NONNEGATIVE MATRIX FACTORIZATION WITH SPATIAL PRIOR AND REFERENCE SPECTRA
APPLICATION TO REMOTE HYPERSPECTRAL IMAGE UNDERSTANDING

Abir Zidi, Josselin Juan, Julien Marot, Salah Bourennane.

GSM Group, Institut Fresnel, Ecole Centrale Marseille D.U. de Saint Jerome Av. Escadrille Normandie, 13397 Marseille, France

ABSTRACT
This paper deals with nonnegative matrix factorization (NMF) dedicated to unmixing of hyperspectral images (HSI). We propose several improvements to better relate the output endmember spectra to the physical properties of the input data: firstly, we introduce a regularization term which enforces the closeness of the output endmembers to automatically selected reference spectra. Secondly, we account for these reference spectra and their locations in the initialization matrices. We exemplify our methods on self-acquired HSIs. The first scene is compound of leaves at the macroscopic level. In a controlled environment, we extract the spectra of three pigments. The second scene is acquired from an airplane: we distinguish between vegetation, water, and soil.

Index Terms— Linear algebra, non-negative matrix factorization, hyperspectral image, remote sensing

1. INTRODUCTION
Spectral unmixing is an essential step in hyperspectral image (HSI) processing. It consists in decomposing a set of spectra contained in a matrix \(Y \) as the following product:

\[
Y = AX + N,
\]

where \(X \) is the endmember matrix containing the 'source' spectra, \(A \) is the mixing matrix containing the mixing coefficients or contribution of each 'source' or endmember, and \(N \) stands for the modeling errors. Finding out an estimate \(A \) of the mixing matrix, with the positivity and possibly sum-to-one contraints, and an estimate \(X \) of the endmember matrix with the positivity constraint is a low-rank approximation problem commonly called Nonnegative Matrix Factorization (NMF) [1, 2, 3, 4, 5].

Relation to prior work in the field
NMF has been applied to HSI data characterization, and exhibited some advantages with respect to existing endmember extraction methods such as vertex component analysis (VCA) [6]. The interest of VCA was illustrated in the frame of plant analysis in [7]. It turned out that, contrary to NMF, VCA does not ensure the positivity of the mixing coefficients. NMF has been extensively improved for the past few years [2, 4, 1].
2. NOTATIONS AND DATA MODEL

In the rest of the paper, x denotes a scalar, x denotes a 1-dimensional vector, X denotes a 2-dimensional matrix, X' denotes a multidimensional array, also called "tensor" [11]. For any vector x, x^T stands for transpose.

To set the link between algebraic methods and HSIs, a HSI is considered from a mathematical point of view as a tensor of order $3 \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, where I_1 is the number of rows, I_2 is the number of columns, and I_3 is the number of channels. In the following, we select a subset of $S \leq I_1 I_2$ spectral pixels of T and set them row-wise in a matrix Y of size $S \times L$.

Let’s consider one row of matrix Y, a spectral pixel denoted by y_i, which is a vector of size $1 \times L$. The model that we adopt for y_i is the linear combination of J endmembers denoted by $x_j (j = 1, \ldots, J)$. Vector y_i, $i = 1, \ldots, S$ is expressed as:

$$y_i = \sum_{j=1}^{J} a_{ij} x_j + n_i$$ \hspace{1cm} (1)

where x_1, x_2, \ldots, x_J are the endmember spectra, and $a_{i1}, a_{i2}, \ldots, a_{iJ}$ stand for the abundances of each endmember in the pixel vector y_i.

The term n_i stands for an additive residual term accounting for the measurement noise and modeling error. The endmember spectra are supposed to be positive-valued. The abundances a_{ij}, $j = 1, \ldots, J$ are such that:

$$0 \leq a_{ij} \leq 1, \forall i = 1, \ldots, S$$ \hspace{1cm} (2)

$$\sum_{j=1}^{J} a_{ij} = 1 \forall i = 1, \ldots, S$$ \hspace{1cm} (3)

Let $a_i = [a_{i1}, a_{i2}, \ldots, a_{iJ}, a_{iJ}]$ be the row vector containing the abundance values associated with y_i. We define the abundance, or mixing matrix as A, whose rows are the abundance vectors a_i, $i = 1, \ldots, S$ associated with the rows of matrix Y. We define the endmember matrix as X, whose rows are the J endmember spectra. With this formalism, and referring to Eq. (1), we retrieve the linear mixing model presented in the introduction. This data model is an agreement with the one in [2].

3. NEW CRITERION AND INITIALIZATION MATRICES FOR NMF

The basic NMF optimized function ensures that the two constraints A and X are both nonnegatives. Since the NMF solution is not unique, some prior knowledge on HSIs can be introduced to solve this problem.

