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Abstract. This paper presents some recent filtering methods based on the lower-rank tensor
approximation approach for denoising tensor signals. In this approach, multicomponent data are
represented by tensors, that is, multiway arrays, and the presented tensor filtering methods rely on
multilinear algebra. First, the classical channel-by-channel SVD-based filtering method is overviewed.
Then, an extension of the classical matrix filtering method is presented. It is based on the lower rank-
(K1, . . . ,KN ) truncation of the higher order SVD which performs a multimode principal component
analysis (PCA) and is implicitly developed for an additive white Gaussian noise. Two tensor filtering
methods recently developed by the authors are also overviewed. The first method consists of an
improvement of the multimode PCA-based tensor filtering in the case of an additive correlated
Gaussian noise. This improvement is specially done thanks to the fourth order cumulant slice matrix.
The second method consists of an extension of Wiener filtering for data tensors. The performances
and comparative results between all these tensor filtering methods are presented for the cases of noise
reduction in color images, multispectral images, and multicomponent seismic data.
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1. Introduction. Tensor data modeling and tensor analysis have been improved
and used in several application fields, such as quantum physics, economy, chemomet-
rics, psychology, and data analysis. Nevertheless, only recent studies focus their
interest on tensor methods in signal processing applications. Tensor formulation in
signal processing has received great attention since the recent development of multi-
component sensors, especially in imagery (color or multispectral images, video, etc.)
and seismic fields (antenna of sensors recording waves with polarization properties).
Indeed, the digital data obtained from these sensors are fundamentally higher order
tensor objects, that is, multiway arrays whose elements are accessed via more than
two indexes. Each index is associated with a dimension of the tensor generally called
“nth-mode” [13, 14, 28, 29].

In recent decades, the classical algebraic processing methods have been specif-
ically developed for vector and matrix representations. They are usually based on
the covariance matrix, the cross-spectral matrix, or, more recently, the higher order
statistics. Their overall aim is classically to determine a subspace associated with the
signal or the parameters to estimate. They mainly rely on three algebraic tools.

(1) The singular value decomposition (SVD) [18], which is used in principal com-
ponent analysis (PCA);

(2) Penrose–Moore matrix inversion [18]; and
(3) The matrix lower rank approximation, which, according to the Eckart–Young

theorem [15], can be achieved thanks to a simple SVD truncation.
These methods have proved to be very efficient in several applications.
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When dealing with multicomponent data represented as tensors, the classical
processing techniques consist in rearranging or splitting the data set into matrices or
vectors in order for the previously quoted classical algebraic processing methods to
be applicable. The original data structure is then built anew, after processing.

In order to keep the data tensor as a whole entity, new signal processing methods
have been proposed [35, 36, 37]. Hence, instead of adapting the data tensor to the
classical matrix-based algebraic techniques (by rearrangement or splitting), these new
methods propose to adapt their processing to the tensor structure of the multicom-
ponent data. This new approach implicitly implies the use of multilinear algebra and
mathematical tools that extend the SVD to tensors.

Two main tensor decomposition methods that generalize the matrix SVD have
been initially developed to achieve a multimode PCA and recently used in tensor
signal processing. They rely on two models, the TUCKER3 model and the PARAFAC
model.

The TUCKER3 model [29, 48] was adopted in higher order SVD (HOSVD)
[2, 13] and in lower rank-(K1, . . . ,KN ) tensor approximation [11, 14, 47]. We de-
note by HOSVD-(K1, . . . ,KN ) the truncation of HOSVD, performed with ranks
(K1, . . . ,KN ), in modes 1, . . . , N , respectively. This model recently has been used
as multimode PCA, in seismics for wave separation based on a subspace method, in
image processing for face recognition and expression analysis [49, 52], and in noise
filtering of color images [36].

The PARAFAC model and the CANDECOMP model were developed in [20] and
[10], respectively. In [30] the link was set between CANDECOMP and PARAFAC
models. The CANDECOMP/PARAFAC model, referred to as the CP model [25],
has recently been applied to the food industry [9], array processing [45], and telecom-
munications [46].

These two decomposition methods differ in the tensor rank definition on which
they are based. The HOSVD-(K1, . . . ,KN ) and the rank-(K1, . . . ,KN ) approxima-
tion rely on the nth-mode rank definition, that is, the rank of the tensor nth-mode
flattening matrix [13, 14]. The rank-(K1, . . . ,KN ) approximation [14] relies on an
optimization algorithm which is initialized by the HOSVD-(K1, . . . ,KN ) [13]. The
rank-(K1, . . . ,KN ) approximation improves the approximation obtained with the
HOSVD-(K1, . . . ,KN ). It relies on the determination of the signal subspace in ev-
ery nth-mode of the data tensor and copes with additive white Gaussian noise. The
rank-(K1, . . . ,KN ) approximation provides the best approximation in the sense of
least Frobenius norm of the difference between estimated and expected tensors. Nev-
ertheless it assumes a noncorrelated Gaussian noise. To face the case of correlated
Gaussian noise, a variant of rank-(K1, . . . ,KN ) approximation, based on fourth or-
der cumulants, was proposed [39]. Indeed, as it is proved in [33], the fourth order
cumulants of a Gaussian variable are null.

A tensor framework was employed by [12] to express the solution to the linear
independent component analysis (ICA) problem which employs fourth order cumu-
lants. The multilinear ICA (N-mode ICA) model [50, 51], which was developed for face
recognition, encodes the fourth order cumulants for each of the nth-mode flattening
matrices of the tensor.

The CP model relies on a canonical decomposition of a tensor into a summation
of rank-one tensors and on the extension of the classical matrix rank. Details on the
tensor ranks and orthogonal tensor decomposition can be found in [22, 27].

When the TUCKER3 model and the PARAFAC model are associated with an
ALS loop, they are known respectively as the TUCKALS3 algorithm [29, 28] and
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the PARAFAC ALS algorithm [30, 20]. Many recent studies have been conducted to
improve the convergence of these algorithms [14, 26, 56, 44].

The goal of this paper is to present an overview of the principal results concerning
this new approach of data tensor filtering. More details on the algorithms presented
in this survey can be found in [35, 36, 38, 39]. These algorithms are analogous to
multilinear ICA but were developed independently for image filtering. The presented
algorithms are based on a signal subspace approach, so they are efficient when the
noise components are uncorrelated, when the signal and the additive noise are uncor-
related, and when some rows or columns of the image are redundant. In this case it
is possible to distinguish between a signal subspace and a noise subspace, as for the
traditional SVD-based filtering and Wiener filtering algorithms. Wiener filtering re-
quires prior knowledge on the expected noisefree signal or image. However, multiway
filtering methods provide the following advantage over traditional filtering methods:
by apprehending a multiway data set as a whole entity, they take into account the
dependence between modes thanks to ALS algorithms. The goal of the paper is also
to present some simulations and comparative results concerning color images and
multicomponent seismic signal filtering.

The paper is organized as follows. Section 2 presents the tensor data and a short
overview of its main properties. Section 3 introduces the tensor formulation of the
classical noise-removal problem as well as some new tensor filtering notations. First,
we explain how the channel-by-channel SVD-based method processes successively each
component of the data tensor. Second, we consider two methods that take into ac-
count the relationships between each component of the considered tensor. These two
methods are based on the nth-mode signal subspace. The first method for signal
tensor estimation is based on multimode PCA achieved by rank-(K1, . . . ,KN ) ap-
proximation. The second method is a new tensor version of Wiener filtering. Section
4 presents some comparative results where the overviewed multiway filtering methods
are applied to noise reduction in color images, denoising of multispectral images, and
denoising of multicomponent seismic waves. Section 5 concludes the paper.

The following notation is used in the rest of the paper. Scalars are denoted by
italic lowercase roman (a); vectors by boldface lowercase roman (a); matrices by bold-
face uppercase roman (A); and tensors by uppercase calligraphic (A). We distinguish
a random vector, like a, from one of its realizations by using a supplementary index,
like ai.

2. Tensor representation and properties. We define a tensor of order N
as a multidimensional array whose entries are accessed via N indexes. A tensor is
denoted by A ∈ R

I1×···×IN , where each element is denoted by ai1···iN , and R is the
real manifold. Each dimension of a tensor is called nth-mode, where n refers to the
nth index. Figure 2.1 shows how a color image can be represented by a third order
tensor A ∈ R

I1×I2×I3 , where I1 is the number of rows, I2 is the number of columns,
and I3 is the number of color channels. In the case of a color image, we have I3 = 3.
Let us define E(n) as the nth-mode vector space of dimension In, associated with
the nth-mode of tensor A. By definition, E(n) is generated by the column vectors
of the nth-mode flattening matrix. The nth-mode flattening matrix An of tensor
A ∈ R

I1×···×IN is defined as a matrix from R
In×Mn , where

(2.1) Mn = In+1In+2 · · · INI1I2 · · · In−1.

For example, when we consider a third order tensor, the definition of the matrix
flattening involves the dimensions I1, I2, I3 in a backward cyclic way [5, 13, 25].
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Fig. 2.1. Lena standard color image and its tensor representation.

Fig. 2.2. 2nd-mode flattening of tensor A: A2.

