot, 2005), we obtain a sig-
nal w with a constant frequency. The value of each compo-
nent of w is given by:

wðiÞ ¼
Xd1

k¼1

expð�jaði� 1Þx0kÞ þ n0ðiÞ; i ¼ 1; . . . ;N :

ð15Þ

Now, the estimation of the offsets can be considered as a
frequency estimation problem. We note that all frequency
terms have the same amplitude. In order to cope with this
problem, we chose to adapt to this particular frequency
retrieval problem the high resolution MFBLP method
(Williams et al., 1988). We consider dk straight lines with
the same angle hk, and apply the MFBLP method to the
vector w. The MFBLP method can be summarized into
the seven following steps:

MFBLP method

Step 1: Form the matrix B of size 2(N � L) · L, where L

is such that dk 6 L 6 N � dk/2. The j th column
bj of B is defined by:bj = [w(L � j + 1), w(L � j +
2), . . .,w(N � 1 � j + 1), w*(j + 1), w*(j + 2), . . .,
w*(N � L + j)]T.

Step 2: Build the length 2(N � L) vector: h = [w(L + 1),
w(L + 2), . . .,w(N),w*(1), w*(2), . . .,w*(N � L)]T.

Step 3: Calculate the singular value decomposition of
B:B = UKVH.

Step 4: Form matrix R setting to 0 the L � dk smallest sin-
gular values contained in K. R ¼ diagfk1; k2; . . . ;
kdk ; 0; . . . ; 0; 0; 0g.

Step 5: Form the vector g from the following matrix
computation:
g ¼ g1; g2; . . . ; gL½ �T ¼ �VR]UH h:
The pseudo-inverse of R, denoted by R], is
obtained by inverting its non zero elements.
Step 6: Determine the roots of the polynomial function H,
where
HðzÞ ¼ 1þ g1z�1 þ g2z�2 þ � � � þ gLz�L:
Step 7: Obtain the offset values from the dk complex argu-
ments of the dk zeros of H located on the unit
circle. The complex argument of each zero is pro-
portional to one offset value. The proportionality
coefficient is (�a).

A variable speed propagation scheme associated with
MFBLP exhibits low complexity; moreover it distinguishes
parallel lines.

3. Estimation of non rectilinear contours in an image

by means of array processing methods

3.1. Formulation of a phase model

The adopted approach for signal generation permits to
obtain a general phase model when distorted contours
are expected. Let us consider the generated signal z. Each
component of z is as follows:

zðiÞ ¼ expð�jlxðiÞÞ
¼ expðjlði� 1Þ tanðhÞ � jlDxðiÞÞ expð�jlx0Þ: ð16Þ

This expression contains, for one curve and the ith row
of the image, the value Dx(i) of the shift between the posi-
tion of the pixel belonging to a straight line fitting the
curve, and the pixel of the curve itself. Eq. (16) is equiva-
lent to: z(i) = ai(h)s, where ai(h) = exp(jl(i � 1)tan(h) �
jlDx(i)) and s = exp(�jlx0). It is possible to set together
in a vector model the components ai(h) of all rows of the
image. If several orientation values are considered, the
vector model concerning the orientation k is: aðhkÞ ¼
½e�jlDxð1Þ; ejðl tanðhkÞ�lDxð2ÞÞ; . . . ; ejðlðN�1Þ tanðhkÞ�lDxðNÞÞ�T. The
purpose of the next subsection is to estimate the values
Dx(1), . . .,Dx(N) of the pixel shifts.

3.2. Use of the propagator method for the estimation of the

phases

Referring to Eq. (10), matrix Q has M lines and M � d

columns. Therefore, the vector that will be estimated will
be of length M. We remind that the value of M can be chosen
up to M = N � d + 1 6 N. In practice, the images to be trea-
ted are not supposed to contain a large number of curves, so
that M can be fixed to a value close to N. The technique that
we use is the following: an initialization vector holding for
the N rows of the image is computed. This initialization vec-
tor fits the distorted curve by a dominant straight line. Then,
starting from this initialization vector, M phase values of the
signals are computed. The last N �M phases are supposed
to differ from the N �M phases of the initialization vector
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by a phase shift which is equal to the last computed phase
shift. In the general case where several curves with parame-
ters hk, k = 1, . . .,d are present, we have to find the vector
a(hk), for k = 1, . . .,d, such that:

