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Semi-blind Channel Estimation Using EM
Algorithm in Iterative MIMO APP Detectors

Mohammad-Ali Khalighi and Joseph Jean Boutros

Abstract— We consider channel estimation in multiple-input
multiple-output (MIMO) systems using iterative detection at the
receiver. Space-time bit-interleaved coded modulation (BICM)
and soft-input soft-output maximum a posteriori (MAP) symbol
detection and decoding are considered. Channel coefficients are
updated at each iteration of the detector using a semi-blind
estimation approach based on the expectation maximization (EM)
algorithm. We first show that a “classical” and non-optimized EM
implementation, as already proposed in some previous works,
gives a biased estimate of the channel coefficients. We then try
to optimize the EM implementation and propose a modification
to it that provides an unbiased channel estimate and leads to
a better convergence of the iterative detector. We show that
considerable improvement in the receiver performance can be
obtained by using our proposed modified unbiased (MU) EM
algorithm, especially for large number of transmit antennas and
short training sequences. We also show that when MIMO signal
detection is strongly asymmetric in the sense of too few receive
antennas, the EM-based channel estimation may be of little
interest. Moreover, we consider a simple semi-blind estimation
scheme, based on hard decisions on reliable decoded data bits,
and compare its performance with the EM based estimation
methods.

Index Terms— MIMO systems, channel estimation, semi-blind
estimation, training sequences, expectation maximization, bit-
interleaved coded modulation, iterative detection

I. INTRODUCTION

THE potential of multiple-input multiple-output (MIMO)
systems in providing huge spectral efficiencies has been

revealed recently [2], [3], [4]. In a rich scattering propaga-
tion medium, by using multiple antennas at both sides of
the communication link, very high data transmission rates
can be achieved, provided that appropriate transmit/receive
schemes are employed. Hence, MIMO systems are among
the most promising solutions to the ever-growing need for
very high data rates. When coherent signal detection is to be
performed at the receiver, channel state information (CSI) is
required, for which a channel estimation step is necessary.
Channel estimation plays a critical role in the performance
of the receiver. Most current systems use a training-based
channel estimation scheme in the form of time-multiplexed
pilot symbols. This scheme is usually referred to as pilot
symbol assisted modulation (PSAM) [5].
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For finite length blocks, if channel estimation is to be done
on each block of symbols, the insertion of pilot symbols can
result in a considerable reduction of the achievable data rate.
This loss in data rate becomes important specially at low
signal-to-noise ratios (SNR) and when the channel undergoes
rapid variations [6].1 Thus, we are interested in minimizing the
number of pilot symbols in a frame. However, by reducing the
number of pilot symbols, the channel may be learned improp-
erly and channel estimation errors may become important. This
can result in a considerable performance degradation and the
need to retransmit data. The performance degradation can be
compensated by smart signal processing at the receiver. In fact,
instead of traditional channel estimation methods based on
pilot symbols only, we can use semi-blind channel estimation
approaches that, in addition to pilot symbols, make use of data
symbols in channel estimation. In this way, a considerable
performance improvement can be achieved at the price of
increased receiver complexity [7], [8].

In this paper, we consider a semi-blind channel estimation
scheme based on the expectation maximization (EM) algo-
rithm [9], [10]. The MIMO system we consider uses iterative
detection at the receiver and the channel estimation part is
inserted in the turbo-detector, a scheme already considered
in [11], [12]. We use the bit-interleaved coded modulation
(BICM) scheme for space-time coding [13], [14]. The advan-
tage of the BICM is its flexibility regarding the choice of the
code and the bit-symbol mapping, as well as its conformity
to iterative detection [15]. The EM algorithm based on the
maximum-likelihood (ML) criterion is used to update the
channel coefficients at each iteration of the turbo-detector. At
the first iteration, a primary channel estimate is obtained based
on the pilot sequences only, that allows the EM algorithm, used
in the succeeding iterations, to bootstrap.

First, we consider the “classical” EM implementation, as
considered in [11], [12], that will be called mixing EM (Mix-
EM). Next, we show that Mix-EM provides a biased estimate
of channel coefficients. We show that the origin of this bias
is the residual co-antenna interference (CAI) after MIMO
detection. Inspired by the idea of [16] for the case of code-
division multiple-access (CDMA) multi-user detection, we
then propose a modification to Mix-EM that allows to obtain
an unbiased estimate while minimizing the estimation errors’
variance. We call this approach modified-unbiased EM (MU-
EM). We show that the improvement achieved by MU-EM,
as compared to Mix-EM, depends on the channel diversity

1Notice that, given the finite number of unknown channel parameters, the
channel capacity is the same for known and unknown CSI at reception since
capacity is defined for asymptotically large frame lengths.
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Fig. 1. Block diagram of the BICM transmission scheme.

order and the number of pilot symbols in a frame. The
interesting result is that when we have a small amount of
receive diversity available in the underlying MIMO channel,
i.e., when signal detection is strongly asymmetric, EM-based
channel estimation becomes practically of no interest, even
with the proposed modification of MU-EM.