When dealing with a 1st-mode flattening of dimensionality I1 × (I2I3), we formally
assume that the index i2 varies more slowly than i3. For all n = 1 to 3, An columns
are the In-dimensional vectors obtained from A by varying the index in from 1 to In
and keeping the other indexes fixed. These vectors are called the nth-mode vectors
of tensor A. An illustration of the 2nd-mode flattening of a color image is presented
in Figure 2.2.

In the following, we use the operator ×n as the nth-mode product, which general-
izes the matrix product to tensors. Given A ∈ R

I1×···×IN and a matrix U ∈ R
Jn×In ,

the nth-mode product between tensor A and matrix U leads to the tensor B = A×nU,
which is a tensor of R

I1×···In−1×Jn×In+1×···×IN , whose entries are given by

(2.2) bi1···in−1jnin+1···iN =

In∑
in=1

ai1···in−1inin+1···iNujnin .

The next section presents the recent filtering methods for tensor data.

3. Tensor filtering problem formulation. The tensor data extend the clas-
sical vector data. The measurement of a multidimensional and multiway signal X by
multicomponent sensors with additive noise N results in a data tensor R such that

(3.1) R = X + N .
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R, X , and N are tensors of order N from R
I1×···×IN . Tensors N and X represent noise

and signal parts of the data, respectively. The goal of this study is to estimate the
expected signal X thanks to a multidimensional filtering of the data [35, 36, 38, 39]:

(3.2) X̂ = R×1 H(1) ×2 H(2) ×3 · · · ×N H(N),

From a signal processing point of view, the nth-mode product is a nth-mode filtering
of data tensor R by nth-mode filter H(n). Consequently, for all n = 1 to N , H(n) is
the nth-mode filter applied to the nth-mode of the data tensor R.

In this paper we assume that the noise N is independent from the signal X and
that the nth-mode rank Kn is smaller than the nth-mode dimension In (Kn < In,
for all n = 1 to N). Then it is possible to extend the classical subspace approach to
tensors by assuming that, whatever the nth-mode, the vector space E(n) is the direct

sum of two orthogonal subspaces, namely, E
(n)
1 and E

(n)
2 , which are defined as follows:

• E
(n)
1 is the subspace of dimension Kn, spanned by the Kn singular vectors

associated with the Kn largest singular values of matrix Xn; E
(n)
1 is called

the signal subspace [1, 33, 55, 54].

• E
(n)
2 is the subspace of dimension In −Kn, spanned by the In −Kn singular

vectors associated with the In − Kn smallest singular values of matrix Xn;

E
(n)
2 is called the noise subspace [1, 33, 55, 54].

The dimensions K1,K2, . . . ,KN can be estimated by means of the well-known
Akaike information criterion (AIC) or Minimum description length (MDL) crite-
ria [53], which are entropy-based information criteria. Hence, one way to estimate

signal tensor X from noisy data tensor R is to estimate E
(n)
1 in every nth-mode of R.

The following section presents three tensor filtering methods based on nth-mode signal
subspaces. The first method is an extension of classical matrix filtering algorithms.
It consists of a channel-by-channel SVD-based filtering.

The second filtering method is based on multimode PCA achieved by rank-
(K1, . . . ,KN ) approximation. Two algorithms are presented for this case. The first
algorithm is implicitly developed for an additive white and Gaussian noise assump-
tion, whereas the second algorithm represents an improvement of the first one in the
case of a correlated Gaussian noise. This improvement is achieved thanks to higher
order statistics.

The third method, the multiway Wiener filtering (Wmm-(K1, . . . ,KN )), is an
algorithm that extends the classical two-dimensional Wiener filtering to tensor data.

3.1. Channel-by-channel SVD-based filtering. The classical algebraical
methods operate on two-dimensional data matrices and are based on the SVD [1, 3, 4]
and on the Eckart–Young theorem concerning the best lower rank approximation of
a matrix [15] in the least-squares sense.

In the first method, a preprocessing is applied to the multidimensional and mul-
tiway data. It consists in splitting data tensor R, representing the noisy multicompo-
nent image into two-dimensional “slice matrices” of data, each representing a specific
channel. According to the classical signal subspace methods [8], the left and right
signal subspaces, corresponding to, respectively, the column and the row vectors of
each slice matrix, are simultaneously determined by processing the SVD of the ma-
trix associated with the data of the slice matrix. Let us consider the slice matrix
R(:, :, i3, . . . , ij , . . . , iN ) of data tensor R. Projectors P on the left signal subspace and
Q on the right signal subspace are built from, respectively, the left and the right sin-
gular vectors associated with the K largest singular values of R(:, :, i3, . . . , ij , . . . , iN ).
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The parameter K simultaneously defines the dimensions of the left and right signal
subspaces. Applying the projectors P and Q on the slice R(:, :, i3, . . . , ij , . . . , iN )
amounts to computing its best lower rank-K matrix approximation [15] in the least-
squares sense.

The filtering of each slice matrix of data tensor R separately is called in the
following “channel-by-channel” SVD-based filtering of R. It consists of a first way to
estimate the signal tensor X and can be summarized by the following steps:

1. input: data tensor R, left and right signal subspace dimension K.
for iN = 1 to IN :
for iN−1 = 1 to IN−1:
...
for i4 = 1 to I4:
for i3 = 1 to I3:

(a) calculate matrix R(:, :, i3, . . . , ij , . . . , iN ) SVD:

R(:, :, i3, . . . , ij , . . . , iN ) = U · Σ · VT ,

where Σ is the core matrix regrouping the singular values of the ma-
trix R(:, :, i3, . . . , ij , . . . , iN ), and U = [u1 . . .uI1 ] and V = [v1 . . .vI2 ]
are the matrices containing the left and right singular vectors defined
respectively by ui1 and vi2 .

(b) construct matrices UK = [u1 . . .uK ] and VK = [v1 . . .vK ] containing
the K largest left and right eigenvectors of R(:, :, i3, . . . , ij , . . . , iN );

(c) compute the projector P = UKUT
K on the column signal subspace, and

projector Q = VKVT
K on the row signal subspace.

(d) compute the two-dimensional slice matrices of the estimated expected

signal X̂ :

X̂ (:, :, i3, . . . , ij , . . . , iN ) = PR(:, :, i3, . . . , ij , . . . , iN )Q

2. output: estimated expected signal: X̂ .
Channel-by-channel SVD-based filtering is based on a common efficient method but
exhibits a major drawback: it does not take into account the relationships between
the components of the processed tensor. Moreover, channel-by-channel SVD-based
filtering is appropriate only on some conditions. For example, applying SVD-based
filtering to an image is generally appropriate when the rows or columns of an image
are redundant, that is, linearly dependent. In this case, the rank K of the image is
equal to the number of linearly independent rows or columns. It is only in this case
that it would be safe to throw out eigenvectors from K+1 on. It is only in this special
case that the noise subspace is orthogonal to the signal subspace. Otherwise, the noise
simply increases the variance of the signal subspace and underestimating the signal
subspace dimension would result in throwing out both signal and noise information.
Thus, one would lose spatial resolution.

The next subsection presents a multiway filtering method that processes jointly,
and not successively, each component of the data tensor.

3.2. Tensor filtering based on multimode PCA.

3.2.1. White decorrelated Gaussian noise and second-order-statistics-
based method. Assuming that the dimension Kn of the signal subspace is known
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for all n = 1 to N , one way to estimate the expected signal tensor X from the noisy
data tensor R = X +N is to orthogonally project, for every nth-mode, the vectors of

tensor R on the nth-mode signal subspace E
(n)
1 for all n = 1 to N . This statement is

equivalent to replacing in (3.2) the filters H(n) by the projectors P(n) on the nth-mode
signal subspace:

(3.3) X̂ = R×1 P(1) ×2 · · · ×N P(N).

In this last formulation, projectors P(n) are estimated thanks to a multimode
PCA applied to data tensor R. This multimode PCA-based filtering generalizes the
classical matrix filtering methods [16, 17, 21, 23, 24, 32] and implicitly supposes that
the additive noise is white and Gaussian.

In the vector or matrix formulation, the definition of the projector on the signal
subspace is based on the eigenvectors associated with the largest eigenvalues of the
covariance matrix of the set of observation vectors. Hence, the determination of the
signal subspace amounts to determine the best approximation (in the least-squares
sense) of the observation matrix or the covariance matrix.

As an extension to the vector and matrix cases, in the tensor formulation, the
projectors on the nth-mode vector spaces are determined by computing the rank-
(K1, . . . ,KN ) approximation of R in the least-squares sense. From a mathematical
point of view, the rank-(K1, . . . ,KN ) approximation of R is represented by tensor
RK1,...,KN which minimizes the quadratic tensor Frobenius norm ‖R − B‖2 subject
to the condition that B ∈ R

I1×...×IN is a rank-(K1, . . . ,KN ) tensor. The description
of the TUCKALS3 algorithm used in rank-(K1, . . . ,KN ) approximation is provided
in the following.

Rank-(K1, . . . ,KN) approximation - TUCKALS3 algorithm.
1. Input: data tensor R, and dimensions K1, . . . ,KN of all nth-mode signal

subspaces.