jQH aðhkÞj2 ¼ 0; ð17Þ

where j Æ j denotes the L2 norm. Let aðhkÞ0 ¼
½1; ejl tanðhk Þ; . . . ; ejlðN�1Þ tanðhkÞ�T be a vector obtained by using
the initial estimate of the orientation of the straight lines
fitting the kth contour. We use the conjugated gradient
method, initialized by the vector a(hk)0, to estimate a(hk)
by minimizing the criterion of Eq. (17). The sequence of
vectors of the recurrence loop are obtained by the relation:

8q 2 N : aðhkÞqþ1 ¼ aðhkÞq � 2kQQH aðhkÞq; 0 6 q 6 niter;

ð18Þ

where q indexes the elements of the sequence of the recur-
rence loop, 0 < k < 1 is the step size, niter is the number of
iterations. We stop the recursion when the criterion is
under a fixed threshold.

From the complex argument of the components of vector
a(hk), we get the values of Dx(i). At this point, the values of
hk for each curve indexed by k, each offset x0 and Dx(i) for
i = 1, . . .,M, have been calculated. The last N �M pixels
are supposed to be straightly aligned along the orientation
of the initialization straight line, from the Mth pixel to
the bottom of the image. Thus, the position of the pixels
of each distorted curve are known at this point.
4. Experimental results, computational times

4.1. Real-world images

This subsection is divided into two parts: one is devoted
to straight line reconstruction, and the other concerns dis-
torted contour retrieval.

When the procedure for straight lines retrieval is run, the
values of parameters l and a have to be chosen. As con-
cerns parameter l, (Aghajan and Kailath, 1993) provides
a study that gives the maximum value of an estimated ori-
entation, with a value of l equal to 1. This maximum value
is 73� and is enough, considering that if the image is rotated
Fig. 2. Automatic vision system: (a) Initial transmitted image; (b) Image proces
by an edge-enhancement operator along the columns; (d) Localization of two
by 90�, all orientation values present in the image can be
computed. We applied such a rotation to the image of
Fig. 2, in order to detect the crosspieces which are sup-
posed to have an orientation of 90�. This is equivalent to
place the antenna at the bottom side of the image. If l is
smaller, the maximum orientation value is higher, but it
was empirically shown that the value 1 gives the best
results. If l is higher the maximum value of an estimated
orientation is lower. That is why we chose to use value 1
for l. As concerns a, it must be such that the value of a
multiplied by the maximum offset value remains in an
interval of length 2p. Indeed MFBLP method leads to
the frequency value �ax0. This frequency value must be
in the interval [0,2p[ in order to avoid any phase indetermi-
nation. Therefore we can choose for instance the value
2.5 · 10�3 for an image containing 200 columns. As con-
cerns parameter M, it can be chosen up to N � d + 1,
where d is the number of expected contours. As the number
of estimated phase shift values between the initialization
straight line and the expected contour is equal to M, we
decided to fix M to an elevated value, close to the number
of rows in the image. The research step angle is 0.3� in
interval Jh, otherwise it is specified.

Fig. 2a is a photography having size 200 · 200, taken by
a camera moving on a railway. Methods ‘‘Propagator’’ and
variable propagation scheme associated with MFBLP are
used. First, an edge enhancing procedure is performed
along the lines. This gives the image of Fig. 2b. Orientation
values are 20� and �26�, offset values are 82 and 91 (see
Fig. 2d). To estimate the position of two crosspieces, a gra-
dient operator is performed along the columns (see
Fig. 2c). Then the antenna is placed at the bottom of the
image. In the gradient image, two dominant lines appear,
which are detected by MFBLP if the number d1 of offsets
to be estimated is fixed to two for the orientation 0�. For
the retrieval of the rails only, computational times for each
method are the following: For this image, Propagator
method lasts 0.13 s. We chose a 0.1� step in the research
interval Jh of Section 2.2. All experiments are performed
on a 3.0 GHz Pentium 4 processor. For the estimation of
the two offsets, variable speed propagation scheme associ-
ated with MFBLP lasts 1.1 s, whereas the extension of
the Hough transform lasts 42.9 s. The low numerical
sed by an edge-enhancement operator along the rows; (c) Image processed
parallel crosspieces and the two rails.