For the sake of comparison, we will also consider a simple
semi-blind estimation scheme for which, at each iteration, only
the hard decisions of those symbols detected with high enough
reliability are taken into account in channel estimation. We
call this approach, already proposed in some works such as
[17], thresholded hard-decision (Th-HD). We show that the
performance of the Th-HD method depends highly on the
choice of the threshold PTH that determines whether or not
the decoder soft-outputs are reliable enough. The practical
limitation is that the optimum threshold value depends on the
MIMO configuration, i.e., the number of transmit and receive
antennas, as well as on the actual SNR.

The paper is organized as follows. System model and as-
sumptions are presented in Section II. Iterative signal detection
is described in Section III. Next, we consider the channel
estimation problem in Section IV. We first present Mix-
EM and show that it provides a biased estimate, and then
present our modification of MU-EM. We also present and
describe the Th-HD approach. Simulation results are presented
in Section V to demonstrate and compare the performances
achieved via different estimation schemes. Finally, we draw
some conclusions in Section VI.

II. ASSUMPTIONS AND SYSTEM MODEL

Consider a MIMO structure with MT transmit and MR

receive antennas. The communication channel is assumed to be
frequency non-selective. The channel matrix H of dimension
(MR × MT ) is assumed to be constant over the duration
of a symbol frame (i.e., quasi-static MIMO channel). The
BICM coding scheme used at the transmitter is described
in Fig.1. The binary data b are encoded by a non-recursive
non-systematic convolutional (NRNSC) code C, before being
interleaved (the block Π). Quasi-random interleaving is used
and no optimization [18] is done on the interleaver design. The
output bits c are then transformed to symbols according to a
given constellation set. We add some pilot symbols to each
frame of data symbols for channel estimation. The symbols
x of a frame are then multiplexed before being transmitted
through MT antennas. Since a quasi-static and flat channel
is assumed, the placement of pilot sequences in a frame has

Fig. 2. Block diagram of the receiver.

no effect on channel estimation [19], thus no optimization is
required for their placement and they are put in a preamble.

QPSK modulation is considered in this paper, and transmit
symbol power is normalized, i.e., |x|2 = 1. The following
notations are used throughout the paper: bold face upper case
letters are used for matrices; bold face lower case letters are
used for vectors; .∗, .H , |.|, ‖.‖, and E{.} denote respectively
complex conjugate, conjugate transpose, absolute value, vector
Frobenius norm, and expected value. I is the Identity matrix
and diag(.) denotes a diagonal matrix with the given diagonal
terms.
Considering a frame of transmitted symbols associated with
the channel matrix H , the received vector y of dimension
(MR × 1) at a given time index is given by:

y = Hx + n (1)

where n is the vector of additive complex white Gaussian
noise of zero mean and variance N0. We call the vector x
of MT symbols a compound symbol. We denote by Nps the
number of compound pilot symbols in a frame, corresponding
to Np = NpsBMT pilot bits, B being the number of bits per
symbol. We also denote by Nds the number of compound data
symbols in a frame, corresponding to Nd = NdsBMT data
bits. Finally, Ns = Nds + Nps denotes the total number of
compound symbols in a frame.

III. ITERATIVE MIMO DETECTION AND DECODING

At the receiver, the detection of transmitted symbols and the
decoding task are performed in an iterative manner. Soft-input
soft-output (SISO) signal detection and channel decoding are
performed, based on maximizing the a posteriori probabilities
(APP). The block diagram of the receiver is shown in Fig.2.
SISO decoding is performed using the well known forward-
backward algorithm [20]. We just recall here the formulation
of the APP MIMO detector.

Our formulations are based on probabilities instead of
likelihood ratios; this is more appropriate when using the
EM algorithm. Suppose first that the channel matrix H and
the complex noise variance N0 are perfectly known at the
receiver. The MIMO detector provides at its output extrinsic
probabilities on coded bits c. Let Q be the cardinality of x
of size q , |Q| = 2BMT . Let also ci, i = 1, · · · , BMT

be the bits corresponding to a compound symbol x ∈ Q. The
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extrinsic probability on the bit cj at the MIMO detector output,
P Det

ext (cj), is calculated as follows [18]:

P Det
ext (cj = 1) = K

∑

x∈Q
cj=1

exp
(
−‖y −Hx‖2

N0

) BMT∏

i=1
i 6=j

P Dec
ext (ci)

