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Abstract— We propose a semi-blind channel estimator based
on superimposed pilots for the case of single-carrier single-user
MIMO systems. The proposed estimator is based on the ex-
pectation maximization (EM) algorithm. Numerical results show
that even with this semi-blind estimator, the classical approach
of time-multiplexed pilots still outperforms the superimposed
approach, except for a large number of receive antennas and
not too short frames.

I. INTRODUCTION

Superimposed or overlaid pilots are of special interest as
they cause no loss in the data transmission rate [1], [2].
However, only under particular conditions the superimposed
pilots (SP) technique could be preferred to the classical time-
multiplexed pilots technique. The classical pilot insertion
is usually referred to as pilot symbol assisted modulation
(PSAM) in single-carrier systems and to pilot tone assisted
modulation (PTAM) in multi-carrier systems. Although several
works have recently shown the preference of the SP technique
to PTAM in multi-carrier systems like orthogonal frequency
division multiplexing (OFDM), in terms of channel capacity
and performance [3], [4], [5], we can evoke a real hesitation
for the case of single-carrier systems that we consider in
this work. The main problem in this latter case is the non-
zero cross-correlation of training and data symbols that results
in an error floor at high signal-to-noise ratios (SNR) [6].
To reduce this problem, it is proposed in [7] to modify the
pilot sequences according to the actual data sequences to be
transmitted, so as to result in a low data-pilot cross-correlation.
Such a solution may not be interesting in practice as the
receiver has to estimate the unknown pilot sequence prior to
channel estimation.
Here we consider the channel estimation in multiple-input
multiple-output (MIMO) systems. It is shown in [8], [9] that
the SP scheme can be preferred to PSAM for a larger number
of receive than transmit antennas, and for relatively short chan-
nel coherence times. In [9], a simple iterative decision-directed
estimator-detector is proposed, and it is shown that, when
the power allocated to pilots is large enough, a considerable
improvement in the performance can be obtained after few
iterations. Yet, the resulting performance is not systematically
better than that with PSAM. Notice that, although being a
decision-directed approach, the channel estimation in [9] is

based only on pilots. It is recently proposed to use a semi-
blind (also called data-aided) channel estimation and it is
shown that the capacity of the optimized semi-blind SP scheme
is larger than that of pilot-only-based or semi-blind PSAM
[10]. Our aim in this work is to implement a semi-blind
channel estimator, based on the expectation maximization
(EM) algorithm, and to see whether or not by this semi-
blind estimation the SP scheme can practically be preferable
to PSAM.
The paper is organized as follows. Section II presents our
system model. In Section III we consider the channel estima-
tion problem and present briefly the decision-directed solution
proposed in [9]. Next, we present our semi-blind estimator
based on EM. Numerical results are presented in Section IV
to compare the performance of different schemes.

II. SYSTEM MODEL

We consider single-carrier modulation in a single-user con-
text. Rayleigh uncorrelated flat fading is considered for MIMO
sub-channels. Also, the quasi-static model is considered for
channel time variations. The presented results can easily be
applied to the block-fading model as well. Gray-mapped QAM
modulation is used and channel coding is performed using
a non-recursive non-systematic convolutional (NRNSC) code.
We denote by MT and MR the number of antennas at trans-
mitter and at receiver, respectively. The block diagram of the
transmitter is shown in Fig.1, where random interleaving and
the simple spatial multiplexing (known also as V-BLAST [11])
scheme are used. Pilot symbols are added to data symbols prior
to transmission. Pilot sequences for MT antennas are QPSK
modulated and are chosen according to the Walsh-Hadamard
series that ensures their orthogonality.

A. Signal detection at receiver

At the receiver, iterative soft MIMO detection and soft
channel decoding are performed together with channel esti-
mation, as shown in Fig.2. MIMO soft detection is based
either on the maximum a posteriori (MAP) criterion or on
parallel interference cancellation (PIC). For the latter case, we
use a simplified version of PIC, described in [12]. Soft-PIC
detector general block diagram is shown in Fig.3. Soft-input
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Fig. 1. Block diagram of the transmitter

Fig. 2. Block diagram of the receiver

soft-output (SISO) channel decoding is based on the Max-
Log-MAP algorithm. Details on the detectors can be found in
[12], [13].

