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We show that tomographic diffractive microscopy can be used for profilometry applications with high transverse
resolution. We present an iterative reconstruction procedure, based on a rigorous wave scattering model, that
permits us to retrieve the profile of rough metallic interfaces from the complex scattered field. The transversal
resolution is subwavelength, and can even fall below the classical resolution limit if the profile is rough enough
for multiple interactions to occur. Large profiles, with tens of wavelength size, can be investigated. © 2011
Optical Society of America
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1. INTRODUCTION
Optical profilometry is a nondestructive and noncontact sur-
face metrology technique. Different schemes have been pro-
posed for determining the surface topography of the samples.
In those based on a Mirau, Linnik, or Michelson interferom-
eter, the beam reflected by the surface is superimposed to
a reference beam. The height variation of the surface profile
is determined by processing the signal produced by the result-
ing interference phenomenon usually observed in white light
[1]. In confocal microscopes, a focused beam reflected by the
surface is sent to a photodetector placed behind a pinhole.
The signal depends on the position along the optical axis of
the surface with respect to the focal plane of the microscope
objective [2,3]. Scanning the spot laterally gives the topogra-
phy of the surface. Moving the sample or the microscope ob-
jective along the optical axis permits one to increase the
vertical dynamic range of measurement. An alternative is gi-
ven by confocal chromatic sensors. In this case, the light
emitted by a broadband source is focused on the surface
through a chromatic lens [4,5]. Analyzing the spectrum of
the light passing through the confocal pinhole permits one
to determine the profile of the surfaces with no need of ver-
tical scanning. All these techniques assume that the beam re-
flected by the surface is parallel to the incident one. For this
reason, their application is restricted to the case of surfaces
with small slopes. Vertical resolution can be of the order of
several angstroms, while lateral resolution is limited by dif-
fraction and is not better than 0:5 μm. Now, with the improve-
ments of nanofabrication, especially in the microelectronic
domain, there is a strong need for optical instruments able
to retrieve the roughness of surfaces with a typical transverse
dimension of about 100nm. Recent advances in digital tomo-
graphic microscopy [6,7] have shown that this quantitative
metrology technique can be very powerful for imaging
three-dimensional objects. Thanks to the synthetic high nu-
merical aperture obtained by varying the incidence angle,
the lateral resolution obtained with this technique is at least
twice better than that obtained with classical microscopes. It
has also been shown theoretically and experimentally that the
resolution can be improved further in the presence of multiple

scattering [8,9]. In this case, high spatial frequency compo-
nents of the field diffracted by the sample that are not de-
tected in the single scattering regime are recorded by the
detector. Processing the measured data—namely, the scat-
tered field—with a reconstruction algorithm based on a model
of scattering dealing with multiple scattering, leads to super-
resolution. In this paper we show that this concept, whose ef-
ficiency has been demonstrated for microscopy applications,
can be applied for optical profilometry when high lateral re-
solutions are required. We stress in this case the importance of
using a rigorous method for calculating the scattered field. In
Section 2 we present the geometry of the problem. Section 3 is
devoted to the description of the boundary integral formalism
used for calculating rigorously the field scattered by rough
surfaces. The numerical iterative algorithm used for recon-
structing the surface profile from the scattered field is de-
scribed in Section 4. In Section 5 we discuss, on the basis
of numerical simulations, the effect of multiple scattering
on the lateral resolution and the robustness of the inversion
procedure.

2. SURFACE SCATTERING
For simplicity, we consider two-dimensional (2D) time-
harmonic scattering from a perfectly conducting rough sur-
face illuminated by TE-polarized electromagnetic beams
(Fig. 1). In a Cartesian coordinates system ðx; y; zÞ, the invari-
ance direction is the y axis and the surface is described by the
profile Γ∶z ¼ ηðxÞ, with a normal unit vector n̂ directed to-
ward the air z > ηðxÞ. At pulsation ω, with a expð−iωtÞ time
dependence assumed and in the TE case, ψ incðr; θ0Þ is the y
component of the complex incident electric field at point r ¼
ðx; zÞ of the incident beam centered on the illumination angle
θ0. ψ inc writes as the sum of downward propagating plane
waves:

ψ incðr; θ0Þ ¼
g
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where g is the tapering parameter [10] that sets the footprint
size of the beam on the profile.