In this section, Accordance with valid knowledge of the data, we add constraints (itemized in Section 4) to improve the result of deconvolution, using the pure spectrum provided by an innovative initialization.

3.1. Minimized criterion

To get an estimate of the endmember matrix and the mixing matrix, we seek to minimize the criterion $D(Y || A, X)$: $A, X = \arg\min_{(A,X)} D(Y || A, X)$. In the simplest versions of the NMF, assuming that the modeling error N is independent identically distributed, the problem of estimating A and X is formulated as the maximization of a likelihood function (see [2], chapter 3), or equivalently, the minimization of the criterion $D_P(Y || A, X) = ||Y - AX||_F^2$, where $\cdot || \cdot ||_F$ denotes Frobenius norm. In real-world data, the actual mixing matrix is rather sparse, owing to the spatial repartition of the materials in the scene: they are often grouped in regions. As advised in [1], to induce sparsity in the mixing matrix, we add an l_1-norm regularization term. In addition to this term which is related to the spatial properties of the data, we also propose a regularization term which is related to the shape of the spectra: it enforces the endmembers to approach a set of so-called ‘pure’ spectra selected from the spectral pixels of the HSI. This selection can be performed by vertex component analysis, pixel purity index, or N-Finder methods [6].

We choose vertex component analysis because of its low complexity [6]. Adding the spatial and the spectral regularization terms yields:

$$D(Y || A, X) = ||Y - AX||_F^2 + \alpha ||A||_1 + \beta ||X - X_{pure}||_F^2$$ \hspace{1cm} (4)

where matrix X_{pure}’s rows are the J pure spectra, and α and β are regularization coefficients.

3.2. Initialization matrices

3.2.1. Endmember matrix

Let $J' \leq J$ be the number of spectra, among the rows of matrix Y, which are assumed to result from a pure material. Typically, one of these spectra can be issued from the light reflected by a pure metal, or by a green section of a leaf supposed to contain only chlorophyll. We choose the first J' pure spectra provided by VCA in subsection 3.1. Let X_{Init} be the matrix whose rows contain these spectra. The initialization endmember matrix is defined as:

$$X_{Init} = \begin{bmatrix} X_{1_{Init}} \newline X_{2_{Init}} \end{bmatrix}$$ \hspace{1cm} (5)

where $X_{2_{Init}}$ is a random matrix compound of $J - J'$ rows and L columns. Then, as explained in Section 4, we scale each row of X_{Init} to unit ℓ_2 norm because we choose a hierarchical alternating least squares (HALS) algorithm.

3.2.2. Abundance matrix

Let $k_1, \ldots, k_{J'}$ be the subset of row indices associated with the initialization pure spectra $\{y_{k_1}, \ldots, y_{k_{J'}}\}$ in Y. The coefficients $\{a_{ij}\}$, for $i = 1, \ldots, S$, are initialized as follows:
for \(j \leq J' \), \(a_{ij} = 1 \) if \(i = k_j \); and \(a_{ij} = 0 \) if \(i \neq k_j \)
for \(j > J' \), \(a_{ij} = 0 \) if \(i = k_j \); and \(a_{ij} = \lambda \) if \(i \neq k_j \);
where, apart from \(\lambda < 1 \), we impose a sparsity constraint: \(\lambda \approx 1 \) for one value of \(i \), and \(\lambda \approx 0 \) for all other values of \(i \).
Then, we scale each row of \(\mathbf{A} \) to unit sum. It is worth noticing that a factor 1 is set for the location of each spectrum of \(\mathbf{X}_{1_{\text{true}}} \). For example, with \(J = 5 \) and \(J' = 3 \):

\[
\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.01 & 0.95 & 0.02 & 0.01 & 0.01 \\
0.03 & 0.93 & 0.01 & 0.02 & 0.01 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\]

(6)

In Eq. (6), we choose solely coefficients which are close to 0 or close to 1, to respect the sparsity constraint.

The criterion presented in this section is minimized starting with the initialization matrices above, with the algorithm whose implementation is detailed in Section 4.

4. SPARSE HALS-NMF IMPLEMENTATION

In this section, we present explanations of the criteria, taking into account the physical realities, proposed in the previous section and the implemented algorithm.

We propose a hierarchical implementation of the combined generalized alternating least squares algorithm proposed in [2] (chapter 4). With a HALS scheme, we encourage the sparsity of the mixing matrix and the smoothness of the endmember spectra [2].