(2)
where K is the normalization factor satisfying P Det

ext (cj = 1)+
P Det

ext (cj = 0) = 1. Subscript .ext denotes extrinsic information
and the superscripts .Det and .Dec denote the information at
the output of the MIMO detector and the channel decoder,
respectively. P Dec

ext (ci) is in fact the a priori information on
bit ci, coming from the SISO decoder. The summation in
(2) is taken over the product of the conditional channel
likelihood (the exp term) given a compound symbol x, and
the a priori probability on this symbol (the term

∏
P Dec

ext ),
fed back from the SISO decoder at the previous iteration.
Notice that concerning this latter term, we exclude the a priori
probability corresponding to the bit cj itself, so as to respect
the exchange of extrinsic information between the channel
decoder and the MIMO detector. Also, notice that this term
assumes independent coded bits ci, which is true for random
interleaving of large size. At the first iteration, where no a
priori information is available on bits ci, P Dec

ext (ci) are set to
1/2.

IV. CHANNEL ESTIMATION

Obviously, for signal detection we require the channel
matrix H as well as the complex noise variance N0. To
estimate H , we transmit some pilot symbols in each frame
of transmitted data. As a frequency non-selective channel is
considered, the identifiability condition is: Nps ≥ MT [21].
We first consider in Subsection IV-A the estimation of the
channel based uniquely on pilot sequences, and next consider
in Subsection IV-B semi-blind channel estimation based on
the EM algorithm.

A. Pilot-only-based estimation

Let xp(k) denote a compound pilot symbol, i.e., a vector
of MT pilot symbols, at the time sample k. The ML channel
estimate Ĥ , which is equivalent to the least-squares solution,
is:

Ĥ =
( Nps∑

k=1

y(k) xH
p (k)

)( Nps∑

k=1

xp(k) xH
p (k)

)−1

. (3)

Let Rxp =
∑Nps

k=1 xp(k)xH
p (k). The minimum least-squares

estimation error is obtained iff the training sequences satisfy
Rxp = NpsI . When it is not possible to find such optimal se-
quences, the near-optimal sequences consist of those resulting
in minimum trace{R−1

xp
} [21].

To estimate N0, a simple way is to suppose Ĥ ≈ H and to
use the ML-based estimation:

N̂0 =
1

MRNps

( Nps∑

k=1

∥∥y(k)− Ĥ xp(k)
∥∥2

)
. (4)

However, since Ĥ contains estimation errors, N̂0 is biased.
We propose the following modified estimate that is unbiased
for mutually orthogonal pilot vectors (see [22] for the proof):2

N̂new
0 =

Nps

MR(Nps −MT )2
( Nps∑

k=1

‖y(k)− Ĥ xp(k)‖2
)
. (5)

B. EM-based channel estimation

Let Θ = [H, N0], the vector of parameters to be estimated.
The ML estimate of Θ, given the vector of observations Y ,
is:

Θ̂
ML

= arg max
Θ

log p(Y |Θ) (6)

The EM approach consists in estimating Θ from (6), given the
incomplete data Y and a vector X , called missing data. The
ensemble (Y ,X) is called the complete data. In our channel
estimation problem, Y is the vector of received signals on
MR antennas during Ns time samples, and X is the vector
of transmitted compound symbols over this time interval.
The EM update algorithm consists of two steps: computing
the expected log-likelihood function of the complete data
conditioned on incomplete data and the previous estimate of
parameters (E-step), and then, maximizing the result with
respect to the parameters (M-step). E- and M- steps for
the (m + 1)th update are described below by (7) and (8),
respectively.

Q
(
Θ, Θ̂

(m))
= E

{
log P (Y , X|Θ)

∣∣Y , Θ̂
(m)

}
(7)

Θ̂
(m+1)

= arg max
Θ

Q
(
Θ, Θ̂

(m))
(8)

1) Classical EM: Mixing data and pilots: Let us denote by
Xd and Xp the transmitted compound data and pilot symbols
in a frame, respectively, and by Y d and Y p the corresponding
received vectors. To take into account pilot and data symbols
in EM, we can consider {Y d,Y p} as incomplete data and
{Xd, Xp} as missing data, as it is done in [11]. We call this
approach Mix-EM. In this way, after some manipulations, from
(7) and (8) we obtain the following update equations for the
estimates of H and N0 at (m + 1)th step [11].