The total field ψ ¼ ψ inc þ ψsca is the sum of the incident and
scattered field, and satisfies, in the TE case and for a one-
dimensional (1D) perfectly conducting surface, the Dirichlet
boundary condition:

ðr ∈ Γ⇔z ¼ ηðxÞÞ ⇒ ψðr; θ0Þ ¼ 0: ð2Þ

In the far field along the direction of the wave vector,

k ¼ k
r
r
¼ ðk cos θ; k sin θÞ; k ¼ ω

c
; ð3Þ

the scattered field writes in the air as a cylindrical wave:

ψscaðr; θ0Þ ∼
ð1þ iÞeikr
4

ffiffiffiffiffiffiffiffi
πkr

p sðθ; θ0Þ; ð4Þ

whose complex amplitude is proportional to the so-called
scattering amplitude sðθ; θ0Þ, which depends on both the
illumination angle θ0 and the detection angle θ. Note that
the optical intensity is classically defined as I ¼ jsj2.

The direct surface scattering problem corresponds to the
calculus of the sðθ; θ0Þ for a given profile z ¼ ηðxÞ, while
the inverse surface profiling is then stated as determining
the surface ηðxÞ from the knowledge of the scattering
amplitude sðθ; θ0Þ.

3. BOUNDARY INTEGRAL FORMALISM
The boundary integral equation (BIE) method is the numerical
solution of a rigorous wave scattering theory. It includes all
multiple scattering with no simplifying assumption. It states
that, provided the media are homogeneous, the whole pro-
blem can be solved on the surface. In the case detailed in
Section 2, the normal derivate of the electric field ∂nψ ¼
n̂ · gradψ on Γ is the unknown of the problem and satisfies
the integral equation

r ∈ Γ;
Z
Γ
Gðr; r0Þ∂nψðr0; θ0Þdr0 ¼ −ψ incðr; θ0Þ; ð5Þ

with kernel Gðr; r0Þ ¼ −iHþ
0 ðkjr�r0jÞ=4 as the 2D free space

Green function, Hþ
0 as the first kind Hankel function of zero

order, and dr0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η0ðx0Þ2

p
dx0 as the element of profile

length.
Once Eq. (5) is solved for a given illumination angle θ0, the

scattering amplitude reads

sðθ; θ0Þ ¼ −

Z
Γ
∂nψðr; θ0Þ expð−ik · rÞdr; ð6Þ

at any detection angle θ in the air.

The discretization and numerical solving of the integral in
Eq. (5) is detailed in [11]. The BIE constitutes a rigorous direct
model, but it cannot be directly inversed.

If one assumes both single and paraxial scattering, one can
easily show that the scattering amplitude is linearly related to
the Fourier transform ~f ðkÞ of some function f ðxÞ:

sðθ; θ0Þ ¼ ~f ðk sin θ − k sin θ0Þ; ð7Þ

from which the profile can be retrieved directly [12] by using

ηðxÞ ¼ λ
4π arg f ðxÞ: ð8Þ

This simple inversion technique is used in most holographic or
phase microscopy experiments [13]. The transverse resolution
is then easily estimated from the spatial frequency span of ~f
that is accessible with the given illumination and detection an-
gles. Note that, in [14], single scattering inversions of 2D sur-
faces are performed without the paraxial approximation, but
with somehow equivalent results: the main and limiting
assumption is single scattering.

4. INVERSE SCATTERING
Assume that a surface characterized by its variation of the
height ηðxÞ is successively illuminated by l ¼ 1;…; L different
beams and, for each illumination l, the scattered far field is
measured form ¼ 1;…; M different angles of detection. If sin-
gle scattering is not assumed, the link between the profile and
the scattered field is nonlinear. The inversion problem is then
generally recast as an optimization problem. In this section we
describe the Newton–Kantorovitch (NK) method [15,16] to
solve the nonlinear equation relating the data set to the sur-
face Γ. For the sake of simplicity, symbolic notation is
introduced:

smes ¼ Fη; ð9Þ
where smes denotes the measured scattered far field. In prac-
tice, it is a complex valued array of size ðL ×MÞ with L being
the number of illuminations and M the number of detection
angles. F represents the symbolic link between the measured
scattered field and the height of the surface under test η. It
involves coupled integral representations of fields reported
in Eqs. (5) and (6).