Also, the HALS convergence speed outperforms the one of the projected gradient [3]. However it is sensitive to the scaling of the initial matrices [9]. For example, as explained in [9], if the magnitude of the coefficients in the initial \(\mathbf{A} \) and \(\mathbf{X} \) are not of the same order of magnitude as the values in \(\mathbf{Y} \), this will lead to rank deficient approximations and numerical problems. Hence the scaling of \(\mathbf{X} \), proposed in its initialization (see Section 3).

The update rules derived from Eq. (4) are as follows:

\[
\mathbf{X} \leftarrow \frac{\mathbf{A}^T \mathbf{Y} + \beta \mathbf{X}_{\text{pure}}}{||\mathbf{A}||_F^2 + \beta}
\]

(7)

\[
\mathbf{A} \leftarrow \frac{\mathbf{Y} \mathbf{X}^T - \alpha \mathbf{I}}{||\mathbf{X}||_F^2}
\]

(8)

where \(\mathbf{I} \) denotes a matrix with 1-valued coefficients.

Let \(\xi \) be a scalar whose magnitude is smaller than any other value in the considered problem. We ensure the non-negativity of any data \('d' \) while performing the following operation: \(d \leftarrow \max\{\xi, d', \xi \} \). In the following, we denote this operation as \([d']_+ \). The following algorithm is a hierarchical implementation of the update rules of Eqs. (7) and (8):

Algorithm 1 HALS – NMF

Set convergence parameter tol.

Initialize the criterion \(C \) to a large value.

\(\mathbf{Y} \) is the observation matrix.

Add in \(\mathbf{Y} \) a column of 1’s: \(\mathbf{Y} = [1, \mathbf{Y}] \).

Initialize \(\mathbf{X} \) as in Eq. (5) and insert in \(\mathbf{X} \) a column of 1’s: \(\mathbf{X} = [1, \mathbf{X}] \).

Initialize \(\mathbf{A} \) as in Eq. (6).

Set \(\mathbf{B} = \mathbf{X}^T \) and \(\mathbf{B}_{\text{pure}} = \mathbf{X}_{\text{pure}}^T \);

while \(C > \text{tol} \) do

update \(\mathbf{B} \):

\(\mathbf{W} = \mathbf{Y}^T \mathbf{A} \);

\(\mathbf{V} = \mathbf{A}^T \mathbf{A} \);

for \(j \in [1, J] \) do

Update rule for \(b_j \) (see Eq. (9))

end for

Update the columns of \(\mathbf{B} \) as \(b_1, b_2, \ldots, b_J \).

update \(\mathbf{A} \):

\(\mathbf{P} = \mathbf{Y} \mathbf{B} \)

\(\mathbf{Q} = \mathbf{B}^T \mathbf{B} \)

for \(j \in [1, J] \) do

Update rule for \(a_j \) (see Eqs. (10) and (11))

end for

Update the columns of \(\mathbf{A} \) as \(a_1, a_2, \ldots, a_J \).

Set \(\mathbf{X} = \mathbf{B}^T \);

Compute \(C = ||\mathbf{Y} - \mathbf{A} \mathbf{X}||_F^2 \).

end while

We use the term hierarchical because the columns \(b_j \) of matrix \(\mathbf{B} \) and \(a_j \) of matrix \(\mathbf{A} \) are estimated successively (see the two ‘for’ loops in algorithm 1).

The update rule for \(b_j \) is as follows:

\[
b_j \leftarrow \frac{[b_j + \mathbf{w}_j - \mathbf{Bv}_j + \beta \mathbf{b}_{\text{pure}_j}]/v_{jj} + \beta}{1 + \alpha/2}
\]

(9)

where \(\mathbf{b}_{\text{pure}_j} \) refers to the columns of \(\mathbf{B}_{\text{pure}} \).

The update rule for \(a_j \) is as follows:

\[
a_j \leftarrow \frac{a_j q_{jj} + p_j - \mathbf{Aq}_j - \alpha/2}{q_{jj}}
\]

(10)

\[
a_j \leftarrow a_j/||a_j||_2
\]

(11)

The normalization in Eq. (11) helps mitigating the effects of rotation indeterminacies on matrix \(\mathbf{A} \).

In the next section, we exemplify the proposed method on hyperspectral acquisitions of scenes containing vegetation. We first consider artificial mixtures, and then spectra extracted from an aerial HSI.
5. RESULTS

This section presents some experiments performed on data to illustrate the performance of the proposed nonnegative matrix factorization algorithm.

In the first place, we extract pigment spectra from a leaf reflectance; afterwards, we distinguish between vegetated areas, soil and water in an aerial HSI.