III. ITERATIVE CHANNEL ESTIMATION

Let us denote by s the vector of transmitted symbols (of size
MT ) at a given time sample, and by H the MIMO channel
matrix of dimension (MR × MT ). The vector of received
symbols on the receiver array, y, is given by:

y = Hs + n, (1)

where n is the vector of AWGN of zero mean and variance
σ2

n, assumed to be known at receiver. For the SP scheme,
s = sd + sp, where sd and sp denote respectively data and
pilot symbols with the average power of σ2

d and σ2
p.

To estimate the channel coefficient Hij , we calculate the cross-
correlation between the sequences yi and sp,j whose lengths
equal the frame length Ns in our quasi-static channel model:

Γ
(
sp,j ,yi

)
=

1
Ns

Ns∑
n=1

s∗p,j [n] · yi[n]. (2)

Fig. 3. Soft-PIC detector

Here n is the time reference in the frame and .∗ denotes
complex conjugate. We have:

yi[n] =
MT∑
t=1

(
sp,t[n] + sd,t[n]

)
Hit + ni[n]. (3)

Assuming mutually orthogonal pilot sequences, we obtain:

Γ(sp,j ,yi) = σ2
pHij +

1
Ns

Ns∑
n=1

MT∑
t=1

sd,t[n] s∗p,j [n] Hit

+
1

Ns

Ns∑
n=1

ni[n] s∗p,j [n]. (4)

At the first iteration, we use Γ(sp,j ,yi)/σ2
p as the estimate

of Hij . Notice that there are two interference terms on this
estimate Ĥ

(1)
ij : one term from the non-zero cross-correlation

of data and pilot sequences, and the other from the cross-
correlation of noise samples with pilots. The more important
one is obviously the former. Specially, at high SNR, this inter-
ference term becomes important and results in an error floor
in the detector performance. To reduce this interference and
to improve the estimation quality, we consider two solutions.
The first one is the simple decision-directed (DD) scheme,
already proposed in [9], and the second one is a semi-blind
(SB) approach that we study in this work.

A. Decision-Directed approach

From the second iteration, we calculate soft-estimates of the
transmitted data symbols s̃d by using a posteriori LLRs at the
SISO decoder output and cancel their effect in Γ(sp,j ,yi). At
iteration m > 1, we first calculate the data-removed vectors
ỹ
(m)
i , and then the new estimate of Hij , as shown below.

ỹ
(m)
i [n] = yi[n] −

MT∑
t=1

s̃d,t[n] Ĥ
(m−1)
it (5)

Ĥ
(m)
ij =

1
σ2

p

Γ
(
sp,j , ỹ

(m)
i

)
=

1
Nsσ2

p

Ns∑
n=1

s∗p,j [n] · ỹ
(m)
i [n] (6)

B. Semi-blind approach

The semi-blind estimator that we propose is based on the
EM algorithm. Let Θ be the vector of the parameters to
be estimated (containing the entries of H , stacked). For a
given frame of symbols, let us stack the entries of y[n],
n = 1, · · · , Ns in a vector Y . We constitute the vector Sd in
the same way. The maximum likelihood estimate of Θ, given
the vector of observations Y , is:

Θ̂ = arg max
Θ

log p(Y |Θ) (7)

Here p(·|·) denotes the conditional pdf. The EM algorithm
consists of two update steps; the expectation (E) and the
maximization (M) step. These are described below for the mth

update.

Q
(
Θ, Θ̂(m−1)

)
= E

{
log p(Y ,Sd|Θ)

∣∣Y , Θ̂(m−1)
}

(8)
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Θ̂(m) = arg max
Θ

Q
(
Θ, Θ̂(m−1)

)
(9)

Here E{.} denotes expectation and is calculated on data
symbols. We define S as the set of constellation points
corresponding to data symbol sequences with the cardinality
|S| = 2BMT Ns , B being the number of bits per symbol. The
auxiliary function Q can be described as follows:

Q
(
Θ|Θ̂(m−1)

)
=∑

Sdu∈S
log p(Y |Sd = Sdu , Θ) p

(
Sdu |Y , Θ̂(m−1)

)
(10)

where Sdu
corresponds to a possibly-transmitted data se-

quence. Based on the assumptions of flat channel and inde-
pendent noise samples, conditioned to channel state, y[n] and
y[n + 1] are independent. We can hence write:

