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ABSTRACT

Subspace-based methods rely on dominant element selection

from second order statistics. They have been extended to

tensor processing, in particular to tensor data filtering. For

this, the processed tensor is flattened along each mode succes-

sively, and singular value decomposition of the flattened ma-

trix is classically performed. Data projection on the dominant

singular vectors results in noise reduction. The numerical cost

of SVD is elevated. Now, tensor processing methods include

an ALS (Alternating Least Squares) loop, which implies that

a large number of SVDs are performed. Fixed point algorithm

estimates an a priori fixed number of singular vectors from a

matrix. In this paper, we generalize fixed point algorithm as

a higher-order fixed point algorithm to the estimation of only

the required dominant singular vectors in a tensor processing

framework. We compare the proposed method in terms of

denoising quality and speed through an application to color

image and hyperspectral image denoising.

Index Terms— Tensor filtering, subspace-based method,

fixed point algorithm.

1. INTRODUCTION

Subspace-based methods consider significant and remaining

parts of the data. They are based on data most significant

feature selection. Starting from signal realizations, subspace-

based methods rely on second order statistics. In particu-

lar, the eigenstructure of the covariance matrix of signal re-

alizations provides eigenvectors which span the measurement

space. Within the measurement space, dominant eigenvectors

span the so-called ”signal subspace” and the remaining eigen-

vectors span the so-called ”noise subspace”. Subspace-based

methods are applied to source characterization in array pro-

cessing [1], image denoising. Subspace-based methods were

adapted to multidimensional -also called tensor- data [2, 3, 4].

The tensor data extend the classical vector data [2, 5]. A ten-

sor is a multiway array, each array entry corresponding to a

physical quantity. Tensor models were adopted in chemo-

metrics [5], for DS-CDMA system characterization [6], mul-

tilinear independent component analysis [7]. In particular,

subspace-based methods are employed for data denoising [2].

They rely, for each mode, on the flattening matrix singular

value decomposition and on data projection upon dominant

singular vectors. Section 2 states the problem. The proposed

method is described in Section 3. In Section 4, we evaluate

the performances of the proposed method.

2. PROBLEM STATEMENT

The measurement of a multidimensional and multiway signal

X by multicomponent sensors with additive noise N , results

in a data tensor R of order N from R
I1×···×IN such that:

R = X +N . Let us define E(n) as the nth-mode vector space

of dimension In, associated with the nth-mode of tensor R.

By definition, E(n) is generated by the column vectors of the

nth-mode flattening matrix. The nth-mode flattening matrix

Rn of tensor R ∈ R
I1×···×IN is defined as a matrix from

R
In×Mn , where: Mn = In+1In+2 · · · INI1I2 · · · In−1. The

goal of various studies is to estimate the expected signal X
thanks to a multidimensional filtering of the data [2, 8]:

X̂ = R×1 P(1) ×2 P(2) ×3 · · · ×N P(N), (1)

For all n = 1 to N , P(n) is the nth-mode filter applied to the

nth-mode of the data tensor R. In this paper, we assume that

noise N is independent from signal X , and that the nth-mode

rank Kn is smaller than the nth-mode dimension In (Kn <
In, for all n = 1 to N ). Then it is possible to extend the classi-

cal subspace approach to tensors by assuming that, whatever

the nth-mode, the vector space E(n) is the direct sum of two

orthogonal subspaces, namely E
(n)
1 and E

(n)
2 , which are de-

fined as follows:

• E
(n)
1 is the subspace of dimension Kn, spanned by the Kn

singular vectors associated with the Kn largest singular val-

ues of matrix Xn; E
(n)
1 is called signal subspace [9, 10, 11].

• E
(n)
2 is the subspace of dimension In − Kn, spanned by

the In − Kn singular vectors associated with the In − Kn

smallest singular values of matrix Xn; E
(n)
2 is called noise

subspace [9, 10, 11].

Hence, one way to estimate signal tensor X from noisy data

tensor R is to estimate E
(n)
1 in every nth-mode of R. For

this, the classical method consists in performing the trunca-

tion of SVD of the flattening matrix of R in each mode. For

each nth-mode, the columns of P(n) are the projectors on

the subspace spanned by the dominant singular vectors of the

flattening matrix. Filtering is then called truncation of the
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HOSVD. SVD numerical cost is elevated. Moreover, mul-

tidimensional signal processing methods include an iterative

ALS loop which implies multiple SVD processings. We seek

for a faster method, which avoids singular value decompo-

sition. In [4], higher order power method and higher order

orthogonal iterative algorithms are proposed to compute the

signal subspace vectors. However, the former method is lim-

ited to a rank one signal subspace whereas, in general, signal

subspace dimension is larger than one. The latter method pro-

poses a simultaneous estimation of leading eigenvectors. For

a fast estimation of possibly multiple dominant singular vec-

tors in each mode, we propose the fixed point method [12].

