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ABSTRACT

We consider the use of overlaid pilots for multiple input
multiple output (MIMO) channel estimation in the con-
text of single-user and single-carrier modulation. Impos-
ing no loss in spectral efficiency, overlaid pilots are po-
tentially of special interest, notably in relatively fast fad-
ing channels. However, when channel is to be estimated
over short sequences, estimation errors can be important,
due to the non-zero cross-correlation of data and pilot se-
quences. We show how these estimation errors limit the
performance of the receiver, when iterative data detec-
tion and channel estimation is performed. Also, for the
case of iterative detection at receiver, we compare the per-
formances of the overlaid and the time-multiplexed pilot
schemes.

1. INTRODUCTION

Conventional time-multiplexed data and pilot (training)
symbols can cause an important loss in spectral efficiency.
This is especially the case for MIMO systems when a large
number of antennas is employed at transmitter and/or when
the communication channel undergoes fast variations [1].
An alternative solution may be to use overlaid (also called
superimposed or embedded) training sequences for chan-
nel estimation [2, 3] that impose no loss in spectral effi-
ciency.

We consider in this paper MIMO channel estimation
based on overlaid pilots (OP). Block fading channel model
is considered where the channel is assumed almost con-
stant over a block of symbols. Assuming uncorrelated
data and pilot sequences, we estimate channel coefficients
by calculating the cross-correlation between the received
sequences on each antenna and the transmitted pilot se-
quences, known to receiver. However, although data and
pilot sequences are statistically uncorrelated, the cross-
correlation is calculated over a block of symbols of lim-
ited length, over which the channel coefficients are sup-
posed to remain unchanged. The smaller the block length
(i.e., the faster the channel fading), the more important
this cross-correlation is. This can result in an error floor
in the receiver bit-error-rate (BER) [4] and make the OP
scheme lose its interest.
In this work, our aim is to investigate whether or not it-
erative data detection and channel estimation can be a so-
lution to the problem of error floor. In fact, by iterative
detection, while profiting from the channel coding gain,
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Fig. 1. Block diagram of transmitter with overlaid pilots

we can estimate the transmitted data symbols through it-
erations, and try to reduce their effect on the estimated
channel coefficients. Moreover, we want to see if overlaid
pilots are preferable to time-multiplexed pilots (MxP) for
such an iterative scheme.

2. SYSTEM MODEL

Let us denote by ��� and ��� the number of antennas
at transmitter and receiver, respectively. Frequency non-
selective Rayleigh fading conditions are considered. The
block diagram of the transmitter is shown in Fig.1. Bit in-
terleaved coded modulation is performed using a non re-
cursive non systematic convolutional (NRNSC) code. The
interleaver � is of random type and QPSK modulation
is considered. Pilot sequences ����� � , � =  �!#"$"$"%!'&)( are as-
sumed to be mutually orthogonal. The vector of transmit-
ted symbols from ��� antennas * at a given time sample
is the superposition of the data symbols vector *,+ and the
pilot symbols vector * � : *)-.*/+102* � . We denote by 354+
and 364� the variance (power) of data and pilot symbols, re-
spectively. The received vector 7 of dimension �8� at a
given time sample is

79-2:;*<0 n -2:>=?* � 0@*A+CBD0 n E (1)

Channel matrix : is of dimension =F� �HG � � B and n
is the vector of additive complex white Gaussian noise of
zero mean and variance 354I . We assume that 354I is known
at receiver, and focus on the estimation of channel coeffi-
cients.

3. ITERATIVE DATA DETECTION AND
CHANNEL ESTIMATION

The block diagram of the receiver is shown in Fig.2. We
perform soft-input soft-output (SISO) log-MAP symbol
detection, as well as SISO log-MAP channel decoding.
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Fig. 2. Block diagram of the receiver

Soft-values are in the form of logarithmic likelihood ratio
(LLR). In Fig.2,



Det
ext denotes extrinsic LLR at the symbol

detector output, and



Dec
ext and



Dec
post denote extrinsic and a

posteriori LLR at the decoder output, respectively.
Consider, for example, the estimation of the channel co-
efficient : ��� . At the first iteration, this estimate is ob-
tained by calculating the cross-correlation  between the
sequences 7 � and * � � � :�� * � � ��� 7 ��� - �� � ����

I���� *��� � ���  "!$# 7 �%�  "! E (2)� � is the number of channel uses, i.e., the frame length,
and  is the channel use time reference. From (1) we have:

7 �&�  "! -(' �� ) ��� �?* � � ) �  "! 0@*/+ � ) �  "!*� : �
)
0 n � �  "! E (3)