2. Initialization k = 0: For n = 1 to N , calculate the projectors P
(n)
0 given by

HOSVD-(K1, . . . ,KN ):
(a) nth-mode flatten R into matrix Rn;
(b) Compute the SVD of Rn;

(c) Compute matrix U
(n)
0 formed by the Kn eigenvectors associated with

the Kn largest singular values of Rn. U
(n)
0 is the initial matrix of the

nth-mode signal subspace orthogonal basis vectors;

(d) Form the initial orthogonal projector P
(n)
0 = U

(n)
0 U

(n)T

0 on the nth-
mode signal subspace;

(e) Compute the HOSVD-(K1, . . . ,KN ) of tensor R given by

B0 = R×1 P
(1)
0 ×2 · · · ×N P

(N)
0 ;

3. ALS loop:
Repeat until convergence, that is, for example, while ‖Bk+1 − Bk‖2

> ε, ε > 0
being a prior fixed threshold,
(a) For n = 1 to N :

i. Form B(n),k:
B(n),k = R×1P

(1)
k+1×2 · · ·×n−1P

(n−1)
k+1 ×n+1P

(n+1)
k ×n+2 · · ·×NP

(N)
k ;

ii. nth-mode flatten tensor B(n),k into matrix B
(n),k
n ;

iii. Compute matrix C(n),k = B
(n),k
n RT

n ;

iv. Compute matrix U
(n)
k+1 composed of the Kn eigenvectors associated
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with the Kn largest eigenvalues of C(n),k. U
(n)
k is the matrix of

the nth-mode signal subspace orthogonal basis vectors at the kth

iteration;

v. Compute P
(n)
k+1 = U

(n)
k+1U

(n)T

k+1 ;

(b) Compute Bk+1 = R×1 P
(1)
k+1 ×2 · · · ×N P

(N)
k+1;

(c) Increment k.

4. Output: the estimated signal tensor is obtained through X̂ = R×1P
(1)
kstop

×2

· · ·×N P
(N)
kstop

. X̂ is the rank-(K1, . . . ,KN ) approximation of R, where kstop is
the index of the last iteration after the convergence of TUCKALS3 algorithm.

In this algorithm, the second order statistics come from the SVD of matrix Rn at step
2(b), which is equivalent, up to 1

Mn
multiplicative factor, to the estimation of tensor

R nth-mode vectors [39]. The definition of Mn is given in (2.1). In the same way,
at step 3(a)iii, matrix C(n),k is, up to 1

Mn
multiplicative factor, the estimation of the

covariance matrix between tensor R and tensor B(n),k nth-mode vectors. According
to step 3(a)ii, B(n),k represents data tensor R filtered in every mth-mode but the

nth-mode, by projection-filters P
(m)
l , with m �= n, l = k if m > n and l = k + 1 if

m < n. TUCKALS3 algorithm has recently been used to process a multimode PCA
in order to perform white noise removal in color images [36].

A good approximation of the rank-(K1, . . . ,KN ) approximation can simply be
achieved by computing the HOSVD-(K1, . . . ,KN ) of tensor R [14, 34]. Indeed, the
HOSVD-(K1, . . . ,KN ) of R consists of the initialization step of TUCKALS3 algorithm
and hence can be considered as a suboptimal solution for the rank-(K1, . . . ,KN )
approximation of tensor R [14]. This HOSVD-based technique has recently been
used in [39] for denoising and source separation of multicomponent seismic waves.

3.2.2. Correlated Gaussian noise and higher-order-statistics-based
method. In practice, the condition of noise whiteness is not always fulfilled. Hence,
in the case of an additive correlated Gaussian noise, the TUCKALS3 algorithm is the-
oretically incapable of providing a good estimation of the nth-mode signal subspaces
since it is based on second order moments. A classical means to remove the Gaussian
(noise) components is to use the higher order statistics, and especially the higher
order cumulants. The tensor framework has been used to compute the fourth order
cumulants as a means of solving the ICA problem [12]. Vasilescu and Terzopoulos
introduced a multilinear ICA (N-mode ICA) for face recognition, which encodes the
higher order statistics associated with each mode of the tensor [50, 51]. The related
methods are based on the well-known cumulant property stating that the higher order
cumulants of a Gaussian variable are null [31, 33].

As a consequence, in the case of an additive correlated Gaussian noise, a recent
study [39] has proposed to improve the multimode PCA-based filtering by incorporat-
ing into the TUCKALS3 algorithm the fourth order cumulants instead of the second
order moments.

From a practical point of view, second order matrices C(n),0 and C(n),k at steps
2(b) and 3(a)iii of the TUCKALS3 algorithm are replaced with the corresponding
fourth order cumulants. In the following, we present only the details of the procedure
for matrix C(n),k. Obtaining the details concerning C(n),0 is straightforward.

We assume that {r(n)
p , p = 1, . . . ,Mn} and {b(n),k

p , p = 1, . . . ,Mn} are the Mn

realizations of two random vectors r(n) and b(n),k. In practice, we take as the realiza-
tions of these two random vectors the nth-mode vectors of data tensors R and B(n),k.
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Matrix C(n),k reads

(3.4) C(n),k =

Mn∑
p=1

b(n),k
p r(n)T

p .

The fourth order cumulants associated with vectors r(n) and b(n),k are denoted by

(3.5) C(n),k = Cum(b(n),k,b(n),kT

, r(n), r(n)T ),

where Cum(·) denotes the cumulant operator. C(n),k is a fourth order super-symmetric
tensor from R

In×In×In×In , whose generic term for indexes (i1, i2, j1, j2), for centered
variables, is given by [19, 31]

(3.6)
(C(n),k)i1,i2,j1,j2 = E[b

(n),k
i1

b
(n),k
i2

r
(n)
j1

r
(n)
j2

]

−E[b
(n),k
i1

r
(n)
j1

]E[b
(n),k
i2

r
(n)
j2

],−E[b
(n),k
i1

r
(n)
j2

]E[b
(n),k
i2

r
(n)
j1

]

where b
(n),k
i and r

(n)
j are the ith and jth components of random vectors b(n),k and

r(n), and E[·] is the expectation operator. The practical estimation of (C(n),k)i1,i2,j1,j2
is given by

(3.7)

(C(n),k)i1,i2,j1,j2 =
1

Mn

(
Mn∑
p=1

(
b
(n),k
i1p

b
(n),k
i2p

r
(n)
j1p

r
(n)
j2p

))

− 1

Mn
2

(
Mn∑
p=1

(
b
(n),k
i1p

r
(n)
j1p

))(
Mn∑
p=1

(
b
(n),k
i2p

r
(n)
j2p

))

− 1

Mn
2

(
Mn∑
p=1

(
b
(n),k
i1p

r
(n)
j2p

))(
Mn∑
p=1

(
b
(n),k
i2p

r
(n)
j1p

))
.

Here, b
(n),k
ip and r

(n)
ip are the elements at position (i, j) of tensors B(n),k and R nth-

mode flattening matrices B
(n),k
n and Rn.

In the classical TUCKALS3 algorithm, the Kn nth-mode signal subspace basis
vectors, given by matrix U(n),k, are estimated by computing, at step 3a, the eigen-
vectors associated with the Kn largest eigenvalues of matrix C(n),k. This amounts
to computing the best lower rank-Kn approximation of C(n),k. In [41] fourth order
cumulants are used instead of the covariance matrix because of their ability to remove
Gaussian noise. Indeed, the fourth order cumulants of Gaussian variables are null.
Therefore, when dealing with an additive correlated Gaussian noise, we also use fourth
order cumulants [39].

The main drawback of fourth order cumulants is the high computational load to
build every fourth order cumulant tensor associated with the nth-mode of the data
tensor. This computational load depends on the size of the data tensor R, that is,
the values of In, for all n = 1 to N . One way to reduce the computational load has
been proposed in [39] and consists in using the fourth order cumulant slice matrix.
The cumulant slice matrix has initially been introduced in array processing for source
localization or directions-of-arrival (DOA) estimation [7, 55, 54]. In [19, 55, 54], it
is proved that the signal subspace spanned by the eigenvectors associated with the
largest eigenvalues of a cumulant slice matrix is the same as signal subspace obtained
from the whole cumulant tensor defined in (3.5) [55, 54]. Therefore, we use only the
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eigenvectors of one cumulant slice matrix in our algorithm (see step 2(a)iii because the
other cumulant slice matrices provide redundant information. The use of the fourth
order cumulant slice matrix provides a much faster algorithm [54]. In our application,

the fourth order cumulant slice matrix C
(n),k
q can be defined, from (3.6), by fixing the

qth component of vector b(n),k as follows:

(3.8)
(
C(n),k

q

)
ij

= E
[
(b(n),k

q )2r
(n)
i r

(n)
j

]
− 2E

[
b(n),k
q r

(n)
i

]
E
[
b(n),k
q r

(n)
j

]
.

The practical estimation of (C
(n),k
q )ij can be given by

(3.9)(
C(n),k

q

)
ij

=
1

Mn

(
Mn∑
p=1

(
b(n),k
qp

)2

r
(n)
ip r

(n)
jp

)
− 2

M2
n

(
Mn∑
p=1

b(n),k
qp r

(n)
ip

)(
Mn∑
p=1

b(n),k
qp r

(n)
jp

)
,

where b
(n),k
ij and r

(n)
ij are, respectively, the elements at position (i, j) in the nth-mode

flattening matrices B
(n),k
n and Rn of tensors B(n),k and R.