Fig. 3. Aerial image processing: (a) Initial image; (b) Result of the edge detector. Proposed method: (c) Superposition of the initial image and the
initialization straight line; (d) Superposition of the initial image and the estimation. GVF method: (e) Initialization; (f) Superposition of the initial image
and the estimation.
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complexity of our methods allows a fast processing of pho-
tographs with a large number of edge pixels.

Gradient Vector Flow (Xu and Prince, 1997) is well-sui-
ted for a comparison with our method. Its popularity is due
to its ability of attracting an active contour toward object
boundary from a sufficiently large distance and its ability
of moving the contour into object concavities. This enables
an initialization by any contour – for instance a rectilinear
one – whatever the curvature of the expected contour. GVF
is based on a recursive optimization method. We may per-
form any number of iterations and thus control its compu-
tational load. In the following, we denote by � the mean
bias over the position of the pixels, computed over all pix-
els of the curve: � ¼ 1

N

PN
i¼1jx̂ðiÞ � xðiÞj, where x̂ðiÞ is the

estimation obtained for the position of the pixel of row i.
Fig. 3a presents an aerial image containing a road. One side
of the image has size N = 470. An edge enhancement and a
threshold are applied (see Fig. 3b). When the proposed
methods are applied, parameter M was chosen equal to
468 to maximize the number of pixel shift values which
are actually estimated. One initialization straight line is
obtained, which has the same overall orientation as the
road. The angle value is �3.3� and the offset value is 289
pixels (see Fig. 3c). After the initialization step for which
l = 1, the propagator matrix is computed again with
l = 5 · 10�3. This avoids any phase indetermination over
the value of the pixel shifts. Our optimization method is
run with k = 5 · 10�4 and 400 iterations. Fig. 3d shows
that the bias obtained with our method (� = 0.2) is due to
some disruptions. When GVF is applied, it is initialized
Fig. 4. Aerial image processing: (a) Initial image; (b) Result of the edge detecto
and the estimation.
independently from our methods. As Fig. 3e shows, for this
image the initialization contour must be close to the
expected contour in order for GVF to converge. We per-
form 40 iterations for the computation of the edge image
and 25 iterations for the deformation step. Parameter val-
ues are lGVF = 0.15 (regularization parameter in the GVF
formulation), aGVF = 0.1 (tension), bGVF = 0.001 (rigidity).
Fig. 3f shows that the mean pixel bias (� = 0.6) is due to a
focalization on some noisy pixels. Fig. 4 presents the result
obtained, with a photography of a river, with the same
parameters except N = 200 and M = 197. Relation (17)
holds independently for both orientations and correspond-
ing pixel shifts. So our method detects the two borders of
the river, whereas GVF cannot.

4.2. Statistical results

Here we first study the speeds of our methods for angle
and offset estimation and of the extension of the Hough
transform. In our experiments, we consider 200 · 200
images, containing one straight line, and impaired by an
impulse noise: some percentage of the background pixels
become edge pixels. We chose the noise percentage values:
0%; 1%; 2%; 4%; 10%; and 15%. For all noise percentage
values, angle estimation by Propagator method lasts
0.12 s, and offset estimation by the proposed method based
on the combination of a variable speed propagation
scheme with MFBLP lasts 0.39 s. The extension of the
Hough transform lasts 0.40; 0.50; 1.2; 2.0; 5.6; and 9.6 s.
So our method for offset estimation is faster when noise
r. Proposed method: (c) Initialization; (d) Superposition of the initial image
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Fig. 5. Hand-made image, common initialization: (a) Example of hand-made image; (b) Result of the initialization; (c) Superposition initial image and
result obtained by the proposed method; (d) Superposition initial image and result obtained by GVF.