Assuming mutually orthogonal pilot sequences we obtain: =?*�� � � � 7 � B - : ��� 0 �� � �+��I,��� ' �� ) ��� * + � ) �  "! * �� � � �  "! : �
)

0 �� � �+��I���� n � �  "! * �� � � �  "! E (4)

At the first iteration, we take -:/. �10���32  =�* � � ��� 7 � B . We
notice that there are two interference terms on the esti-
mated -: ��� : one term from the non-zero cross-correlation
of data and pilot sequences and the other from the cross-
correlation of noise samples with pilots. The more im-
portant one is obviously the former, especially at high
SNR where the channel estimation errors become impor-
tant and result in an error floor in the receiver perfor-
mance. In the succeeding iterations, we calculate soft es-
timates of the transmitted data symbols 4*/+ by using a pos-
teriori LLRs at the SISO decoder output and cancel their
effect in �=�* � � ��� 7 � B . In this way, we try to reduce the first
interference term in (4). For expressions for the soft esti-
mated symbols see [5]. At iteration 576 � , we calculate
first the data removed vectors 47 .98 0� , and then the new es-
timate of : ��� , as follows.47 .:8 0� �  "! -27 � �  "!$; ' �� ) ��� 4* + � ) �  "! -: .:8�< ��0�

)
(5)

-:=.98 0��� -> � * � � � � 47 .98 0� � - �� � ����I,��� *��� � ���  "!?# 47 .98 0� �  "! (6)

4. CRAMÉR-RAO BOUNDS

In our performance analysis, we use the Cramér-Rao bound
(CRB), which is the lower bound to the mean square of
estimation errors in the set of unbiased estimates. Let @
be the vector of parameters to be estimated, in which the
columns of : are stacked. Also, let A"B =C@ B be the pdf of@ . We consider the Bayesian CRB that assumes Gaus-
sian distributed symbols and whose expression for the OP
scheme is [6]:

CRB - 364I
3 4IED 4 F 0 � � 3 4� � D 4 F - E GIHHHHCJLK9M A$B =N@ BJ @ � HHHH 4PO E (7)

This corresponds to the case of non-coded data and chan-
nel estimation based on pilots only. To modify (7) for
the case of coded data, we assume that after channel cod-
ing and interleaving, data symbols remain almost uncor-
related. So, for a code rate Q , we use in (7) the modified
power 3SR+ 4 - 364+�T Q [7]. In other words, the redundancy
insertion in time is transposed into power increase.
Note that we could alternatively use the more realistic
stochastic CRB for the given constellation of symbols.
However, the numerical calculation of the stochastic CRB
is too complex. We will later see in Section 5.2 that the
Bayesian CRB is useful enough for our analyses.

5. NUMERICAL RESULTS

To study the performance of the proposed estimation scheme
we consider the channel code =CU �WV B&X of rate Q - � T,Y . We
denote by Z the ratio of power of pilot symbols to the total
transmit power at a symbol time, i.e., Z -23D4� T =F364� 0�364+ B .
SNR is considered in the form of [L\ T �^] with [�\ the av-
erage received energy per information data bit, and

�_]
the

unilateral noise psd. We include in [`\ T �a] the receive ar-
ray gain ��� ; however, it returns to data symbols only, and
does not take into account pilot symbols. Here, for the OP
case, the total (from pilot and data) average received SNR
(dB) can be obtained by adding the factor �cb K:d�e � ] �� <"f to[�\ T �^] (dB).

5.1. OP scheme, performance versus Z
Figures 3 and 4 show curves of BER versus [`\ T �a] for dif-
ferent values of Z , and for the data frame length of

� + -Y b�b bits, corresponding to 50 channel uses. BER curves
are shown for the first and fifth iterations where almost full
convergence is attained. We have � � - ��� - Y in Fig.3
and � � - Y and � � ->g in Fig.4, that we denote by Y G Y
and Y G g , respectively. No constraint is imposed on the
total transmit power as we want to highlight the effect ofZ . It is seen that for the Y G Y case, although iterative pro-
cessing helps improve considerably the performance forZ=6hU�i , we have important error floors even for values
of Z as large as U b i . Remember that this error floor is
due to non-zero cross-correlation between data and pilots.
When more receive diversity is available at receiver (as in
Fig.4), data detection can be performed more efficiently,
and the cross-correlation of data and symbols can be sup-
pressed more efficiently too.
The interfering cross-correlations are inversely proportional
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Fig. 3. (2 G 2) MIMO channel, code =CU �PV B&X , � + - Y b�b ;
dashed line: first iteration; solid line: fifth iteration
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Fig. 4. (2 G 4) MIMO channel, code =CU �PV B&X , � + - Y b�b ;
dashed line: first iteration; solid line: fifth iteration

to the frame length (see [4] for analytical calculations). If
we consider ten times longer blocks with

� + - Y b�b�b , the
performances are much better (Fig.5). Here, for Z�� g i ,
we are very close to the case of perfect channel knowl-
edge. Notice that this case can be regarded as with chan-
nel time variations ten times slower than those in Fig.3,4.