The NK method iteratively builds up the solution of Eq. (9)
by successively solving the forward problem and a local linear
inverse problem. At each iteration step n, an estimate of the
surface profile function is given by

ηn ¼ ηn−1 þ δηn; ð10Þ

where δηn is an update correction that is obtained by solving
in the least squares sense the linearized forward problem:

Dδηn ¼ δs ¼ ðsmes − sn−1Þ; ð11Þ

with sn−1 as the scattered far field associated to the best avail-
able estimation of the surface ηn−1 computed thanks to Eqs. (5)
and (6), while D is the Fréchet derivative of the nonlinear op-
erator F relating a small variation of scattered far field δs to a
small variation of the object function δη. The derivation of D is
based on the reciprocity theorem and full details of this

Fig. 1. Geometry of the surface scattering problem.
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derivation can be found in [17]. To sum it up briefly, consider
two angles θ1 and θ2; the variation of the scattered far field δs
is linked to the variation of the profile δη through the following
relation [17]:

δsðθ2; θ1Þ ¼ −

Z
Γ
∂nψðr; θ1Þ∂nψðr;−θ2ÞδηðrÞdr; ð12Þ

where ∂nψðr; θ1Þ is the current that would be present at the
surface ηn−1 when illuminated by a beam of angle of incidence
θ1, while ∂nψðr; θ1Þ is the current that would be present at the
same surface but with an illuminating beam of angle of inci-
dence −θ2. The key issue of the evaluation of D is that it re-
quires only the computation of an adjoint forward problem
where the current distribution at the surface is determined
for all illuminating angles −θi. Unfortunately, the problem
of finding the solution of Eq. (11) is ill-posed and needs
regularization. We use a zeroth-order standard Tikhonov
regularization [18]:

½D†Dþ μ2I�δηn ¼ D†ðsmes − sn−1Þ; ð13Þ

where μ2 is the regularization parameter that does not vary
during the iterative process, I is the identity matrix, and
the † symbol stands for the transposed complex conjugate.
In practice, this parameter is chosen by trial and error. For
the numerical experiments reported in this article, μ2 takes
a value of 106 or 108 and seems to not depend on the presence
of noise in data.

5. NUMERICAL RESULTS
In the following, the wavelength is set to λ ¼ 633nm, with
both incidences and scattering angles regularly sampled be-

tween −45° andþ45° with a 1° step (L ¼ M ¼ 91). The numer-
ical aperture is thus NA ¼ 0:71 and the single scattering
analysis states [19] that the minimum distance between two
resolved points is λ=ð4NAÞ ¼ 223nm.

All data are generated thanks to the rigorous direct model
where the integral equation [Eq. (5)] is cast into a matrix-
vector form according to the now classical procedure detailed
in [11]. Note that different mesh sizes are used for generating
the data and performing the inversion.

We first consider rough surfaces of 60 μm length with two
different Gaussian correlations ℓ ¼ 500nm and ℓ ¼ 100nm
and the same rms height of 60nm (Fig. 2). Each profile is
sampled with N ¼ 4096 points to compute the scattered field
that corresponds to the data. For inversion, the estimated
profile is also 60 μm long but counts only N ¼ 2048 points.

For the smooth surface, ℓ ¼ 500nm, both the NK and linear
inversion methods provide good reconstruction of the profile
[Figs. 2(a) and 2(b)]. The axial accuracy of the reconstruction
given by the NK algorithm is spectacular (within the nan-
ometer). For the rougher surface, ℓ ¼ 100nm, the reconstruc-
tion given by the NK algorithm is still accurate, while that
obtained under the Fraunhofer approximation clearly misses
the high frequencies of the actual profile [Figs. 2(c) and 2(d)].
This example stresses the importance of a rigorous modeling
of the light–surface interaction when surfaces with subwave-
length transverse features are to be studied. Note that the
edges of the profile are poorly reconstructed by the Fraunho-
fer method, as can be seen in Fig. 2(b). This is a numerical
artifact due to our implementation of the Fraunhofer method.