As a consequence, in the case of an additive correlated Gaussian noise, the Kn

nth-mode signal subspace basis vectors can now be estimated by computing matrix

C
(n),k
q lower rank-Kn approximation. Then, the fourth order cumulant slice matrix-

based multimode PCA-based filtering can be summarized as follows:
1. Initialization k = 0:

For all n = 1 to N , P
(n)
0 = U

(n)
0 U

(n)T

0 . U
(n)
0 is the matrix of the Kn eigen-

vectors associated with the Kn largest eigenvalues of fourth order cumulant

slice matrix C
(n),0
q of tensor R nth-mode vectors.

2. ALS loop:
The steps (b) and (c) of the ALS loop are the same as in the algorithm “rank-
(K1, . . . ,KN) approximation - TUCKALS3 algorithm” described pre-
viously, and step (a) is replaced by
(a) For n = 1 to N :

i. B(n),k = R×1P
(1)
k+1×2 · · ·×n−1P

(n−1)
k+1 ×n+1P

(n+1)
k ×n+2 · · ·×NP

(N)
k ;

ii. Compute cumulant slice matrix C
(n),k
q associated with the fourth

order cumulants of tensors R and B(n),k nth-mode vectors. Every

element of C
(n),k
q is given in (3.9);

iii. Process matrix C
(n),k
q eigenvalue decomposition (EVD) and put the

Kn eigenvectors associated with the Kn largest eigenvalues into

U
(n)
k+1;

iv. Compute projector P
(n)
k+1 = U

(n)
k+1U

(n)T

k+1 ;

3. Output: X̂ = R×1 P
(1)
kstop

×2 · · ·×N P
(N)
kstop

, with kstop being the index of the
last iteration after convergence of the algorithm.

It was experimentally shown in [39] that when the parameter q involved in C
(n),k
q

is chosen properly, multimode PCA filtering based on fourth order cumulants (de-
noted by rank−C(K1, . . . ,KN )) and on fourth order cumulant slice matrix (denoted
by rank−C1(K1, . . . ,KN )) give sensibly the same performances in regard to noise
reduction in color images and multicomponent seismic waves.

3.3. Multiway Wiener filtering. Let Rn, Xn, and Nn be the nth-mode flat-
tening matrices of tensors R, X , and N , respectively.

In the previous subsection, the estimation of signal tensor X has been performed
by projecting noisy data tensor R on each nth-mode signal subspace. The nth-mode
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projectors have been estimated thanks to the use of multimode PCA achieved by
rank-(K1, . . . ,KN ) approximation. Despite the good results given by this method,
it is possible to improve the tensor filtering quality by determining nth-mode filters
H(n), n = 1 to N , in (3.2), which optimize an estimation criterion. The most classical
method is to minimize the mean squared error between the expected signal tensor X
and the estimated signal tensor X̂ given in (3.2):

(3.10) e(H(1), . . . ,H(N)) = E[‖X −R×1 H(1) ×2 · · · ×N H(N)‖2].

Due to the criterion which is minimized, filters H(n), n = 1 to N , can be called
“nth-mode Wiener filters” [38].

According to the calculations presented in Appendix A, especially from (A.1) to
(A.15), the minimization of (3.10) with respect to filter H(n), for fixed H(m), m �= n,
leads to the following expression of nth-mode Wiener filter:

(3.11) H(n) = γ
(n)
XRΓ

(n)
RR

−1
,

where

(3.12) γ
(n)
XR = E

[
XnT

(n)RT
n

]
is the T(n)-weighted covariance matrix between the random column vectors of signal
Xn and data Rn, with

(3.13) T(n) = H(1) ⊗ · · · ⊗ H(n−1) ⊗ H(n+1) ⊗ · · · ⊗ H(N),

where ⊗ stands for Kronecker product, and

(3.14) Γ
(n)
RR = E

[
RnQ

(n)RT
n

]
is the Q(n)-weighted covariance matrix of the data Rn, with

(3.15) Q(n) = T(n)TT(n).

In order to obtain H(n) through (3.11), we suppose that the filters {H(m),m =
1 to N,m �= n} are known. Data tensor R is available, but signal tensor X is un-

known. So, only the term Γ
(n)
RR can be derived, and not the term γ

(n)
XR. Hence, some

more assumptions on X have to be made in order to overcome the indetermination

over γ
(n)
XR [35, 38]. In the one-dimensional case, a classical assumption is to consider

that a signal vector is a weighted combination of the signal subspace basis vectors.
In extension to the tensor case, [35, 38] have proposed considering that the nth-mode
flattening matrix Xn can be expressed as a weighted combination of Kn vectors from

the nth-mode signal subspace E
(n)
1 :

(3.16) Xn = V(n)
s O(n)

with Xn ∈ R
In×Mn , and V

(n)
s ∈ R

In×Kn being the matrix containing the Kn or-

thonormal basis vectors of nth-mode signal subspace E
(n)
1 . Matrix O(n) ∈ R

Kn×Mn is
a weight matrix and contains the whole information on expected signal tensor X . This
model implies that signal nth-mode flattening matrix Xn is orthogonal to nth-mode
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noise flattening matrix Nn, since signal subspace E
(n)
1 and noise subspace E

(n)
2 are

supposed mutually orthogonal.
Supposing that noise N in (3.1) is white, Gaussian, and independent from signal

X , and introducing the signal model (3.16) in (3.11) leads to a computable expression
of nth-mode Wiener filter H(n) (see Appendix B),

(3.17) H(n) = V(n)
s γ

(n)
OOΛ

(n)−1

Γs V(n)T

s ,

where γ
(n)
OOΛ

(n)−1

Γs is a diagonal weight matrix given by

(3.18) γ
(n)
OOΛ

(n)−1

Γs = diag

[
β1

λΓ
1

, · · · , βKn

λΓ
Kn

]
,

where λΓ
1 , . . . , λ

Γ
Kn

are the Kn largest eigenvalues of Q(n)-weighted covariance matrix

Γ
(n)
RR (see (3.14)). Parameters β1, . . . , βKn depend on λγ

1 , . . . , λ
γ
Kn

, which are the Kn

largest eigenvalues of T(n)-weighted covariance matrix

γ
(n)
RR = E[RnT

(n)RT
n ], according to the following relation:

(3.19) βkn = λγ
kn

− σ
(n)2

Γ ∀ kn = 1, . . . ,Kn.

Superscript γ refers to the T(n)-weighted covariance and subscript Γ to the Q(n)-

weighted covariance. σ
(n)2

Γ is the degenerated eigenvalue of noise T(n)-weighted co-

variance matrix γ
(n)
NN = E

[
NnT

(n)NT
n

]
. Thanks to the additive noise and the signal

independence assumptions, the In−Kn smallest eigenvalues of γ
(n)
RR are equal to σ

(n)2

Γ

and thus can be estimated by the following relation:

(3.20) σ̂
(n)2

Γ =
1

In −Kn

In∑
kn=Kn+1

λγ
kn
.

In order to determine the nth-mode Wiener filters H(n) that minimize the mean
squared error (3.10), the alternating least squares (ALS) algorithm has been proposed
in [35, 38]. It can be summarized in the following steps:

1. Initialization k = 0: R0 = R ⇔ H
(n)
0 = IIn, Identity matrix, ∀ n = 1 . . . N .

2. ALS loop:

Repeat until convergence, that is,
∥∥Rk+1 −Rk

∥∥2
< ε, with ε > 0 prior fixed

threshold,
(a) for n = 1 to N :

i. Form R(n),k: R(n),k = R ×1 H
(1)
k+1 ×2 · · · ×n−1 H

(n−1)
k+1 ×n+1

H
(n+1)
k ×n+2 . . .×N H

(N)
k ;

ii. Determine H
(n)
k+1 = arg min

Z(n)

∥∥X −R(n),k ×n Z(n)
∥∥2

subject to Z(n) ∈ R
In×In thanks to the following procedure:

A. nth-mode flatten R(n),k into R
(n),k
n = Rn(H

(1)
k+1⊗· · ·⊗H

(n−1)
k+1 ⊗

H
(n+1)
k ⊗ · · · ⊗ H

(N)
k )T , and R into Rn;

B. Compute γ
(n)
RR = E[RnR

(n),k
n

T
],

C. Determine λγ
1 , . . . , λ

γ
Kn

, the Kn largest eigenvalues of γ
(n)
RR;
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D. For kn = 1 to In, estimate σ
(n)
Γ

2
thanks to (3.20) and for kn = 1

to Kn, estimate βkn thanks to (3.19);

E. Compute Γ
(n)
RR = E[R

(n),k
n R

(n),k
n

T
];

F. Determine λΓ
1 , . . . , λ

Γ
Kn

, the Kn largest eigenvalues of Γ
(n)
RR;

G. Determine V
(n)
s , the matrix of the Kn eigenvectors associated

with the Kn largest eigenvalues of Γ
(n)
RR;

H. Compute the weight matrix γ
(n)
OOΛ

(n)−1

Γs given in (3.18);

I. Compute H
(n)
k+1, the nth-mode Wiener filter at the (k + 1)th

iteration, using (3.17);

(b) Form Rk+1 = R×1 H
(1)
k+1 ×2 · · · ×N H

(N)
k+1;

(c) Increment k;

3. output: X̂ = R×1H
(1)
kstop

×2 · · ·×N H
(N)
kstop

, with kstop being the last iteration
after convergence of the algorithm.