Ĥ
(m+1)

=

(
Ns∑

k=1

q∑
u=1

y(k) xH
u APPk(xu|Θ(m))

)
×

(
Ns∑

k=1

q∑
u=1

xu xH
u APPk(xu|Θ(m))

)−1

(9)

N̂
(m+1)
0 =

1
MRNs

(
Ns∑

k=1

q∑
u=1

APPk(xu|Θ(m))×

∥∥∥y(k)− Ĥ
(m+1)

xu

∥∥∥
2
)

(10)

2This estimate can further be refined by averaging over subsequent frames.
Notice from (5) that for Nps À MT , we find the primary estimate (4).
However, for relatively small Nps, this modification is indispensable since
the corresponding bias from (4) is too large. A relatively large biased noise
variance estimate can degrade considerably the turbo-detector performance
[23].
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As it is seen, we make use of the information on transmitted
symbols, obtained from SISO decoder, to re-estimate the
channel by including data symbols in the estimation. Vector xu

is the uth among q possibly transmitted compound symbols,
whose probability of transmission APPk(xu|Θ(m)), i.e., the
probability that x(k) = xu, is calculated using the a posteriori
probabilities at the SISO decoder output at the end of the mth

iteration:

APPk(xu|Θ(m)) ∝
BMT∏

i=1

P Dec
post(cu,i) (11)

P Dec
post(cu,i) is the a posteriori probability corresponding to the

ith bit of xu, cu,i. For pilot symbols, which are known at re-
ceiver, APPk(xu|Θ(m)) equals either one or zero. Before be-
ing used in (9) and (10), the calculated APPs from (11) should
first be normalized so as to satisfy

∑q
u=1 APPk(xu|Θ(m)) =

1.
Notice that in this way we obtain only an approximation of
the exact APPs. In fact, P Dec

post(cu,i) consists of the probability
of cu,i given the corresponding received symbol. This is
related to the probability of y conditioned to cu,i, through
the Bayes theorem (see [11], [24] for more details). But the
received signals y are correlated when partially conditioned.
Our approach is thus sub-optimal in terms of the convergence
speed and bit-error-rate, but it is much simpler than the exact
calculation of APPs. However, we have compared our results
to those of [11] that considers the exact APP calculation, and
noticed that the performance difference is quite negligible.

2) Mix-EM: biased estimate: In what follows, we demon-
strate that the estimate Ĥ calculated from (9) is biased.
To simplify our notations, we denote APPk(xu|Θ(m)) by
APPu,k and do not specify the estimation update step. We
also define Rx and Ryx as follows.

Rx =
Ns∑

k=1

q∑
u=1

xu xH
u APPu,k (12)

Ryx =
Ns∑

k=1

q∑
u=1

y(k) xH
u APPu,k (13)

Equation (9) can now be written in the following form:

Ĥ = Ryx Rx
−1

(14)

We define x̃(k) ,
∑q

u=1 xu APPu,k as the estimate of trans-
mitted compound symbol x(k) based on the SISO decoder
output information. Note that for k = 1, · · · , Nps, we have
x̃(k) = xp(k). We can now write Rx and Ryx in (12) and
(13) in terms of x̃:3

Rx,i,j =





Ns ; i = j
Ns∑

k=1

x̃i(k) x̃∗j (k) ; i 6= j
(15)

3To obtain (15), we have used the approximation of (11), explained in the
previous subsection.

Ryx =
Ns∑

k=1

y(k) x̃H(k)

= H

Ns∑

k=1

x(k)x̃H(k) +
Ns∑

k=1

n(k)x̃H(k)

= H R′
x + η

(16)

where, for instance, x̃i(k) is the ith entry of the vector x̃(k),
and,

R′
x ,

Ns∑

k=1

x(k) x̃H(k). (17)

Also, η is the matrix of weighted noise samples with
E{ηHη} = N0R

′′
x where,

R′′
x =

Ns∑

k=1

x̃(k) x̃H(k). (18)

Now from (14), the estimated channel matrix can be written
as:

Ĥ = H R′
x Rx

−1
+ η Rx

−1
(19)

As it can be seen from (15) and (17), R′
x 6= Rx. So, from

(19), Ĥ is a biased estimate of H . Observing (15) and (17)
we see that this bias comes from the difference between x and
x̃, or in other words, from noise and the residual CAI after
MIMO detection. For low SNR and at the first iterations of
the turbo-detector, x̃ is close to zero, the difference between
R′

x and Rx is important, and the channel coefficients are
highly under-estimated. This is specially the case when the
reception diversity is small. The residual CAI after MIMO
detection is also due to the channel estimation errors H̃ . As a
result, the bias will be more important for smaller number of
pilot symbols. Notice that although the estimation is improved
through iterations, the important bias at the critical (first)
iterations prevents the turbo-detector to converge correctly. On
the other hand, when the SNR is high enough, at the last
iterations, x̃ ≈ x, and hence R′

x ≈ Rx, and the bias becomes
negligible. For SNR→ ∞, Mix-EM becomes asymptotically
unbiased.