3. PROPOSED ALGORITHM FOR FAST MULTIWAY
SUBSPACE-BASED FILTERING METHOD

We present in the general case the fast fixed-point algorithm

for computing leading eigenvectors, and show how, in partic-

ular, this algorithm can be inserted in an ALS loop to compute

signal subspace projectors for each nth-mode.

3.1. Fast fixed-point algorithm for computing leading
eigenvectors

One way to compute the K orthonormal basis vectors is to

use Gram-Schmidt method.

1. Choose K, the number of principal axes or eigenvectors

required to estimate. Consider covariance matrix C and

set p ← 1.

2. Initialize eigenvector up of size d × 1, e. g. randomly;

3. Update up as up ← Cup;

4. Do the Gram-Schmidt orthogonalization process up ←
up − ∑j=p−1

j=1 (uT
p uj)uj ;

5. Normalize up by dividing it by its norm: up ← up

||up|| .

6. If up has not converged, go back to step 3.

7. Increment counter p ← p + 1 and go to step 2 until p
equals K.

The eigenvector with dominant eigenvalue will be measured

first. Similarly, all the remaining K − 1 basis vectors (or-

thonormal to the previously measured basis vectors) will be

measured one by one in a reducing order of dominance. The

previously measured (p − 1)th basis vectors will be utilized

to find the pth basis vector. The algorithm for pth basis vec-

tor will converge when the new value u+
p and old value up

are such that u+T
p up = 1. It is usually economical to use

a finite tolerance error to satisfy the convergence criterion∣∣∣∣u+T
p up − 1

∣∣∣∣ < η where η is a prior fixed threshold.

Let U = [u1,u2, . . . ,uK ] be the matrix whose columns are

the K orthonormal basis vectors. Then UUT is the projector

onto the subspace spanned by the K dominant eigenvectors.

This subspace is also called ”signal subspace”.

3.2. Higher-order fixed point algorithm for the estimation
of projectors onto signal subspaces

In the vector or matrix formulation, the definition of the pro-

jector on the signal subspace is based on the eigenvectors

associated with the largest eigenvalues of the covariance ma-

trix of the set of observation vectors. In a tensor case, the

lower rank-(K1, . . . , KN ) approximation of R is represented

by tensor RK1,...,KN which minimizes the quadratic ten-

sor Frobenius norm ‖R − B‖2 subject to the condition that

B ∈ R
I1×...×IN is a rank-(K1, . . . , KN ) tensor. We propose

to replace HOSVD in tensor lower rank approximation by a

higher-order fixed point algorithm (HOFP). We obtain a fast

rank-(K1, . . . , KN ) approximation:

1. Input: data tensor R, and dimensions K1, . . . , KN of

all nth-mode signal subspaces.

2. Initialization k = 0: For n = 1 to N , calculate the

projectors P(n)
0 given by HOFP:

(a) nth-mode flatten R into matrix Rn;

(b) Compute matrix U(n)
0 formed by the Kn eigen-

vectors associated with the Kn largest singular

values of Rn. For this, use fixed point algorithm

that selects dominant singular vectors (see 3.1).

U(n)
0 is the initial matrix of the nth-mode signal

subspace orthogonal basis vectors;

(c) Form the initial orthogonal projector P(n)
0 =

U(n)
0 U(n)T

0 on the nth-mode signal subspace;

(d) Compute the HOSVD-(K1, . . . , KN ) of tensor R
given by

B0 = R×1 P(1)
0 ×2 · · · ×N P(N)

0 ;

3. ALS loop:
Repeat until convergence, that is, for example, while

‖Bk+1 − Bk‖2
> ε, ε > 0 being a prior fixed threshold,

(a) For n = 1 to N :

i. Form B(n),k:

B(n),k = R×1P
(1)
k+1×2· · ·×n−1P

(n−1)
k+1 ×n+1

P(n+1)
k ×n+2 · · · ×N P(N)

k ;

ii. nth-mode flatten tensor B(n),k into matrix

B(n),k
n ;

iii. Compute matrix C(n),k = B(n),k
n RT

n ;

iv. Compute matrix U(n)
k+1 composed of the Kn

eigenvectors associated with the Kn largest

eigenvalues of C(n),k. U(n)
k is the matrix of

the nth-mode signal subspace orthogonal ba-

sis vectors at the kth iteration; To compute
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all vectors of U(n)
k , use fixed point algorithm

(see 3.1).

v. Compute P(n)
k+1 = U(n)

k+1U
(n)T

k+1 ;

(b) Compute Bk+1 = R×1 P(1)
k+1 ×2 · · · ×N P(N)

k+1;

(c) Increment k.

4. Output: the estimated signal tensor is obtained through

X̂ = R ×1 P(1)
kstop

×2 · · · ×N P(N)
kstop

. X̂ is the rank-

(K1, . . . , KN ) approximation of R, where kstop is

the index of the last iteration after the convergence of

TUCKALS3 algorithm.

