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Abstract — The purpose of this work is to perform
co-engineering of an object classification system including both a
radar sensor and a software of image processing. We aim at the
smallest possible false recognition rate, considering three classes
of imaged objects. For this we retain five relevant parameters
which impact the recognition performances. We adopt the mixed
grey wolf optimizer to provide the best set of parameters.
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I. INTRODUCTION

Security check in airports is performed with magnetic
gates. Their flow rate remains too small for other
infrastructures [1]. Hence, a radar approach is considered here.
Relation to prior work in the field:
The Mixed Grey Wolf Optimizer (MixedGWO [2]) is a
bio-inspired algorithm which has already been applied to
image processing, but not to the co-engineering of a whole
process including acquisition and processing. This paper deals
with radar image exploitation: it has been shown in [3] that
combining two polarizations instead of using just one yields
an image where the shape of the imaged object is closer to
the expected one. For the first time in [3], this polarization
issue was highlighted. However, the objective to help radar
designers to set their system specifications jointly with image
processing parameters is pending.
Main contributions:
Our purpose is to adapt the MixedGWO for radar
image classification. We aim at selecting the best possible
parameters for both image acquisition and processing, yielding
the smallest possible false recognition rate (FRR). After
binarization by the Otsu method, features are computed out
of the radar images. Support vector machine (SVM) is used to
classify the data. The MixedGWO tunes all the parameters.
Outline:
In section II, we start by describing the acquisition system of
radar images, and display some examples of acquired images.
We summarize a traditional image processing chain consisting
of feature extraction, and image classification; we remind
the principles of the MixedGWO for multiple parameter
estimation. In section III, we present numerical simulations on
synthetic test functions, and experiments on radar data. Section
IV summarizes our work.

II. MATERIALS AND METHODS

With a radar acquisition system, we aim at imaging knives,
objects which are similar to guns, and non lethal objets, for
purpose of classification.

A. Radar data acquisition

Our acquisition system is a radar which may be used at
various frequencies, and polarization properties. The image
reconstruction method is ’back-propagation’. We display the
scene and the acquired radar image, obtained with frequency
94 GHz, and H polarization: Figs. 1 and 2 show the scene with
lethal objects (gun and knives). Figs. 3 and 4 show the scene
with non lethal objects (keys and billfold). Other examples
of acquisitions, with various polarization properties such as a
fake gun concealed under a jacket are available in [3]. As we
had emphasized the interest of the combination of H and V
polarization [3], a set of three possibilities will be included:
H, V, and ’H+V’.

(a) (b)
Fig. 1. Objects acquired: (a) Fake gun; (b) Knives.

(a) (b)
Fig. 2. Scan amplitudes: (a) Fake gun; (b) Knife.

B. Feature extraction and object classification

Firstly, starting with the radar images, an Otsu threshold
is computed. It is multiplied by a factor between 0 and 1,



(a) (b)
Fig. 3. Objects acquired: (a) Set of keys; (b) billfold.

(a) (b)
Fig. 4. Scan amplitudes: (a) Set of keys; (b) billfold.

and the image is binarized. Secondly, we include three types
of features which can be computed out of the segmented
images: Histograms of Oriented Gradients [4], [5] (HOG),
shape descriptors (SD) based on Fourier transform [6], and
a matrix signature dedicated to non star-shaped contours [7]
(denoted by Z in the following). We also included as a
possibility the combination of HOG, SD, and Z (denoted by
’Comb’ in the following). In summary, the feature extraction
methods are HOG, SD, Z, and ’Comb’. To classify test images,
we use SVM with k-fold cross validation, with k=10. Details
about SVM and k-fold can be found in [8]. An SVM involves a
kernel function. Because the training datasets are suppossedly
non-linearly separable, we include the possibility to work with
two possible kernels: polynomial, and radial basis function
(rbf). A kernel always depends on a ’scale’ parameter, and
a basic parameter for any SVM is the ’cost’ which yields a
tradeoff between margin and misclassification of samples. An
automatic process already implemented in Matlab c© permits to
select automatically the ’cost’ and ’scale’ hyperparameters of
the SVM.