3) Modifying Mix-EM: MU-EM: We separate the estimates
based on pilot and data symbols and denote them by Ĥ

p

and Ĥ
d
, respectively. Remember that Ĥ

p
is calculated from

(3) and is unbiased. In addition, Ĥ
d

is calculated from (9)
by replacing Ns by Nds, or from (14) by replacing Ns by
Nds in the corresponding expressions (15)-(18). We propose a
modification to Mix-EM that remains simple and can result
in a considerable improvement in channel estimation. The
increased computational complexity is quite justified, as we
will see later. The core of our proposed modification is some
simplifying approximations that we make before proceeding
to the combination of Ĥ

d
and Ĥ

p
. We assume that Nds is

large enough and approximate Rx, R′
x, and R′′

x by diagonal
matrices. Indeed, the off-diagonal terms can be considered
as empirical correlations between uncorrelated sequences and
could be neglected. In fact, assuming large enough Nds and
uncorrelated transmit symbols, these correlations come from
the residual CAI after MIMO detection. When enough receive
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diversity is available, this residual CAI is low enough and the
approximations work well. We consider hence:

Rx ≈ NdsI (20)

R′
x ≈ diag

0
@

NdsX

k=1

x1(k) x̃∗1(k) , · · · ,

NdsX

k=1

xMT
(k) x̃∗MT

(k)

1
A

(21)

R′′
x ≈ diag

(
Nds∑

k=1

|x̃1(k)|2 , · · · ,

Nds∑

k=1

|x̃MT (k)|2
)

(22)

Using these approximations, from (19) we obtain:

Ĥ
d

=
1

Nds
H diag

0
@

NdsX

k=1

x1(k) x̃∗1(k), · · · ,

NdsX

k=1

xMT
(k) x̃∗MT

(k)

1
A+η′

(23)

with η′ = 1
Nds

η. The (i, j)th entry of Ĥ
d

is then,

Ĥ
d

ij = αjHij + η′ij (24)

where,

αj , 1
Nds

Nds∑

k=1

xj(k) x̃∗j (k). (25)

Notice that αj depends only on j, the index of the transmit
antenna. In other words, Ĥ

d

j (the jth column of Ĥ
d
) is

related to Hj (the jth column of H) by a scalar factor αj .
Mathematically, it follows from the fact that from (23), H is
multiplied by a diagonal matrix. This, in turn, is due to the
approximations made in (20)-(22), thanks to which Ĥ

d
and

H are tied column by column. The bias removing operation
is hence much simpler than from the matrix multiplication
expression of (19). The physical interpretation is that, as
previously explained, by the diagonality assumptions on Rx,
R′

x, and R′′
x, we have in fact assumed perfect CAI cancellation

after MIMO detection. So, the estimated Ĥ
d

ij , i = 1, .., MR

would depend on the transmit symbols from the jth antenna
only, and Ĥ

d

ij is related to Hij regardless of the receive
antenna index i.

Now let us consider Ĥj as the combination of Ĥ
d

j and Ĥ
p

j

in the following form:

Ĥj = ajĤ
d

j + bjĤ
p

j . (26)

We have two degrees of freedom, i.e., the coefficients aj and
bj , that we determine so as to minimize the estimation errors’
variance, subject to the constraint of unbiased estimation:

min E
{‖ajη

′
j + bjη

p
j‖2

}
subject to: ajαj + bj = 1. (27)

ηp is the matrix of estimation errors from (3). For mutually or-
thogonal pilot sequences, the variance of ηp

ij equals N0/Nps.
Also, the variance of η′ij , σ2

η′ij
, is:

σ2
η′ij

=
N0

Nds
β2

j with β2
j =

1
Nds

R′′
xjj

=
1

Nds

Nds∑

k=1

|x̃j(k)|2.
(28)

Using the method of Lagrange multipliers, we can obtain the
optimal coefficients aj and bj :

aj =
α∗j

|αj |2 + Nps

Nds
β2

j

, bj =
Nps

Nds
β2

j

|αj |2 + Nps

Nds
β2

j

. (29)

The only remaining problem is the calculation of αj from
(25), since we do not know the transmit symbols x(k).
However, if we consider ε the average bit error probability
on coded bits, we can calculate an estimate of αj (see [1],
[22]).4 However, we have verified that we can take ε = 0
without any considerable effect on the obtained performance.
This is equivalent to replace xj in (25) by hard decisions on
x̃j (whatever the modulation).