Table 1
ME and Std values (in pixel) obtained with the proposed method and GVF versus amplitude and period values

(amp,per) (0.5, 1.0) (1, 1.1) (1.5, 1.2) (2, 1.3) (2.5, 1.4) (3, 1.5)

MFBLP ME 4.59 · 10�1 4.70 · 10�2 4.85 · 10�2 4.98 · 10�2 5.06 · 10�2 5.11 · 10�2

Std 1.90 · 10�3 2.12 · 10�3 8.42 · 10�3 3.23 · 10�2 5.24 · 10�2 8.07 · 10�2

GVF ME 1.56 2.09 2.65 3.66 4.17 4.70
Std 2.04 · 10�3 2.19 · 10�3 1.26 · 10�2 4.33 · 10�2 6.13 · 10�2 9.54 · 10�2

J. Marot, S. Bourennane / Pattern Recognition Letters 28 (2007) 1556–1562 1561
percentage is larger than 1%, which is generally the case for
real-world images. The maximum ratio between computa-
tional times (24.6) is obtained with the highest noise per-
centage value. When Hough transform is used to estimate
all angle and offset values, it lasts 8.6; 20.4; 30.7; 51.4;
105.5; and 152.0 s. Running the set of proposed methods
for both angle and offset estimation lasts 0.51 s. Therefore
computational time obtained by running Hough transform
method is up to 300-fold higher.

Now, let us compare the robustness of our method and
GVF to the amplitude of the distortions of a single curve.
In order to simulate real-world conditions, the position of
the edge pixels are given by the summation of two ampli-
tude modulated sinusoids. We denote by amp and per the
multiplicative factors that characterize the amplitude and
period of the first sinusoid, which are five fold as high as
the amplitude and period factors of the second sinusoid.
The second sinusoid simulates a small amplitude high
frequency perturbation. A unique straight line, which is
obtained by our method for straight line retrieval, is used
to initialize both methods. One hundred points regularly
distributed along this straight line are chosen to initialize
the Gradient Vector Flow. Parameters for GVF and for
our initialization methods are the same as in Section 4.1.
We choose M = 199 in order to maximize the adequation
between the processed data and the image. Our optimiza-
tion method is run with k = 5 · 10�4 and 500 iterations.
The number of iterations for each method is chosen such
that the computational time is the same for our method
and for GVF. For all images, the proposed method for
angle estimation lasts 0.11 s, our method for offset estima-
tion lasts 0.39 s. For the retrieval of the pixel shifts GVF
needs 24.3 s whereas our method needs 21.3 s. The first cri-
terion that is used to measure the accuracy of the results
obtained is the mean value of the mean bias �. For Tr trials,
mean error ME is defined by: ME ¼ 1

Tr

PTr
j¼1j�jj, where j

indexes the trials and �j is the mean bias obtained at the
jth trial. Standard deviation Std is defined by: Std ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Tr

PTr
j¼1ð�j �MEÞ2

q
.

We first illustrate in Fig. 5 the results obtained by both
methods on one curve with amplitude parameter 3 and per-
iod parameter 1.5. The result images (see Fig. 5c and d)
show that the mean pixel bias obtained with our method
is lower.

The statistical results presented now are obtained with
similar curves, having several couples (amp,per) of ampli-
tude and period values given in Table 1. We perform
Tr = 1000 trials. At each trial, amplitude and period
factors are multiplied by a random number following a
normal law with mean 1 and standard deviation 0.01.
Statistical results for the proposed method and GVF
method respectively, for each couple of amplitude and
period factors are (in pixels) as presented in Table 1.

ME values obtained with our method are less than 1.
GVF method leads to ME values which are 3-fold as high
as the error obtained with our method, for all amplitude
factor values. The Std values obtained with GVF are at
least 1.2-fold as high as the values obtained with our
method. This can be due to a dependence of GVF on its
multiple parameters which is higher than the dependence
of our method on its own parameters.
5. Conclusion

Novel fast methods have been proposed for the widely
encountered problem of contour retrieval. We adapted
the fast array processing Propagator method, for esti-
mating the orientation of several straight lines. Multiple
offsets of possibly parallel straight lines are estimated with
Modified Forward Backward Linear Prediction, associated
with a variable speed propagation scheme. We retrieve
distorted contours with an optimization method that mini-
mizes a criterion based on ‘‘Propagator’’. We initialize this
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optimization method by our straight contour retrieval pro-
cedure. Our experiments using real and synthetic images
have produced promising results. We can draw the follow-
ing major conclusions: the performances of the extension
of the Hough transform, in terms of computational load,
are outperformed; a statistical study has shown that, for
the same computational time, our method leads to a signif-
icant improvement of results compared to Gradient Vector
Flow.
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