C. Mixed grey wolf optimizer for parameter selection

The grey wolf optimizer [9] is an iterative meta-heuristic
inspired by the behaviour of grey wolves based on three
leaders α, β, δ. Its implementation is based on a parameter
denoted by a which varies from 2 to 0 across iterations
iter = 1, . . . , Tmax. Exploration holds when a > 1 and
exploitation holds when a ≤ 1. In [9], a decreases linearly.
In a first version of the mixed grey wolf optimizer [2]:

a = 2(1− iterη

Tmax
η ) (1)

The probability of choosing any leader but α decreases
proportionnally to a.

In the ’adaptive’ mixed GWO (amixedGWO):

a =


2(1− iterη

(Tmax/2)
η ) if iter ≤ Tmax/2

2(1− (iter−Tmax/2)
1
η

(Tmax/2)
1
η

) if iter > Tmax/2
(2)

In Eqs. (1) and (2), η is set by the user. In Eq. (2) the expression
of a depends on iter, and is then adaptive, depending on
whether the last iteration is far or close. If η > 1, exploration
is priviliged from iter = 1 to iter = Tmax/2; in a second
phase, from iter = Tmax/2 + 1 to iter = Tmax, exploitation
is priviliged; but over all iterations, the same number of
iterations is dedicated to exploration and to exploitation. The
MixedGWO and the variant amixedGWO can handle discrete
and continous search spaces. In this work, we search 4
parameters in discrete search spaces and 1 parameter in a
continuous search space. Hence, they are particularly adequate
to solve such a problem.

III. EXPERIMENTAL RESULTS

In this section, we show how the amixedGWO is adapted to
perform co-engineering of a radar system which includes both
acquisition and processing of the images. The final purpose of
this system is to classify objects, with the smallest possible
FRR, defined as:

FRR = 100 ∗ M1 +M2 +M3

N1 +N2 +N3
(3)

where, for class c = 1, 2, 3, Mc is the number of misclassified
images, and Nc is the total number of images considered for
test.
There exists two parameters for the radar image acquisition
system, and three parameters for the image processing
algorithms. All these parameters take their values in discrete
search spaces, exept one:

1) radar wave polarization (discrete);
2) radar wave frequency (discrete);
3) factor multiplying an Otsu threshold for adaptive

binarization (continuous);
4) type of feature extracted from the segmented object

(discrete);
5) type of kernel used in SVM for classification (discrete).
All the radar acquisitions are performed in advance, with

all the candidate values of frequency and polarization that we
have chosen. To create the ’H+V’ configuration considered in
[3], the ’H’ and ’V’ acquisitions are combined ’online’, that is,
during one test in the optimization process. The polarization
and frequency values are naturally ’discrete’ parameters. The
third parameter is a real value, larger than or equal to 0 and
less than or equal to 1. Moreover, we afford a naturally finite
number of candidate features, composing a discrete set of
values. We afford two possible kernels for SVM.
The MixedGWO seeks the best solution in terms of FRR. Table
1 describes the search spaces for the five parameters presented
above. We use the same notations as in [2]. For each parameter
index i ∈ [1, . . . , 5]

T , Hi is the number of possible values,
and dvali a vector containing their values. The value Hi is not



relevant for the third parameter, as it belongs to a continuous
search space.

H
HHHi

Hi dval
i

1 3 [H,V,H + V ]T

2 2 [94, 96]T

3 [0...1]T

4 4 [HOG,SD,Z,Comb]T

5 2 [linear, rbf]T

Table 1. Search spaces for adaptive mixed GWO optimizer: parameter index
vs. search space properties

Subsection III-A aims at validating the proposed approach
on a synthetic test function, with search spaces which are
equivalent to our real-world application. Subsection III-B
applies the proposed approach on real-world radar data. We
imaged objects belonging to three classes: fake guns, knives,
and common ’non lethal’ objects, namely keys and billfolds.

A. Numerical simulations

To ensure the adequacy of the MixedGWO for
the considered co-engineering issue, we have tested the
amixedGWO on a simplified function which models our
problem, a function of 5 variables whose minimum value
is 0. A Matlab c© implementation of the amixedGWO and
comparative methods such as GWO (grey wolf optimizer)
[9], PSO (particle swarm optimization) [10], TSA (tree
seed algorithm) [11] and CGSA (chaotic gravitational search
algorithm) [12] is available as a toolbox, at the following link:
http://www.fresnel.fr/perso/marot...
/#Softwares [13].
The reader can therefore easily replicate this work. The
objective function used as surrogate for this problem is a
combination of hyperbolic tangent functions, with a global
minimum at the location [2, 2, 0.88, 2, 3]

T . In Fig. 5(a), we
display its variations as a function of the two first variables
only, the three last values being set to the expected values
(0.88,2, and 3).