• Discussion on the proposed combination
Let us verify our proposed combination in two extreme cases.
Consider first the case of low SNR and the first iterations of
the detector. In this case, the a posteriori probabilities at the
decoder output are close to 1/2 and the estimated symbols
x̃ are close to zero. So, since we have little information on
data symbols, the estimation should rely mostly on pilot
symbols, i.e., we should have Ĥ ≈ Ĥ

p
. This is what our

combination gives; here we have αj → 0, and hence, from
(29) we obtain aj → 0 and bj → 1. Now consider the case
of high SNR and the concluding iterations of the detector.
Here the decoder soft outputs are quite reliable and are
close to one or zero. Hence, x̃ → x and with this almost
perfect knowledge on data symbols, Ĥ

d
and Ĥ

p
should have

“equal weight” in the final estimate Ĥ . This is verified in the
proposed combination; we have αj → 1, and therefore, we
obtain aj → Nds/Ns and bj → Nps/Ns.

C. Th-HD estimation

As explained in the introduction, we consider this rela-
tively simple semi-blind estimation approach to compare its
performance with EM-based methods. In the Th-HD method,
in addition to pilot symbols, we use the symbols detected
with high enough reliability at each iteration. This is done by
comparing the APPs to a threshold 0.5 < PTH < 1. Consider
the probability APP

(m)
i at iteration m, corresponding to the

coded bit ci. If APP
(m)
i > PTH , we make the hard decision

ĉ
(m+1)
i = 1 ; otherwise, if APP

(m)
i < (1 − PTH), we make

the hard decision ĉ
(m+1)
i = 0 ; and if none of these conditions

are verified, we give up the compound symbol corresponding
to ci and do not consider it in channel estimation. If a hard
decision is made on all BMT constituting bits of a compound
symbol, we use the resulting hard-detected compound symbol
in channel estimation, in the same way as pilot symbols, i.e.,
using (3). The resulting channel estimate is then used in the
next iteration of the detector. Note that if we take PTH very
close to 0.5, we effectively make hard decisions on all detected
symbols and use them in channel estimation. This coincides
with the so called decision-feedback channel estimation [15].

4We can constitute a look-up table of ε for some values of SNR via
simulations for the case of perfect channel knowledge, or better, for the case
of pilot-only-based channel estimation.
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Fig. 3. (2×2) MIMO channel, NRNSC code (133,171)8, Nps = 4 pilot
compound symbols.

V. SIMULATION RESULTS

In this section we present a comparative study of the
different estimation schemes described in Section IV. Since
we consider the quasi-static channel model, the performance
comparison is made in terms of frame error rate (FER) versus
Eb/N0. Eb is the average received energy per information bit.
Notice that we take into account the receiver array gain in
our definition of Eb but exclude from it the pilot bits. Rate
1/2 NRNSC channel codes are considered. Since we compare
FERs, the same Nds = 128 is considered in all systems. Also,
Nps is chosen to be a little greater than the limit of channel
identifiability, BMT . Unless otherwise mentioned, the FER
curves correspond to the fifth iteration of the turbo-detector.
Rayleigh fading conditions are considered and the entries of
H are considered to be IID and of unit variance.

A. Performance improvement by MU-EM

In this section we compare the receiver performance for
different channel estimation methods, i.e., pilot-only based
estimation, Mix-EM, and MU-EM. For the sake of compar-
ison, we also present FER curves for the case of perfect
channel knowledge, as well as the outage probability for QPSK
modulation [25]. The other curve, labeled Th-HD, will be
discussed in the next subsection.

Fig.3 shows performance curves for a two-transmit two-
receive antenna structure, denoted by (2×2). We take Nps = 4
that means that only 4/64=6.25% of the information data rate is
dedicated to the transmission of pilot symbols. The difference
between the slopes of FER curves and the outage probability
curve is due to the limited interleaver size. Remember that
the interleaver is of random type and is not optimized. We see
that by using Mix-EM, a gain of 2 dB in SNR is achieved at
FER=10−2, as compared to the pilot-only-based estimation.
The additional gain by using MU-EM is about 0.3 dB only.

We may expect that for an increased number of transmit
antennas, the difference between Mix-EM and MU-EM per-
formances is more considerable, since the CAI would be more
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Fig. 4. (4×4) MIMO channel, NRNSC code (5,7)8, Nps = 8 pilot
compound symbols.