Q
(
Θ|Θ̂)

=
Ns∑

n=1

2BMT∑
u=1

(
cte −

∥∥y[n] − H(sdu + sp[n])
∥∥2

σ2
n

)
APPn

(
sdu , Θ̂

)
(11)

where cte is a constant term and sdu
is a possibly-transmitted

data symbol vector. To simplify our notations, we did not
specify the iteration number. Also, APPn

(
sdu

, Θ̂
)

is the
probability of the transmission of sdu

, i.e., the probability of
sdu

= sd[n], and is calculated using the a posteriori proba-
bilities (APP) on its constituting bits at the channel decoder
output. For the sake of simplicity we denote it hereafter by
APPn,u. Also, we denote the summations in (11) simply
by their indices, i.e., n and u. Differentiating Q

(
Θ|Θ̂)

with
respect to H and setting it to zero to find its local maximum,
we obtain:∑

n

∑
u

(sdu
+ sp[n])

[
y†[n] − (s†du

+ s†p[n])H†]APPn,u = 0

(12)
where .† stands for complex conjugate transpose. After some
simple manipulations, we obtain:

Ĥ = RY S R−1
SS (13)

where,

RY S =
∑

n

∑
u

y[n]
(
s†

du
+ s†

p[n]
)
APPn,u (14)

RSS =
∑

n

∑
u

(
sdu

+ sp[n]
)(

s†
du

+ s†
p[n]

)
APPn,u (15)

The evaluation of RY S and RSS as presented above is compu-
tationally complex. We propose to reformulate these matrices
by considering soft-estimates of the data transmitted symbols
which can be calculated using the APPs at the channel decoder
output. Actually, these soft-estimates, that we denote by s̃d,
are already available when Soft-PIC detection is performed.
For a vector of MT data symbols, we have:

s̃d[n] =
∑

u

sdu
APPn,u. (16)

Now, using these soft-estimates, it can be shown that:

RY S =
∑

n

y[n]
(
s̃†

d[n] + s†
p[n]

)
(17)

RSS = RS+
∑

n

[
s̃d[n]s†

p[n]+sp[n]s̃†
d[n]

]
+Nsσ

2
pIMT

(18)

where IMT
is the Identity matrix of dimension (MT × MT )

and

RS =
∑

n

∑
u

sdu
s†

du
APPn,u. (19)

The (i, j)th entry of RS can be calculated as follows.

RS,ij =




Nsσ
2
d ; i = j

∑
n

s̃di
[n] s̃∗dj

[n] ; i �= j
(20)

1) Initializing EM: To permit the EM algorithm to boot-
strap, we should provide it with a primary estimate, i.e., we
have to initialize it. This primary estimate can be obtained
via ML or least-squares (LS) estimation. For the former, we

obtain the following expression for Ĥ
(1)

, the estimate at the
first iteration.

Ĥ
(1)

ML =
1

Ns(σ2
d + σ2

p)

∑
n

y[n] s†
p[n] (21)

We do not provide here the details on the ML estimator
expression because of lack of space; it may otherwise be
obtained via the expressions provided for EM estimation by
setting s̃d = 0. The LS estimate, on the other hand, comes
back to the expression (2) at the beginning of this section:

Ĥ
(1)

LS =
1

Nsσ2
p

∑
n

y[n] s†
p[n]. (22)

We verified that the LS estimate provides a better convergence
of the EM algorithm than the ML estimate. A similar statement
is reported in [14]. Therefore, in what follows, we use the LS
estimate for initializing EM.

IV. SIMULATION RESULTS

Unless otherwise mentioned, two transmit and two receive
antenna MIMO system is considered; performance curves
correspond to the fifth iteration of the receiver where almost
full convergence is attained, and to a frame of Ns = 100
channel-uses. Rayleigh flat fading is considered and channel
coefficients are assumed to be uncorrelated and normalized.
QPSK modulation is used, the channel code is the NRNSC
code (133, 171)8, and the interleaver is random. As in the SP
scheme a part of the transmit power is dedicated to pilots,
we prefer to present the performance curves in terms of the
actual average SNR, i.e., MR(σ2

d +σ2
p)/σ2

n, instead of Eb/N0

as done in [9]. In the results to be presented, SNR stands
for this actual value and includes the antenna array gain at
receiver, i.e., MR. We denote by α the percentage of the power
dedicated to pilots, i.e., α = σ2

p/(σ2
p+σ2

d). In this way, we can
directly see the compromise between the channel estimation
quality and the data detection performance, e.g. by increasing
α.
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Fig. 4. PIC detection, SB versus perfect estimation, MT = MR = 2,
Ns = 100.