In subsection 3.2, we presented the adaptation of multimode PCA to the case of
a noncorrelated Gaussian noise, by using higher order statistics. In the same way,
it is possible to use higher order statistics for multiway Wiener filtering. For this,
one should replace step 2(a)iiB by step 2(a)ii of the ALS loop in subsection 3.2, and

replace step 2(a)iiE by the computation of the cumulant slice C
(n),k
q associated with

the fourth order cumulants of matrix R
(n),k
n and matrix (R

(n),k
n )T . Elements of C

(n),k
q

are given in (3.9).

4. Simulation results. In the following simulations, the channel-by-channel
SVD-based filtering defined in subsection 3.1 and the rank-(K1, . . . ,KN ) approximation-
based multiway and multidimensional filtering are applied to the denoising of color
images and multispectral images and to the denoising of seismic signals. Color images,
multispectral images, and seismic signals can be represented by a third order tensor
from R

I1×I2×I3 , where I1, I2, and I3 take different values. In all these applications,
the efficiency of denoising is tested in the presence of an additive Gaussian noise,
either correlated or not.

A multidimensional and multiway white Gaussian noise N which is added to
signal tensor X can be expressed as

(4.1) N = α · G,

where every element of G ∈ R
I1×I2×I3 is an independent realization of a normalized

centered Gaussian law and where α is a coefficient that permits to set the signal-to-
noise ratio (SNR) in noisy data tensor R.

When we process images impaired by correlated Gaussian noise, the noise which
is added is a third order tensor defined by

(4.2) N c = N ×1 W(1) ×2 W(2) ×3 W(3),

where every element of N represents an independent realization of a white Gaussian
noise and W(n) is a weight matrix in the nth-mode, n = 1, 2, 3.

In order to evaluate the performances of the overviewed tensor signal processing
methods, a particular performance criterion is employed as proposed in [38, 39].

4.1. Performance criterion. Following the representation of (3.1), the multi-
way noisy data tensor is expressed as R = X + N , where X is the expected signal
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tensor and N is the additive noise tensor. Let us define the SNR, in dB, in the noisy
data tensor by

(4.3) SNR = 10 log

(
‖X‖2

‖N‖2

)
.

In order to a posteriori verify the quality of the estimated signal tensor, we use
the normalized quadratic error criterion (NQE) defined as follows:

(4.4) NQE(X̂ ) =
‖X̂ − X‖2

‖X‖2
.

The NQE criterion permits a quantitative comparison of the channel-by-channel SVD-
based filtering and the rank-(K1,K2,K3) approximation multiway and multidimen-
sional filtering. Considering this criterion, we expect the rank-(K1,K2,K3) approxi-
mation to give better results than the channel-by-channel SVD-based filtering method.

4.2. Denoising of color images. Denoising of color images has been studied in
several works [6, 40, 43]. Some solutions have been brought from the field of wavelet
processing, exhibiting good results in terms of output SNR. These studies concern
only bidimensional data, whereas the methods that we compare are adapted to the
processing of third order tensors as a whole, and in particular to three-channel im-
ages. We focus on subspace-based methods. We first consider the channel-by-channel
SVD-based filtering, the rank-(K1,K2,K3) approximation and multiway Wiener fil-
tering (Wmm-(K1,K2,K3)), applied to images impaired by an additive white Gaus-
sian noise.

Then we present the results obtained with rank-(K1,K2,K3) based on second
order and higher order statistics, applied to images impaired by an additive corre-
lated Gaussian noise. We compare the performances of the methods applied in this
subsection in terms of denoising efficiency and computational load.

4.2.1. Denoising of a color image impaired by additive Gaussian noise.
Let us consider the “sailboat” standard color image of Figure 4.1(a) represented as a
third order tensor X ∈ R

256×256×3. The ranks of the signal subspace for each mode
are 30 for the 1st-mode, 30 for the 2nd-mode, and 2 for the 3rd-mode. This is fixed
thanks to the following process. For Figure 4.1(a), we took the standard nonnoisy
sailboat image and artificially reduced the ranks of the nonnoisy image, that is, we
set the parameters (K1,K2,K3) to (30, 30, 2), thanks to the truncation of HOSVD.
This ensures that, for each mode, the rank of the signal subspace is lower than the
corresponding dimension. This also permits us to evaluate the performances of the
filtering methods applied, independently from the accuracy of the estimation of the
values of the ranks by MDL or AIC criterion.

Figure 4.1(b) shows the noisy image resulting from the impairment of Figure
4.1(a) and represented as R = X + N . Third-order noise tensor N is defined by
relation (4.1) by choosing α such that, considering previous definition of (4.3), the
SNR in the noisy image of Figure 4.1(b) is 8.1 dB. In these simulations, the value of the
parameter K of channel-by-channel SVD-based filtering, the values of the dimensions
of the row and column signal subspace are supposed to be known and fixed to 30. In
the same way, parameters (K1,K2,K3) of rank-(K1,K2,K3) approximation are fixed
to (30, 30, 2).

The channel-by-channel SVD-based filtering of noisy image R (see Figure 4.1(b))
yields the image of Figure 4.1(c), and rank-(30, 30, 2) approximation of noisy data ten-
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(a) (b)

(c) (d) (e)

Fig. 4.1. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR = 8.1 dB. (c) Channel-by-channel SVD-based filtering of parameter K = 30.
(d) rank-(30, 30, 2) approximation. (e) Wmm-(30, 30, 2) filtering.
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Fig. 4.2. NQE evolution with respect to SNR (dB): channel-by-channel SVD-based filtering of
parameter 30 (-◦-), rank-(30, 30, 2) approximation (-�-), Wmm-(30, 30, 2) filtering (-�-).

sor R yields the image of Figure 4.1(d). The NQE, defined in (4.4), permits a qualita-
tive comparison between channel-by-channel SVD-based filtering and rank-(30, 30, 2)
approximation. Figure 4.2, which presents the evolution of the NQE with respect to
SNR varying from 3 dB to 18 dB, shows the NQE obtained with Wmm-(30, 30, 2) is
lower than the NQE obtained with the filtering with rank-(30, 30, 2) approximation.
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For this simulation, the rank-(K1,K2,K3) approximation gives better results than
channel-by-channel SVD-based filtering according to the NQE criterion. From the
resulting image, presented on Figure 4.1(d), we note that dimension reduction leads
to a loss of spatial resolution. However, the choice of a set of values K1,K2,K3 which
are small enough is the condition for an efficient noise reduction effect.

Therefore, a trade-off should be considered between noise reduction and detail
preservation. This trade-off was discussed in [42]. We were interested in using the
minimum description length (MDL) criterion [53], applied to the left singular values of
the flattening matrices computed over the successive nth-modes. As a rule of thumb,
the MDL criterion overestimates the value of parameters K1, K2, and K3. This
results in the preservation of the details in the processed image, at the expense of an
efficient denoising.

Concerning the qualitative results obtained with this color image, we note that
the intraclass variance of the pixel values of each component (or color mode) of the
resulting image is lower for the image obtained with Wmm-(30, 30, 2) than for those
images obtained with other methods applied in this subsection. This allows, for exam-
ple, appling after denoising a high level classification method with a higher efficiency
than when classification is applied after channel-by-channel SVD-based filtering or
HOSVD-(30, 30, 2).

For the 256×256×3 sailboat image of Figure 4.1, the computational times needed
when Matlab programs are used on a 3 Ghz Pentium 4 processor running Windows are
as follows. HOSVD-(30, 30, 2) lasts 1.61 seconds, the channel-by-channel SVD-based
filtering lasts 1.94 seconds, the rank-(30, 30, 2) approximation run with 25 iterations
lasts 54.1 seconds, and Wmm-(30, 30, 2) run with 25 iterations lasts 40.0 seconds.

The results presented in Figure 4.1 show that Wmm-(K1,K2,K3) allows one to
obtain better results in terms of NQE with a computational load which is lower than
that of the rank-(K1,K2,K3) approximation. In the next two examples we study the
influence of the values of the nth-mode ranks. In the example of Figure 4.3 we set, in
the same way as in the previous example, the ranks of the truncated image to (30, 30, 3)
(see Figure 4.3(a)). Note that K3 = I3 = 3. Thus the assumption K3 < I3 is not
fulfilled. We aim at studying the behavior of the proposed tensor filtering algorithms
when the color mode rank is equal to the color mode dimension (K3 = I3). The
truncated image is impaired by a noncorrelated Gaussian noise such that SNR = 8.1
dB (see Figure 4.3(b)). The results obtained show that channel-by-channel Wiener-
based filtering of parameter K = 30 (see Figure 4.3(c)) is outperformed by rank-
(30, 30, 3) approximation (see Figure 4.3(d)) and Wmm-(30, 30, 3) (see Figure 4.3(e)).
Indeed, the proposed tensor filtering algorithms rely on an ALS loop which permits us
to take into account the relationships between the filters of each mode when multiway
filters are used. In particular, concerning multiway Wiener filtering, it can be adapted

to the case where it is applied with K3 = I3. For this, the weight matrix γ
(3)
OOΛ

(3)−1

Γs

of step 2aiiH of the multiway Wiener filtering algorithm presented in subsection 3.3
is set to identity. That is, H(3) is replaced by P(3). We adapted the algorithm in
order to take into account the channel mode information for the computation of the
two spatial filters thanks to the ALS loop.