important. We have presented in Fig.4 performance curves
for a (4×4) system with Nps = 8 (8/64=12.5% of data rate
dedicated to pilots). A gain of 2 dB is again achieved at
FER=10−2 by performing Mix-EM, as compared to pilot-
only estimation. However, the difference between Mix-EM
and MU-EM is only about 0.18 dB which is even smaller
than in (2×2) system. Also, surprisingly, we observe that the
EM-based methods perform closely to the perfect CSI case. In
fact, the increased diversity in (4×4) channel helps to improve
the performance of the MIMO detector, and the residual CAI
after detection will actually be lower, as compared to the
(2×2) case. As a result, Mix-EM works well and the improved
performance by MU-EM is less important.
This difference between Mix-EM and MU-EM performances

becomes more considerable for shorter pilot sequences. This
is shown in Fig.5 where Nps = 5. The other parameters are
the same as in Fig.4. We see that the gain obtained by MU-
EM is now about 0.4 dB at FER=10−2.
As we explained in Subsection IV-B.2, this gain is more impor-
tant for a smaller number of iterations, where the residual CAI
is more important. This can be seen from Fig.6 that considers
the same conditions of Fig.5 but shows the FER after three
iterations of the turbo-detector (instead of five). We see that the
improvement by MU-EM is more considerable and is about
0.8 dB now.5

Let us go back to Fig.4. To see the impact of receive
diversity on the EM-based estimation, we reduce the number
of antennas to MR = 2, while keeping MT = 4. Results are
shown in Fig.7. First, we see that Mix-EM performs worse
and the resulting performance is comparable to that of pilot-
only method. Second, the gain obtained by MU-EM is much
more important and is about 1.3 dB at FER=10−2. Third,
we observe a more important difference between the FERs
with perfect CSI and by MU-EM estimation, that is about

5Note that for more than three iterations, we obtain a negligible improve-
ment in the detector performance for the cases of perfect-CSI and pilot-only-
based estimation.
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Fig. 6. (4×4) MIMO channel, NRNSC code (5,7)8, Nps = 5 pilot
compound symbols, after 3 iterations.

0.7 dB. In fact, for (4×2) system where we have less receive
diversity as compared to (4×4) case, the residual CAI after
MIMO detection is more important, and as a result, the APPs
at the decoder output will be of less reliability and/or contrast.
This shows a more important bias for Mix-EM, and thus, a
more important gain is achieved using MU-EM. However, a
more important residual CAI affects MU-EM too, since it
partially falsifies the basic simplifying assumptions used in
the derivation of MU-EM expressions (see Subsection IV-B.3).
Hence, MU-EM is less efficient than in (4×4) case, and the
difference between its performance and that of perfect CSI is
more important.

We have also considered the case of MT = 4 and a
single antenna at receiver, MR = 1. Results, shown in Fig.8,
are very interesting. For a (4×1) system and the range of
SNRs considered, the residual CAI is important at the detector
output due to the lack of receive diversity. This results in
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Fig. 7. (4×2) MIMO channel, NRNSC code (5,7)8, Nps = 8 pilot
compound symbols.
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Fig. 8. (4×1) MISO channel, NRNSC code (5,7)8, Nps = 8 pilot compound
symbols.

a bad estimate via Mix-EM and this can even result in the
divergence of the turbo-detector. The performance of MU-EM
is not satisfying either, although it performs better than Mix-
EM. This is again because the assumptions on which MU-EM
relies are not met, due to the important residual CAI. Here, the
divergence of the turbo-detector occurs less frequently than for
Mix-EM.6 Surprisingly, the pilot-only estimation has the best
performance. So, for far less receive antennas than transmit
antennas, the EM based channel estimation may actually be
of no interest.

B. Performance of Th-HD method

Let us first study the impact of the APP threshold PTH

on the receiver performance. We have shown in Fig.9 curves

6For a given channel realization, the estimate via Mix-EM is worse and the
probability that the estimate results in the divergence of the turbo-detector is
higher. For more explanations, see [26].
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Fig. 9. Impact of APP threshold PTH on the performance of Th-HD
estimation error, 0.501 ≤ PTH ≤ 0.95, NRNSC code (5,7)8.

of FER versus PTH for the MIMO systems of (4×4), (4×2),
and (4×1). The same parameters of the previous subsection are
considered. For each system, Eb/N0 is chosen so as to achieve
an FER of about 10−2 after five iterations of the turbo-detector
for the best PTH . We see that the optimal PTH resulting in
the lowest FER depends on the underlying MIMO structure.
However, it has poor dependence on the number of pilots.
When receive diversity is important, as in the (4×4) case, the
optimal PTH is close to 0.5 meaning that almost all APPs at
the decoder output are reliable enough and their hard decisions
coincide most likely with the corresponding transmitted bits.
However, for lower receive diversity (smaller MR), APPs at
the decoder output are less reliable and the threshold should be
placed higher. We then notice that the optimal PTH depends
on SNR: the higher the SNR is, the better the detection will
be, and the more reliable will the APPs at the decoder output
be, thus PTH should be set lower.