A. Performance with semi-blind estimation

Fig.4 compares bit-error-rate (BER) curves versus SNR
for the cases of perfect channel knowledge and semi-blind
estimation based on EM. PIC detection is performed and
several α values are considered. It is seen that the problem
of error floor is still present for α = 5% and 10%. In fact, by
increasing SNR, the interference terms in channel estimation
become more important and result in an error floor. This is
especially the case for small values of α for which the channel
estimate is not good enough to permit good soft-estimates of
data symbols. Results are much better for increased frame
length (not presented here). Also, notice that by increasing
α, better channel estimates are obtained, but at the same time,
less power is dedicated to data symbols, and hence, increasing
α too high will result in an overall performance degradation.

B. Decision-directed versus semi-blind estimation

BER curves versus SNR are shown in Fig.5 for DD and
SB estimation methods and PIC detection. The performance
improvement by SB estimation is considerable for small α
values but, it is less significant for α as large as 20%. We
conclude that the already-presented DD estimation approach
makes a good trade-off between complexity and performance.

C. MAP versus PIC detection

It is interesting to compare the performance of the receiver
for two cases of MAP and PIC detection. The corresponding
BER curves are contrasted in Fig.6 for several values of α.
We see that for relatively small (and reasonable) values of α,
the PIC detector (with much less computational complexity)
outperforms MAP. Only for α = 30% the MAP detector
shows a better performance. As a matter of fact, for small
α, the channel estimates are not precise enough and result
in a degradation of the detector performance, as compared to
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Fig. 5. PIC detection, SB estimation versus DD, MT = MR = 2, Ns =
100.
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Fig. 6. MAP versus PIC detection, SB estimation, MT = MR = 2, Ns =
100.

the perfect channel knowledge case. This degradation is more
considerable for the MAP detector than PIC. In other words,
the MAP detector is more sensitive to channel estimation er-
rors. Similar results are obtained for the case of DD estimation
(results are not presented).

D. Comparison with PSAM

Here we consider the crucial question: which scheme should
be preferred, SP or PSAM? For this purpose, we contrast
BER curves for the two methods for the case of iterative
PIC detection. For the PSAM method, we perform the simple
pilot-only-based estimation that is done once at the first
iteration. For the SP method, the receiver corresponds to what
considered previously, i.e., to Fig.2. For PSAM, we use Np
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channel-uses for the transmission of mutually orthogonal pilot
sequences, to which we attribute the same power as that to
data symbols. For a nominal SNR of 15 dB we obtained the
BER for several values of α that are shown in Fig.7. In order
that the comparison be fair, we modify the noise power in
the PSAM case to take into account the loss in the spectral
efficiency. The actual Eb/N0 is adjusted for both cases to
result in the same received SNR. The third iteration of the
detector is considered; for the SP case with SB estimation
the small performance gain may not justify more iterations.
Results show that for Ns = 100, the PSAM scheme is highly
preferable for small α. For large α, the loss in the spectral
efficiency may reduce the interest of PSAM. We have also
shown the corresponding curves for Ns = 1000 and MR = 4
and SNR=10 dB. For this case, the SP scheme seems to be
more interesting, taking into account the loss in the spectral
efficiency for the PSAM scheme.

V. CONCLUSIONS

We considered MIMO channel estimation using super-
imposed pilots in a single-carrier single-user context. We
proposed a semi-blind estimation method based on the EM
algorithm. We showed that a considerable gain can be obtained
when low power is allocated to pilots, i.e., for small α values,
as compared to an already-proposed decision-directed (DD)
method. For relatively large α, however, the DD method
seems to be an appropriate solution considering complexity
and performance. Comparing to PSAM scheme, however, we
showed that except for not too short frames and for more
receive than transmit antennas, the PSAM scheme may be
preferable to SP even with the proposed SB estimation.
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