To achieve our acquisitions, we have based up on some facts: In [4], Dobigeon et. al. clearly emphasized the degradation of a mixing model when the wavelengths of interest cover both visible and infra-red (IR) domains: indeed, the pigment concentration rules the vegetation reflectance in the visible domain, whereas the internal structure of the leaf does it in the IR domain. We acquired HSIs with \(L = 500 \) to 830 bands, between 400 and 700 to 900 nm: in the visible and the very near IR domains. Some experiments permitted to rule the regularization parameters to \(\alpha = 0.2 \) and \(\beta = 0.6 \).

5.1. Artificial spectral mixtures

Figure 1a) presents three leaves with homogeneous color containing pure pigments: chlorophyll, carotenoid, anthocyanin; b) spectra extracted from each leaf.

Figure 1a) presents three leaves with homogeneous color. We consider the content of these leaves as being as pure as possible, to get a first set of three reference spectra. These three spectra distinguish clearly from each other: the green spectrum of Fig. 1b) is the one of chlorophyll, also represented in [15], the yellow one is the spectrum of carotenoid, which bears high values in the yellow and orange wavelengths, the red spectrum is the one of the anthocyanin. Indeed the red color of the leaf in Fig. 1a) is characteristic of this phenolic compound, that young leaves produce to protect themselves from UV rays.

Starting from these three spectra, we create artificially mixed spectra. The mixing matrix is chosen as:

\[
A = \begin{pmatrix}
0 & 1.0000 & 0 \\
0 & 0 & 1.0000 \\
1.0000 & 0 & 0 \\
0.7000 & 0.2000 & 0.1000 \\
0.6000 & 0.2500 & 0.2500 \\
0.2200 & 0.7000 & 0.8000 \\
0.1000 & 0.6500 & 0.2500 \\
0.1500 & 0.0100 & 0.8400 \\
0.0300 & 0.0200 & 0.9500 \\
0.9800 & 0.0100 & 0.0100
\end{pmatrix}
\]

The estimated mixing matrix is:

\[
\hat{A} = \begin{pmatrix}
0.0000 & 1.0000 & 0.0000 \\
0.0252 & 0.0000 & 0.9748 \\
0.8143 & 0.0594 & 0.1264 \\
0.5688 & 0.2460 & 0.1843 \\
0.4460 & 0.2633 & 0.2907 \\
0.1755 & 0.7296 & 0.0949 \\
0.0838 & 0.6680 & 0.2483 \\
0.1427 & 0.0046 & 0.8527 \\
0.0485 & 0.0059 & 0.9456 \\
0.7979 & 0.0684 & 0.1336
\end{pmatrix}
\]

One column corresponds to one endmember, and one row to one location in the leaf. Figure 2 shows the mixed and unmixed spectra. The unmixed spectra are almost perfectly superimposed to the chosen source spectra. The relative error between actual and estimated spectra is 3.8%.

5.2. Vegetated area delimitation in aerial HSI

We now process an aerial HSI, that we acquired from an airplane at the height of 500 meters. The spatial resolution is as follows: 1 row accounts for 1 m, and 1 column accounts for 0.25 m. We choose \(S = I_1 I_2 \); we process all spectral pixels. The whole image is provided at [14]. Fig. 3 shows the results obtained on a sub-image with 160 rows and 500 columns and \(L = 830 \) spectral bands. We fixed the number of endmembers to four. The left column in Fig. 3 presents the four esti-
We consider unmixing of hyperspectral pixels by NMF. We introduce spatial and spectral information in the initialization mixing and endmember matrices, and in the criterion which is minimized to perform NMF. For this, we select automatically with vertex component analysis the purest spectra among the spectral pixels. Firstly, these pure spectra are used as a subset of initialization endmembers for NMF. The mixing matrix is initialized as a sparse matrix, and accounts for the location, in the HSI, of the initialization endmembers. Secondly, we use the pure spectra as references in a regularization term of the criterion minimized for NMF. This term introduces some spectral prior: it enforces the endmember spectra estimated by NMF to exhibit some physical significance. Apart from this term, which is the most novel aspect of this work, we use a second regularization term which accounts for a spatial prior knowledge on the processed HSI: the materials in the scene are often grouped in regions and consequently the mixing matrix should be sparse, which is encouraged through its l_1-norm. We first imaged leaves, and then an aerial partly vegetated scene. Considering their shape, the proposed method permits to better interpret the endmember spectra as a comparative implementation of NMF. We could reliably delimitate the vegetated areas in remote sensing context. **Acknowledgements:** We thank the firm "Action Air Environnement" for providing us with airplanes.

7. REFERENCES

[17] http://www.fresnel.fr/perso/marot/Documents/Euvip_Results.html