To compare it with other estimation methods, we have
shown in Figures 5, 6, 7, and 8, curves of FER for Th-HD,
taking into account the optimal PTH values from Fig.9, that is,
0.55, 0.7, and 0.9, respectively for (4×4), (4×2), and (4×1)
systems.7 From Fig.8 we see that for a (4×1) system that
suffers from the lack of receive diversity, Th-HD gives a better
performance than EM-based methods; yet, its performance is
almost the same as the pilot-only method, so it is practically
of no interest. For a (4×2) system, (Fig.7) Th-HD shows a
considerable improvement, as compared to pilot-only and Mix-
EM; yet, the best performance is achieved by MU-EM. For
the (4×4) system, Th-HD gives a considerable improvement
as compared to pilot-only, but the best performance is still
obtained by MU-EM. For Nps = 8, the performance obtained
by Th-HD is almost equal to that of Mix-EM and the corre-
sponding curve is not shown in Fig.4. For Nps = 5 (Figures
5 and 6), Th-HD performs even better than Mix-EM.

7As explained, the optimal PTH depends on SNR. The optimal values
considered for each system correspond to the SNR leading to FER≈ 10−2

after five iterations of the detector.

VI. CONCLUSIONS

We considered semi-blind channel estimation at each it-
eration of an APP turbo-detector using the EM algorithm.
Thanks to some pilot symbols that allow an initialization of the
turbo-detector, we can obtain some partial information on the
transmitted data symbols using the soft values at the decoder
output. Transmit symbols can be estimated using this partial
information and the channel estimate can then be renewed
using these symbols, together with pilot symbols. Naturally,
a channel estimate based on this partial information can not
be perfect. This imperfection not only appears in the form
of an increased estimation errors’ variance, but even, as we
showed, in a bias in the resulting estimate Ĥ

d
. The classical

Mix-EM approach ignores this bias and simply combines data
and pilot symbols to obtain the channel estimate. We proposed
to consider separately Ĥ

d
and the pilot-only-based estimate

Ĥ
p
, and to make use of Ĥ

p
to correct the bias in Ĥ

d
,

while minimizing the resulting estimation errors’ variance. The
exact solution for such a combination is not straight forward
and is computationally complex. In our proposed MU-EM
approach, we made some simplifying assumptions that lead us
to consider a simple combination of Ĥ

d
and Ĥ

p
while adding

negligible complexity to the initial algorithm. We saw that, as
far as these assumptions are more or less verified, MU-EM
works very well. We also studied the simple Th-HD semi-
blind estimation scheme and made a comparative study of the
different estimation methods for different MIMO structures.
Based on the provided results and discussions, we can deduce
the following concluding remarks.
• For MT ≤ MR where we have enough receive diversity
available, semi-blind methods attain closely the ideal per-
formance, i.e., with perfect channel knowledge. Relatively
few pilot symbols are required to bootstrap these estimation
schemes. Among these semi-blind methods, MU-EM gives
the best performance, i.e., it leads to the best convergence of
the iterative detector. The improvement obtained, compared
to Mix-EM, is more considerable for fewer pilot symbols, as
well as for a smaller number of iterations.
• For MT > MR, i.e., the case of asymmetric MIMO
signal detection, the improvement achieved via MU-EM, as
compared to Mix-EM, is quite considerable. In this case,
the bias in the channel estimate via Mix-EM is important
and makes it practically of no interest. For too few receive
antennas, the performance of MU-EM is not satisfying either,
although it still works much better than Mix-EM. The reason
is that the assumptions we made in the derivation of the MU-
EM formulation are not met. Here, the pilot-only approach
gives the best performance. As a matter of fact, if we cannot
obtain reliable enough information on data symbols, there is
logically no interest to use a semi-blind approach. This is the
case for too small MR with respect to MT , where symbol
detection cannot be performed efficiently enough.
• The simple Th-HD method gives good performances, spe-
cially when enough receive diversity is available. Under this
condition, Th-HD may be preferred to EM-based methods
and in any case to Mix-EM, due to its lower computational
complexity. However, the performance of Th-HD is very
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sensitive to the choice of the threshold PTH . The optimal PTH

depends highly on the underlying MIMO structure as well as
on the SNR, and should be chosen carefully.
• The EM algorithm is usually thought to be too computation-
ally complex for implementation in a real system. However,
it is well adapted to iterative receivers since the part of the
complexity due to EM can be considered to be small to
moderate, as compared to that of the turbo-detector. Hence,
in the cases where EM-based methods and in particular MU-
EM work well, the increased complexity is quite justified given
the improvement obtained in the receiver performance.
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Électronique et de Télécommunications de Rennes,

as a post-doctoral research fellow. He joined Institut Fresnel, Marseille, in
2005 as an assistant professor. His main research interests include signal
detection and channel estimation in high data rate communication systems.

Joseph Jean Boutros Joseph Jean Boutros was
born in Beirut, Lebanon, in 1967. He received the
electrical engineering degree in 1992 and the Ph.D.
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