This proves the interest of multiway filtering even in the case where the rank of
the signal subspace along the third mode is equal to the number of channels.

In the example of Figure 4.4 we study the case where the ranks of the signal sub-
spaces are underestimated for the spatial modes. Let us consider the “Mondriaan”
standard color image of Figure 4.4 represented as a third order tensor X ∈ R

256×256×3.
We set the ranks of the truncated image to (150, 150, 3). The ranks along the spa-
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(a) (b) (c)

(d) (e)

Fig. 4.3. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR = 8.1 dB. (c) Channel-by-channel Wiener-based filtering of parameter K = 30.
(d) rank-(30, 30, 3) approximation. (e) Wmm-(30, 30, 3) filtering.

(a) (b) (c)

(d) (e)

Fig. 4.4. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR= 8.0 dB. (c) Channel-by-channel SVD-based filtering of parameter K = 19.
(d) rank-(19, 19, 3) approximation. (e) Wmm-(19, 19, 3) filtering.
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tial modes will be fixed intentionally to a value which is smaller than 150 when
the reviewed methods are applied. Figure 4.4(a) gives the nonnoisy image, Figure
4.4(b) shows the noisy image resulting from the impairment, with SNR= 8.0 dB, of
the image of Figure 4.4(a). Figure 4.4(c) gives the result obtained with channel-by-
channel SVD-based filtering of parameter K = 19. Figure 4.4(d) gives the result
obtained with rank-(19, 19, 3) approximation, and Figure 4.4(e) gives the result ob-
tained with Wmm-(19, 19, 3) filtering. Note that choosing (K1,K2,K3)=(19, 19, 3)
results in throwing out both signal and noise information along the spatial modes,
as the ranks of the noisy image are (150, 150, 3). Underestimating the ranks along
the spatial modes induces some blurry effect in the result images: part of the spatial
resolution is lost. The presented subspace-based algorithms perform well if there is a
high level of redundancy in the column or row space or if the image exhibits many
soft or blurry edges, and the nth-mode ranks are not underestimated.

4.2.2. HOSVD-(K1, K2, K3), rank-(K1, K2, K3) approximation based
on second order and higher order statistics, applied to an image impaired
by an additive correlated Gaussian noise. The purpose here is to compare meth-
ods based on second order statistics with methods based on higher order statistics
when an image is impaired by a correlated Gaussian noise. Figure 4.5 shows the
results obtained with the HOSVD-(K1,K2,K3), and the rank-(K1,K2,K3) approx-
imation based on second order and higher order statistics, used for the denoising
of an image impaired by an additive correlated Gaussian noise. We consider the
nonnoisy image of Figure 4.5(a) whose ranks are fixed to (30, 30, 2): we artificially
reduced the ranks of the nonnoisy image, that is, we set the parameters (K1,K2,K3)
to (30,30,2), thanks to the truncation of HOSVD. This image is impaired by a corre-
lated Gaussian noise (see (4.2)). Figure 4.5(b) shows the noisy image. The result of
HOSVD-(K1,K2,K3) is given in Figure 4.5(c), and the result of rank-(K1,K2,K3)
approximation based on second order statistics is given in Figure 4.5(d), the result of

(a) (b)

(c) (d) (e)

Fig. 4.5. (a) Initial nonnoisy image. (b) Initial image with an additive correlated Gaussian
noise, SNR = 2.48 dB. (c) HOSVD-(30, 30, 2). (d) rank-C(30, 30, 2) approximation. (e) rank-
C1(30, 30, 2) approximation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1190 D. MUTI, S. BOURENNANE, AND J. MAROT

−2 0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Evolution of the NQE with respect to the SNR

N
Q

E
 =

 ||
 X

 −
 X

es
tim

 ||
2 /||

X
||2

Fig. 4.6. Evolution of the NQE with respect to the SNR(dB) for each tensor filtering method:
◦: HOSVD-(30, 30, 2); �: rank-C(30, 30, 2); �: rank-C1(30, 30, 2).

rank−C(K1,K2,K3) approximation based on higher order statistics is given in Fig-
ure 4.5(e). The evolution of the NQE with respect to the SNR for HOSVD-(30, 30, 2),
rank-C(30, 30, 2) approximation based on fourth order cumulants, rank-C1(30, 30, 2)
approximation based on one slice of the fourth order cumulants is represented in
Figure 4.6.

The main conclusion from Figure 4.5 is that the methods based on fourth or-
der cumulants give similar visual results and better results than HOSVD-(30, 30, 2).
Whatever the SNR, the methods based on fourth order cumulants give a lower NQE
value than the methods based on second order statistics. The method based on fourth
order cumulant slice matrix gives sensibly the same NQE values as the method based
on fourth order cumulants.

For the 256×256×3 baboon image of Figure 4.5, the computational times needed
in the same conditions of processor and software as in previous subsection are the
following: HOSVD-(30, 30, 2) lasts 1.61 seconds, rank-C(30, 30, 2) based filtering lasts
2h. 11 min. 40 seconds, rank-C1(30, 30, 2) lasts 3 min. 50 seconds.

4.3. Denoising of multispectral images. The results obtained from the pro-
cessing of a multispectral image composed of 72 rows, 160 columns and 100 spectral
channels representing a truck are considered. This set of spectral images can be rep-
resented as a tensor X ∈ R

72×160×100. Images shown on Figures 4.7(a) to 4.7(e)
represent channels 30 to 34 of the multispectral image. To evaluate the performances
of the reviewed methods, some signal-independent white Gaussian noise N is added
to X and results in noisy tensor R = X +N . Channels 30 to 34 of noisy multispectral
image represented as R are shown in Figures 4.7(f) to 4.7(j), and correspond to a
noise impairment level SNR = −1 dB. Figures 4.7(k) to 4.7(o) represent channels
30 to 34 of the multispectral image obtained by applying channel-by-channel-based
SVD-filtering to noisy image R. Finally, Figures 4.7(p) to 4.7(t) represent channels
30 to 34 of the multispectral image obtained after applying rank-(30,30,30) approxi-
mation to noisy image R. This last simulation clearly shows that the rank-(30,30,30)
approximation-based filtering gives better results than channel-by-channel SVD-based
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 4.7. Channels 30 to 34 of the processed multispectral images are presented: (a)–(e)
Nonnoisy multispectral image. (f)–(j) Impaired multispectral image. (k)–(o) Results obtained with
channel-by-channel SVD filtering. (p)–(t) Results obtained with rank-(30, 30, 30) approximation.

Fig. 4.8. NQE evolution with respect to SNR (from -1 to 15 dB): channel-by-channel SVD-based
filtering of parameter 30 (-◦-), and rank-(30, 30, 30) approximation (-�-).

filtering in regard to denoising. Moreover, the evolution of the NQE with respect to
the SNR varying from −1 dB to 15 dB, represented in Figure 4.8, shows that the NQE
obtained with Wmm-(K1,K2,K3) is lower than the NQE obtained with a previously
existing method.
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For this simulation the estimation quality, respect to the NQE criterion, is bet-
ter for rank-(K1,K2,K3) approximation, compared to channel-by-channel SVD-based
filtering. Superiority of rank-(K1,K2,K3) approximation compared to channel-by-
channel SVD-based filtering is confirmed.

According to the simulations performed on a color image and on a multispectral
image, it is possible to conclude that the more channels the image is composed of,
the better the denoising. This can be explained by a better estimation of projectors
on 1st-mode and 2nd-mode signal subspaces in the case of the multispectral image.
Indeed, the number of spectral channels in a multispectral image is much larger than
in a color image. Equivalently, I3 is much larger than 3, so M1 and M2 are much larger
than for a color image, and the estimation of matrices C(1),k and C(2),k presented in
(3.4) are computed with more realization vectors.

4.4. Statistical performances. The goal of the following simulation is to test
the robustness to noise of channel-by-channel SVD-based filtering of parameter K
and of rank-(K1,K2,K3) approximation, with respect to the NQE criterion. We
process the Sailboat standard color image, impaired by an additive Gaussian noise,
with SNR values varying from −0.7 dB to 15 dB; 100 trials are performed. For
each trial one realization of additive Gaussian noise is simulated and added to the
nonnoisy image. The mean and standard deviation are computed over the NQE
values obtained each time the channel-by-channel SVD-based filtering and the rank-
(K1,K2,K3) approximation are run. The evolution of the mean NQE

(4.5) mNQE =
1

100

100∑
i=1

NQEi,

where index i refers to the ith noise realization, is represented in Figure 4.9(a) with
respect to SNR. The evolution of the standard deviation of the NQE,

(4.6) stdNQE =

√√√√ 1

100

100∑
i=1

(NQEi −mNQE)2,

is represented in Figure 4.9(b), with respect to the SNR. Figure 4.9 shows that the
mean and standard deviation values of the NQE obtained with rank-(K1,K2,K3) ap-
proximation and computed over 100 noise realizations are both lower than the mean
and the standard deviation values obtained with channel-by-channel SVD-based fil-
tering. Thus, for these simulations, the rank-(K1,K2,K3) approximation gives better
results than channel-by-channel SVD-based filtering in regard to the robustness of
tensor estimation and considering the NQE criterion.