By using fixed-point algorithm in place of the singular value

decomposition in step 3(a)iv to compute the projector for each

mode, a faster algorithm is expected.

4. SIMULATION RESULTS

The proposed method can be applied to any tensor data:

multicomponent seismic signals, RGB color image, or hy-

perspectral images [2]... Color images or hyperspectral

data can be represented as a third-order tensor, denoted

by R ∈ R
I1×I2×I3 . A multidimensional white Gaussian

noise N is added to signal tensor X . The quality of the

obtained denoising results is measured through the SNR

value, with SNR = 10 · log
‖X‖2

‖N‖2 . We first exemplify the

proposed algorithm on a low-noise 8-bit color image of size

512×512×3. In this experiment we emphasize the capacity

of the proposed method to preserve the expected data. We

propose comparative results (in terms of SNR) between the

proposed subspace-based tensor method and the wavelet-

based ForWaRD algorithm [13]. A watermarked image can

be considered as a raw image to which equally distributed

and low-power noise composed by the watermark is added.

Denoising is a watermark attack that retrieves the original

non-watermarked image [14]. Fig. 1(a) and (b) present the

raw and watermarked images. Watermarking is performed in

the wavelet domain, by spread spectrum [15].
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Fig. 1. (a) test image, (b) watermarked image

In the watermarked image, SNR = 17.6 dB. Fig. 2(a)

provides the result obtained with the proposed subspace-

based tensor filtering method. Fig. 2(b) provides the result

obtained by ForWaRD method when applied matrix slice

by matrix slice. Signal subspace ranks (K1,K2,K3) cho-
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Fig. 2. denoising results: (a) proposed method, (b) ForWaRD
method

sen to perform rank-(K1,K2,K3) approximation are equal

to (140, 140, 3). 5 iterations of the ALS loop are needed

for convergence. The proposed method yields 17.9 dB, and

ForWaRD yields 3.08 10−2 dB in the denoised image. The

proposed method improves the SNR value although it is al-

ready elevated in the processed image, whereas ForWaRD

method reduces the SNR value by smoothing details. The

proposed method requires 14.4 sec. and ForWaRD 31.4 sec.

ForWaRD wavelet-based method provides poor SNR results,

so we next compare extensively the computational load per-

formance of the proposed method with the performance of a

subspace-based method.

We now exemplify the proposed method through hyperspec-

tral image (HSI) denoising and compare the results obtained

with another subspace-based method, namely HOSVD. The

HSI data used in the following experiments are real-world

data collected by HYDICE imaging, with a 1.5 m spatial and

10 nm spectral resolution and including 148 spectral bands

(from 435 to 2326 nm). We consider HSI data with a large

amount of noise, by setting SNR = 3 dB. Each band has

from I1 = I2 = 20 to 256 rows and columns. Number

of spectral bands I3 is fixed to 148. Signal subspace ranks

(K1,K2,K3) chosen to perform rank-(K1, K2,K3) approxi-

mation are equal to (10, 10, 15). Parameter η (see 3.1) is fixed

to 10−6, and 5 iterations of the ALS algorithm are needed

for convergence. The experiments are run with a 3.0 Ghz

PC running Windows. When I1 and I2 are equal to 128,

computational loads are 8 sec. for the proposed method and

250 sec. for the comparative method. Considering an image

with 256 rows and columns, HOFP-based method leads to

SNR = 17.03 dB with a computational time equal to 68

sec. and HOSVD-based method leads to SNR = 17.20 dB

with a computational time equal to 43 min. 22 sec. Then the

proposed method is 38 times faster, yielding SNR values that

differ by less than 1%. Consequently, the proposed method is

particularly interesting when noise power is elevated, and data

size is high. Fig. 3(a) is the raw image with I1 = I2 = 256,

Fig. 3(b) is the noised image, Fig. 3(c) and (d) are the results

obtained by HOFP and HOSVD algorithms.
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(a) Raw HSI data (b) Noised HSI data
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Fig. 3. HSI image : Results obtained by lower-rank tensor
approximation using HOFP or HOSVD.

5. CONCLUSION

A novel algorithm for fast tensor processing is proposed.

We adapt fixed point algorithm for the estimation of leading

eigenvectors to a subspace-based denoising method. On the

one hand we compare the proposed method with a wavelet-

based approach for color image denoising. Results in terms

of SNR are much better with the proposed subspace-based

approach. We exemplify the proposed fast subspace-based

tensor method on hyperspectral image denoising when few

dominant singular vectors are required to perform denoising,

and show that for images with 256 rows and columns, the pro-

posed lower rank tensor approximation method using higher

order fixed point (HOFP) algorithm is up to 38 times faster.

Further, multicomponent seismic signals or array processing

data could be considered. The proposed HOFP algorithm

could be extended to multiway Wiener filtering.
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