5.2. Channel estimation errors

To see how the mean square of the estimation errors (MSE)
improves through iterations, curves of MSE versus [ \ T � ]
are shown in Figures 6 and 7 for Y G g system with

� + -Y b�b�b and Z2- Y i � U�i . MSE is the sum of mean square
error on the � � � � sub-channels’ coefficients. We see
that when Z is not large enough, the interference origi-
nating from the cross-correlation of data and pilots can
not be reduced sufficiently, although it is reduced through
the four first iterations. For Z - U�i , however, MSE is
efficiently reduced and after five iterations, MSE (dB) de-
creases almost linearly with SNR (dB); it is also closer to
the CRB.
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Fig. 5. (2 G 4) channel, code =NU �PV B&X , � + - Y b�b�b
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Fig. 6. (2 G 4) channel, code =CU �WV B X , � +<- Y b�b�b , Z - Y i
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Fig. 7. (2 G 4) channel, code =CU �WV B&X , � + - Y b�b�b , Z - U�i
5.3. Comparison with MxP scheme

Consider the MxP scheme with
� � and

� + , the number of
pilot and data symbols in a frame, respectively. In order
to compare the receiver performance with OP and MxP
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Fig. 8. (2 G 4) channel, code =CU �WV B X , � + - Y b�b�b
schemes, we impose the constraint of equal transmit en-
ergy for the transmission of

� + data bits. We attribute the
same power 364+ to both data and pilot symbols. By taking� � T = � � 0 � +�B�- Z and considering the same [`\ T �a] for
data symbols in both OP and MxP cases, the same energy
will be used for the transmission of the ensemble of data
and pilot symbols. Meanwhile, The MxP scheme has a
spectral efficiency loss of Z , compared to OP. Consider
first the case of Y G g system with

� + - Y b�b�b . We saw
in Subsection 5.1 that a relatively small Z can result in a
good convergence of the detector for the OP scheme. To
compare the two estimation schemes, let us first fix [ \ T � ]
and see which scheme works better for a given Z . Fig.8
shows BER curves of the fifth iteration for [ \ T � ] -��
dB. It is seen that the two schemes provide almost equiva-
lent performances for Z � g�i . For relatively large Z , OP
is preferred since it imposes no loss in spectral efficiency.
For smaller Z values, MxP scheme works better.

Let us know consider a desired performance, for ex-
ample, the MSE of the estimation errors, and control the
SNR or Z . Curves of Z versus [ \ T � ] are shown in Fig.9
for two MSE values of ; �cb dB and ; Y b dB and the case
of short frames. We can see how to set Z for an avail-
able SNR to obtain the desired MSE. Note that high SNR
values are more interesting since they correspond to low
BER. We see for high SNRs how power (for OP) should
be traded off with spectral efficiency (for MxP). For ex-
ample, consider the criterion of attaining MSE - ; � b dB.
For a given [L\ T �a] - � U dB, either we should use the
MxP scheme, which imposes a loss of �cb i in the data
rate, or use the OP scheme, which imposes an increase of
about Y b i in the transmit energy. On the other hand, for
a given [ \ T � ] - U dB, the OP scheme is quite preferable
to MxP, since it requires less transmit energy and imposes
no loss in spectral efficiency.

6. CONCLUSIONS

We studied the OP-based MIMO channel estimation in
an iterative detection scheme. Channel estimation was
based on pilots only. We showed that for long enough
frames, the OP scheme is very interesting. However, for
too short frames, i.e., too fast fading channels, even by it-
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Fig. 9. (2 G 2) channel, code =CU �PV B X , � + - Y b�b
erative processing the resulting performance may not be
satisfying unless relatively high power is dedicated to pi-
lot sequences. We showed that in such a case, time mul-
tiplexed pilots can still be preferred to overlaid pilots. In
some cases, however, we can trade off the transmit energy
for OP scheme with spectral efficiency for MxP scheme.
Anyway, for fast fading channels, without iterative pro-
cessing, or in the absence of coding, OP is almost of no
interest, compared to MxP. At last, we should point out
that the OP scheme is especially interesting when used
with spread spectrum techniques, where a distinct code
can be dedicated to each one of the � � pilot sequences.
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