4.5. Filtering of a multicomponent seismic type signal.

4.5.1. Filtering of a multicomponent seismic type signal impaired by an
additive white Gaussian noise. In this simulation, a multicomponent seismic wave
is received on a linear antenna composed of 10 sensors. The direction of propagation of
the wave is assumed to be contained in a plane which is orthogonal to the antenna. The
three components of the wave, represented as signal tensor X , are called Component
1, Component 2, and Component 3 and are represented in Figures 4.10(a)–(c). In each
seismic slice, the x-axis corresponds to the time sampling (200 or 100 time samples)
and the y-axis corresponds to the spatial sensors (10 sensors). Each consecutive
component presents a π

2 radian phase shift. The three components of noisy data tensor
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(a)

(b)

Fig. 4.9. (◦): results obtained with channel-by-channel SVD-based filtering of parameter 30;
(�): results obtained with rank-(30, 30, 2) approximation. (a) Evolution of the mean NQE with
respect to SNR (dB). (b) Evolution of the standard deviation of NQE with respect to SNR (dB).

R are represented in Figures 4.10(d)–(f), where the additive noise is considered as
white and Gaussian and for which the SNR = −10 dB. The classical Wiener filtering
of parameter K (Wcc-K) of each component, with a signal subspace dimension fixed
to K = 8, permits us to obtain the results presented in Figures 4.10(g)–(i). The
multimode PCA-based filtering achieved by applying HOSVD-(8,8,3) to noisy data
tensor permits to obtain the results presented in Figures 4.10(j)–(l). Finally, the
results obtained with multiway Wiener filtering applied to the noisy data tensor are
presented in Figures 4.10(m)–(o). The evolution of the NQE with respect to the SNR
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4.10. Nonnoisy, impaired, and processed seismic wave: the three polarization compo-
nents. (a)–(c) Components 1, 2, and 3 of the nonnoisy seismic wave. (d)–(f) Components 1, 2,
and 3 of the seismic wave, impaired by an additive white Gaussian noise (SNR = −10 dB).
(g)–(i) Wiener filtering applied component by component (Wcc-K), with rank K = 8. (j)–(l)
HOSVD-(K1,K2,K3), with (K1,K2,K3) = (8, 8, 3). (m)–(o) multiway Wiener filtering (Wmm-
(K1,K2,K3)), with (K1,K2,K3) = (8, 8, 3).
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 NQE

  BSNR (dB)

(a)

Fig. 4.11. Evolution of the NQE with respect to the SNR (dB) for each tensor filtering method.
(�): Wiener filtering applied component by component (Wcc-K), with rank K = 8; (◦): HOSVD-
(K1,K2,K3), with (K1,K2,K3) = (8, 8, 3); (•): multiway Wiener filtering (Wmm-(K1,K2,K3))
with (K1,K2,K3) = (8, 8, 3).
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Fig. 4.12. Multicomponent seismic signal. (a)–(c) Components 1 to 34 of the nonnoisy seismic
wave.

(dB) is given in Figure 4.11. As well as in the case of color image filtering, in this
simulation, the best quality, in terms of noise reduction, is given by multiway Wiener
filtering since, for all considered SNR values, the NQE values given by this method
are lower than the values given by both HOSVD-(8, 8, 3) and Wcc-8.

4.5.2. Filtering of a multicomponent seismic type signal impaired by
an additive correlated Gaussian noise. In this simulation, we consider a mul-
ticomponent seismic wave, impaired by a correlated Gaussian noise. The purpose
here is to compare the perfomances of multiway filtering algorithms based on either
second order moments or fourth order cumulants. Figures 4.12 and 4.13 show the
efficiency, in terms of noise reduction, of rank-C(K1,K2,K3) based filtering and rank-
C1(K1,K2,K3) based filtering compared to rank-(K1,K2,K3) approximation based
on second order statistics, when seismic signals impaired by a correlated Gaussian
noise are considered.
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Fig. 4.13. Denoising of a multicomponent seismic wave impaired by an additive correlated
Gaussian noise (SNR= −2 dB), using multiway filtering based on fourth order cumulants: compar-
ison of rank−C(8, 8, 3), and rank−C1(8, 8, 3). (a)–(c) Noised signal; components 1 to 3 impaired
by a correlated Gaussian noise (SNR= −2 dB). (d)–(f) rank-C(8, 8, 3) based filtering. (g)–(i) rank-
C1(8, 8, 3) based filtering. (j) Evolution of NQE with respect to SNR (dB) for rank-(8, 8, 3) approxi-
mation (�), rank-C1(8, 8, 3) using fourth order cumulant slice matrix (◦), and rank-C(8, 8, 3) using
fourth order cumulants (+).
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5. Conclusion. In this paper, an overview on new mathematical methods dedi-
cated to multicomponent data is presented. Multicomponent data are represented as
tensors, that is, multiway arrays, and the tensor filtering methods that are presented
rely on multilinear algebra. First we present how to perform channel-by-channel SVD-
based filtering. Then we review three methods that take into account the relationships
between each component of a processed tensor. The first method consists of an ex-
tension of the classical SVD-based filtering method. In the case of an additive white
Gaussian noise, the signal tensor is estimated thanks to a multimode PCA achieved
by applying a lower rank-(K1, . . . ,KN ) approximation to the noisy data tensor, or a
lower rank-(K1, . . . ,KN ) truncation of its HOSVD. This method is implicitly based
on second order statistics and relies on the orthogonality between nth-mode noise
and signal subspaces. The second presented method consists of an improvement of
the multimode PCA-based tensor filtering in the case of an additive correlated Gaus-
sian noise. In this case, the covariance matrix involved in TUCKALS3 algorithm is
replaced with the fourth order cumulant matrix of the related vectors. We reviewed
a low computational load procedure involving the fourth order cumulant slice matrix
instead of fourth order cumulants. This improved multimode PCA provides good
performances compared to the multimode PCA method based on second order statis-
tics, as was shown in the case of noise reduction in color images and multicomponent
seismic waves.

Finally, the third reviewed method is a multiway version of the classical Wiener
filtering. In extension to the one-dimensional case, the nth-mode Wiener filters are
estimated by minimizing the mean squared error between the expected signal tensor
and the estimated signal tensor obtained by applying the nth-mode Wiener filters to
the noisy data tensor thanks to the nth-mode product operator. An alternating least
squares algorithm has been presented to determine the optimal nth-mode Wiener
filters. The performances of this multiway Wiener filtering and comparative results
with multimode PCA have been presented in the case of additive white noise reduction
in a color image and in a multicomponent seismic wave.

Appendix A. nth-mode Wiener filter analytical expression. The follow-
ing computations are related to section 3.3. They rely on the definitions and properties
of tensors and multilinear algebra that can be found in [11, 13, 14].

The mean squared error involved in multiway Wiener filtering is given by relation

(A.1)
e(H(1), . . . ,H(N)) = E

[
‖X‖2

]
− 2E

[〈
X ,R×1 H(1) ×2 · · · ×N H(N)

〉]
+ E

[∥∥R×1 H(1) ×2 · · · ×N H(N)
∥∥2

]
.

The Frobenius norm of a tensor is also equal to the norm of any of its nth-mode
flattening matrices. In order to determine the expression of filter H(n) associated
with fixed filters H(m), for all m �= n, the nth-mode flattening of (A.1) is processed.

Let us define matrix F
(n)
XR as

(A.2) F
(n)
XR = XnT

(n)RT
n

with

(A.3) T(n) = H(1) ⊗ · · · ⊗ H(n−1) ⊗ H(n+1) ⊗ · · · ⊗ H(N).

Hence, for all n = 1 to N ,

(A.4)
〈
X ,R×1 H(1) ×2 · · · ×N H(N)

〉
= tr

(
F

(n)
XRH(n)T

)
.
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Let us define matrix G
(n)
RR as

(A.5) G
(n)
RR = RnQ

(n)Rn
T

with

Q(n) = T(n)TT(n)

(A.6) Q(n) = H(1)TH(1)⊗· · ·⊗H(n−1)TH(n−1)⊗H(n+1)TH(n+1)⊗· · ·⊗H(N)TH(N).

Hence for all n = 1 to N ,

(A.7)
∥∥∥R×1 H(1) ×2 · · · ×N H(N)

∥∥∥2

= tr
(
H(n)G

(n)
RRH(n)T

)
.

Minimization of mean squared error e(H(1), . . . , H(N)). The expression
of the nth-mode flattened mean squared error e(H(1), . . . ,H(N)) is the following:

(A.8)
e(H(1), . . . ,H(N)) = E

[
‖Xn‖2

]
− 2E

[
tr
(
F

(n)
XRH(n)T

)]
+ E

[
tr
(
H(n)G

(n)
RRH(n)T

)]
.