Following the analysis given in [9], we have also checked
the ability of the NK algorithm to provide, in the multiple scat-
tering regime, a transverse resolution better than that classi-
cally expected. We consider a surface profile made of two

Fig. 2. Reconstruction of 60 μm long rough surfaces with Gaussian correlation with rms height of 60nm and different values of the correlation
length ℓ. (a) and (b) ℓ ¼ 500nm, and (c) and (d) ℓ ¼ 100nm. (a) and (c) Reconstructed profiles using NK, while (b) and (d) are reconstructed
profiles using the Fraunhofer approximation. In (c) and (d), only the 20 μm central part is reported.
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identical bumps of widthw ¼ 80nm and interdistance 200nm,
which is below the resolution given by the single scattering
analysis, 223nm. The height of the bumps is increased from
50 to 180 nm. In all these experiments, the beam parameter
is set to g ¼ 2:5 μm.We plot in Fig. 3 the reconstructed profiles
obtained with the NK algorithm. When the bumps’ height
h ¼ 50nm, is much smaller than the incident wavelength, only
single scattering is significant. The linear inversion method
and the NK algorithm give the same result, and the bumps can-
not be distinguished. When the bumps’ height increases, multi-
ple scattering becomes more important and the NK algorithm
is able to distinguish the two bumps more and more distinctly.
This numerical experiment clearly shows that the presence of
multiple scattering can be an advantage for a nonlinear recon-
struction procedure.

Fig. 3. Reconstruction at λ ¼ 633nm using the NK algorithm of a sur-
face constituted of two bumps of w ¼ 80 nm width and separated by a
fixed interdistance d ¼ 200nm, but with various values of the height
h. (a) h ¼ 50nm; (b) h ¼ 100nm; (c) h ¼ 140nm.

Fig. 4. Evolution of the cost function against the iteration step for the
reconstruction that corresponds to Fig. 3(c).

Fig. 5. Reconstruction, at λ ¼ 633nm and using the NK algorithm, of
a surface constituted of two bumps of w ¼ 80 nm width and height
h ¼ 140nm, separated by a fixed interdistance d ¼ 200nm from noisy
data. The SNRs are (a) 50, (b) 20, and (c) 10.
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We add also, in the example of the two bumps that corre-
sponds to Fig. 3(c), the evolution of the cost function with re-
spect to iteration steps (Fig. 4). One can observe that this cost
function decreases and reaches a “plateau.” The minimum va-
lue of the cost function is reached at iteration step 9. However,
this may be misleading, because the reconstruction at itera-
tion step 60 appears to be more accurate than the one at
step 9.

To check the robustness of the NK inversion method in the
presence of noise, we have added a complex white noise to
the data. The profile is the same as for Fig. 3(c), and we have
considered a noise amplitude proportional to the maximum
value of the scattering amplitude, with three different sig-
nal-to-noise ratios (SNRs), namely 50, 20, and 10. It appears
in Fig. 5 that the performances of the NK are only slightly
deteriorated for the two first SNRs.

6. CONCLUSION
In conclusion, we believe that tomographic diffractive micro-
scopy combined with a rigorous model of the light–surface
interaction is an interesting tool for profilometry applications.
This approach can deal with surfaces presenting strong slopes
that cannot be imaged with classical optical far-field profil-
ometers. The occurrence of multiple scattering can be an ad-
vantage as it can lead to a subwavelength lateral resolution
that can be a crucial advantage. The results presented in this
paper will encourage an experimental validation with a tomo-
graphic diffraction setup. The actual theory can be applied to
data on 1D roughness, such as grooves or lines. To work on 2D
surfaces, the method has to be extended. It is only a numerical
methods matter, since both the boundary integral equations
and the Fréchet derivative, generalizations of Eqs. (5) and
(12), have already been published.
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