The amixedGWO and comparative algorithms are applied
to minimize the objective function with 6 search agents, and
20 iterations. When the adaptive mixed GWO is run, we set
the values of Hi as in Table 1 for all i. In Fig. 5(b) we display
the convergence curves obtained by amixedGWO, PSO, GWO,
TSA, and CGSA. Our amixedGWO, in this case, performs
better. We infer from the convergence curve that the optimal
values of the discrete parameters are found quickly, and that the
amixedGWO has time to refine the estimate of the continuous
parameter.

To assess the statistical performances (over 30
experiments) of these five optimization methods, we display
in Fig. 6 a box plot for the final score of all optimization
methods. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The whiskers extend to
the most extreme data points not considered outliers, and the
outliers are plotted individually using the ’+’ symbol.
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Fig. 5. (a) objective function, (b) convergence curves for amixedGWO, PSO,
GWO, TSA, CGSA
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Fig. 6. Box plot: score vs optimization method

We notice that the amixedGWO outperforms the comparative
methods, as we expect these methods to provide the least
possible value.
As the values of Hi are the same in the real-world application,
we expect the amixedGWO to find reliably the expected
parameter values in our radar co-engineering process.

B. Real-world radar acquisitions

The purposes of the amixedGWO in this case are to
reach jointly the following goals: select the best combination
of acquisition parameters; and the best parameters for
the processing of the radar images, to perform an object
recognition process.
From the results presented in subsection III-A, we are
confident that the amixedGWO will find out the best set of
parameters. We afford three classes: fake guns (class ’1’),
knives (class ’2’), non lethal including key sets and billfolds
(class ’3’). We include in the image sets, for each class, 12
scans of best quality, i.e. those obtained almost vertically
with respect to the scene. This number is low because of
two reasons: image generation is time-consuming; and the



resolution in terms of sensor orientation with respect to
the vertical axis is limited. Due to this low number, we
perform bootstrap [14]: we generate additional images through
subsampling, rotating, and translating. Eventually, the training
database is composed of 108 images, for each class. The same
number holds for the testing database. Some of the objects in
the database were obtained from concealed objects (see [3]
for illustrations). As an example, for one image of each object
category, a segmentation result is illustrated in Fig. 7.

(a) (b)

(c) (d)
Fig. 7. Segmentation of H+V images: (a) gun, (b) knife, (c) keys, (d) billfold

The best combination of parameters, provided as a solution
by the adaptive mixed GWO algorithm, is
[H + V, 94, 0.95,Z, rbf ]T . In these conditions, we reach
FRR = 11.7%.

The confusion matrix obtained through the classification
process with SVM, and with these optimal parameter values,
is displayed in Table 2.

Objects Guns Knives Licit
Guns 108 0 0

Knives 0 93 15
Licit 12 11 85

Table 2. Confusion matrix of licit/non licit object classification

.

From Table 2 we notice that, most often, when confusion
occurs, a licit object is classified as a lethal object. Therefore,
this is the less dangerous case: in this situation, a person
in charge checks the possibly dangerous individual, and lets
him go. A gun is never considered as lethal, and a knife is
sometimes (here for 15 images out of 108) considered as non
lethal. This may be understood while checking some examples
of segmented images in Fig. 7.
What we notice is that the image of the knife does not really
look as an actual knife. Indeed the threshold value is such that
pixels belonging to the rohacell support below remain in the
segmented image. This means that the contrast between the
knife and the support is lower than in the case of the gun
for instance. It is interesting to see that this property of the
knife helps in classifying correctly the tested objects with the
proposed method.

IV. SUMMARY AND FUTURE WORK

In this paper, in the overall context of security check
in public infrastructures, we dealt with the task of jointly
tuning the parameters of a radar acquisition system, and
the parameters which are involved in segmentation and
classification algorithms. As a result of our investigation, we
were able to apply the adaptive mixed GWO optimization
method to select the best set of parameters in terms of false
recognition rate. However, there are still issues which remain
unsolved: the measurement time required by the acquisition
system is elevated. We should find a way to optimize this
time while estimating the best value of a relevant parameter.
Also, in addition to a frequency value, we could also optimize
a bandwidth around the central frequency values which are
considered.
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