Assuming that m-mode filters H(m) are fixed for all m �= n, mean squared error
e(H(1), . . . ,H(N)) is minimal when its gradient with respect to nth-mode filter H(n)

is null,

(A.9) grad(e) =

[
∂e

∂H(1)
, . . . ,

∂e

∂H(N)

]T
,

that is, when ∂e
∂H(n) are conjointly null for all n = 1 to N . Let us study ∂e

∂H(n)

for a given nth-mode. The nth-mode filters H(m) are supposed to be fixed for all
m ∈ {1, . . . , N} − {n}. Then ∂e

∂H(n) = 0 implies that

(A.10) E

[
∂

∂H(n)
tr
(
H(n)G

(n)
RRH(n)T

)]
= 2E

[
∂

∂H(n)
tr
(
F

(n)
XRH(n)T

)]
,

We compute then the derivatives on both sides in (A.10), taking into account the fact

that G
(n)
RR and F

(n)
XR are independent from H(n):

(A.11)
∂

∂H(n)
tr
(
F

(n)
XRH(n)T

)
= F

(n)
XR,

(A.12)
∂

∂H(n)
tr
(
H(n)G

(n)
RRH(n)T

)
= 2H(n)G

(n)
RR.

Expression of H(n), nth-mode Wiener filter. Replacing (A.11) and (A.12)
into expression (A.10) leads to the expression of H(n) nth-mode Wiener filter associ-
ated with fixed H(m) m-mode filters, m �= n:

(A.13) H(n) = γ
(n)
XRΓ

(n)−1

RR ,

where

(A.14) γ
(n)
XR = E

[
F

(n)
XR

]
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is the T(n)-weighted covariance matrix between the signal Xn and the data Rn and

(A.15) Γ
(n)
RR = E

[
G

(n)
RR

]
is the Q(n)-weighted correlation matrix of the data.

Appendix B. Assumptions and related expression of the nth-mode
Wiener filter. The following computations are related to section 3.3. Let us con-
sider matrices T(n) and Q(n) defined in (A.3) and (A.6). Their generic (i, j)-terms

are denoted respectively by T
(n)
ij and by Q

(n)
ij .

Weight matrix term independence. The terms of weight matrix O(n) ∈
R

Kn×Mn are supposed mutually independent,

(B.1) E [oklomn] = αklδkmδln,

whatever k and m ∈ {1, . . . ,Kn}, l and n ∈ {1, . . . ,Mn} and where αkl is not null.

White and Gaussian noise condition. White and Gaussian noise condition
applied to the nth-mode flattening Nn can be expressed by

(B.2) E [nklnpq] = σ2
nδkpδlq,

where (k, p) ∈ {1, . . . ,Kn}2, (l, q) ∈ {1, . . . ,Mn}2 and σ2
n is the nth-mode noise power.

Noise and signal independence. The condition on noise and signal indepen-
dence can be expressed by

(B.3) E [xklnpq] = 0

for all (k, p) ∈ {1, . . . ,Kn}2 and (l, q) ∈ {1, . . . ,Mn}2. Hence, T(n) and Q(n)-weighted
(X,N)-covariance matrices are null:

(B.4)
γ

(n)
XN = γ

(n)
NX = 0,

Γ
(n)
XN = Γ

(n)
NX = 0.

Indeed, their (i, j)-term is

(B.5)

(
γ

(n)
XN

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E [xiknjl] ,

(
Γ

(n)
XN

)
ij

=

Mn∑
k=1

Mn∑
l=1

Q
(n)
kl E [xiknjl] .

Expressions of weighted covariance matrices.

Covariance matrix γ
(n)
RR. As Rn = Xn + Nn, the expression of γ

(n)
RR reads

(B.6) γ
(n)
RR = γ

(n)
XX + γ

(n)
XN + γ

(n)
NX + γ

(n)
NN.

So according to (B.4), γ
(n)
RR weighted covariance matrix can be expressed by

(B.7) γ
(n)
RR = γ

(n)
XX + γ

(n)
NN.

Moreover,

(B.8) γ
(n)
XR = γ

(n)
XX + γ

(n)
XN = γ

(n)
XX.
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Covariance matrix Γ
(n)
RR. Relations (B.6), (B.7), and (B.8) hold as well for

Γ
(n)
RR:

Γ
(n)
RR = Γ

(n)
XX + Γ

(n)
XN + Γ

(n)
NX + Γ

(n)
NN

and

(B.9) Γ
(n)
RR = Γ

(n)
XX + Γ

(n)
NN.

Moreover,

(B.10) Γ
(n)
XR = Γ

(n)
XX + Γ

(n)
XN = Γ

(n)
XX.

Expressions of Γ
(n)
NN and γ

(n)
NN. According to (B.2), the (i, j)-term of Γ

(n)
NN is

the following:

(B.11)
(
Γ

(n)
NN

)
ij

=

Mn∑
k=1

Mn∑
l=1

Q
(n)
kl E[niknjl] = σ

(n)2

Γ δij

with

(B.12) σ
(n)2

Γ = tr(Q(n))σ2
n.

Hence

(B.13) Γ
(n)
NN = σ

(n)2

Γ IIn .

The (i, j)-term of γ
(n)
NN can also be expressed by

(
γ

(n)
NN

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E[niknjl] = σ(n)2

γ δij

with

σ(n)2

γ = tr(T(n))σ2
n.

Hence

(B.14) γ
(n)
NN = σ(n)2

γ IIn .

Expressions of Γ
(n)
XX and γ

(n)
XX. Considering the signal model (3.16),

(B.15) γ
(n)
XX = V(n)

s γ
(n)
OOV(n)T

s ,

where

(B.16) γ
(n)
OO = E

[
O(n)T(n)O(n)T

]
.

According to (B.1), the generic term of γ
(n)
OO is

(B.17)
(
γ

(n)
OO

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E [niknjl] = βiδij ,
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where, for all i = 1 to Kn,

(B.18) βi =

Mn∑
k=1

T
(n)
kk αik,

and where αik is defined in (B.1). So, γ
(n)
OO is a diagonal matrix:

(B.19) γ
(n)
OO =

⎡⎢⎣ β1 0
. . .

0 βKn

⎤⎥⎦ .

The matrix Γ
(n)
XX is also expressed as

(B.20) Γ
(n)
XX = V(n)

s Γ
(n)
OOV(n)T

s ,

where Γ
(n)
OO is the diagonal matrix

(B.21) Γ
(n)
OO =

⎡⎢⎣ ε1 0
. . .

0 εKn

⎤⎥⎦ ,

and

(B.22) εi =

Mn∑
k=1

Q
(n)
kk αik,

where αik is defined in (B.1).

Final expression of H(n), nth-mode Wiener filter. According to (B.8) and
(B.15),

(B.23) γ
(n)
XR = V(n)

s γ
(n)
OOV(n)T

s .

According to (B.9), (B.13), and (B.20),

Γ
(n)
RR = V(n)

s Γ
(n)
OOV(n)T

s + σ
(n)2

Γ IIn ,

which can be expressed as

(B.24) Γ
(n)
RR =

[
V(n)

s V
(n)
b

] [ Γ
(n)
OO + σ

(n)2

Γ IKn 0

0 σ
(n)2

Γ IIn−Kn

][
V

(n)T

s

V
(n)T

b

]

with V
(n)
b ∈ St(In, In −Kn) the columnwise orthogonal matrix containing the noise

subspace basis vectors. The assumption of noise and signal independence implies that
the noise and signal subspaces are orthogonal:

(B.25) V(n)T

s V
(n)
b = 0.

Let us call

(B.26) Λ(n)
s = Γ

(n)
OO + σ

(n)2

Γ IKn
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and

(B.27) Λ
(n)
b = σ

(n)2

Γ IIn−Kn
.

Inserting the last expressions of γ
(n)
XR and Γ

(n)
RR (see (B.23) and (B.24)) into Wiener

nth-mode filter expression (A.13) leads to

(B.28) H(n) = V(n)
s γ

(n)
OOV(n)T

s

[
V(n)

s V
(n)
b

] [
Λ

(n)−1

s 0

0 Λ
(n)−1

b

][
V

(n)T

s

V
(n)T

b

]
,

which can be expressed as
(B.29)

H(n) =
[
(V(n)

s γ
(n)
OOV(n)T

s V(n)
s ) (V(n)

s γ
(n)
OOV(n)T

s V
(n)
b )

] [
Λ

(n)−1

s V
(n)T

s 0

0 Λ
(n)−1

b V
(n)T

b

]

Considering noise and signal orthogonality condition (B.25) and the fact that V
(n)
n V

(n)T

n =
IKn , the final Wiener nth-mode filter expression becomes

(B.30) H(n) = V(n)
s γ

(n)
OOΛ

(n)−1

Γs V(n)T

s .
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Marseille, France, 2004.

[35] D. Muti and S. Bourennane, Multidimensional estimation based on a tensor decomposition,
in Proceedings of the IEEE Workshop on Statistical Signal Processing, St. Louis, 2003.

[36] D. Muti and S. Bourennane, Multidimensional signal processing using lower rank tensor ap-
proximation, in Proceedings of the IEEE International Conference on Accoustics, Systems,
and Signal Processing, Hong Kong, China, 2003.

[37] D. Muti and S. Bourennane, Traitement du signal par décomposition tensorielle, in Proceed-
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