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Numerical study of scattering from rough
inhomogeneous films
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We adapt the differential method to the study of scattering from randomly rough inhomogeneous films, and we
extend the application domain of the surface-integral method to rough surfaces with many embedded scatter-
ers. These methods are compared in the case of geometries in which both volume and surface scattering oc-
cur. A good agreement is obtained, and the advantages and drawbacks of each technique are pointed out.
The angular scattering from rough inhomogeneous structures corresponding to models of snowcover in the
radio-frequency domain or paints in the optical domain is shown. © 1998 Optical Society of America
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1. INTRODUCTION
The study of electromagnetic surface and volume scatter-
ing is of current importance in several domains. This is-
sue arises in geophysics, for microwave sensing of snow,
ice, ocean surfaces, or soils, but also in optics, where the
performance of components has to be improved to reduce
the amount of scattered light.1,2 More generally, to inter-
pret or to optimize the scattering signature of a rough in-
homogeneous medium, one must be able to handle accu-
rately the associated forward-diffraction problem.

Volume and surface scattering are both difficult prob-
lems that are usually studied separately. Most often, ap-
proximate methods, such as the first-order perturbation
theory,3 transfer radiative equation,4 and Born
approximation5,6 are proposed to combine both effects.
These methods are commonly used, but in some cases
poor agreement is found between experimental and nu-
merical results.7,8 It is then necessary to know whether
the validity of the scatterer’s physical description has to
be questioned or whether it is the method of computation
and the approximations used that have to be revised. In
the latter case, a comparison between the results ob-
tained with the approximate method and those given by a
rigorous one is essential.

In this paper we present two methods, based on rigor-
ous theories, that calculate the scattering of electromag-
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netic waves from two-dimensional structures (invariant
along one axis). These methods are well suited to the
study of rough inhomogeneous films. The first technique
is based on a differential formalism that is widely used in
the grating domain.9 This method, which has been
largely improved with the S-matrix (or R-matrix)
algorithm,10,11 permits one to treat the case of rough films
with both localized inhomogeneities (brine pockets, air
bubbles, etc.) and inhomogeneities that are described by
continuous permittivity fluctuations. Thanks to a repre-
sentation in the Fourier space, surface and volume scat-
tering are handled in the same way. The second tech-
nique is based on a rigorous boundary-integral formalism.
We extended the application domain of the method pre-
sented in Ref. 12 to the issue of scattering from rough sur-
faces with a high number of embedded scatterers. Here
the field scattered by small cylindrical objects is accu-
rately described with a few terms in Rayleigh expansions.
A mixed representation in both coordinate and spectral
domains allows us to treat rigorously the problem of scat-
tering from rough structures with many buried objects, at
a lower computational cost than with a volume finite-
element method.13

Our aim in this paper is to present and compare these
methods by showing their respective advantages. Com-
parisons of the numerical results are drawn. It is shown
1998 Optical Society of America
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that it is possible to determine the influence, on the dif-
ferential reflection coefficient (DRC), of the optogeometri-
cal parameters of rough inhomogeneous films. Examples
are given for various cases in both the optical domain and
the radio-frequency domain.

2. GEOMETRY OF THE PROBLEM
We study the scattering from electromagnetic waves by
structures that are invariant along the y axis (see Fig. 1).
We consider both s polarization (the electric field is par-
allel to the y axis) and p polarization (the magnetic field
is parallel to the y axis). Generally, the scattering geom-
etry is described by a randomly (or not) perturbed region
of thickness D and length L, embedded in two semi-
infinite homogeneous media. The dielectric constant « t
of the whole system is given by

« t~x, z ! 5 «1 if z . D, (1a)

« t~x, z ! 5 «~x, z ! if 0 , z , D, (1b)

« t~x, z ! 5 «2 if z , 0. (1c)

The perturbed region may be a rough surface, an inhomo-
geneous film, or an object buried under a rough surface,
depending on the function «(x, z).

The system is illuminated with a monochromatic
Gaussian beam of angular frequency v. Throughout this
paper the time dependence exp(2iv t) is omitted from the
equations. In the semi-infinite homogeneous media the y
component of the electric field in s polarization, or the y
component of the magnetic field, in p polarization, de-
noted by F, satisfies the wave equation

¹2F 1 kj
2F 5 0, (2)

where kj
2 5 « jv

2/c2, with j 5 1 for z . D and j 5 2 for
z , 0.

The incident field is given by

F inc~x, z !

5 E P~a 2 a inc!exp@iax 2 ig1~a!~z 2 z0!#da, (3)

where

Fig. 1. Geometry of the problem. Throughout the paper the ge-
ometries are invariant along the y axis, and they are illuminated
under normal incidence by a Gaussian beam of waist w 5 1 [Eq.
(4a)].
P~a! 5 w exp~2w2a2/2!, (4a)

g j~a! 5 ~kj
2 2 a2!1/2, Im~g j! . 0, j 5 1, 2,

(4b)

where Im(x) signifies the imaginary part of a complex
number x and

a inc 5 k1 sin u inc . (4c)

The parameters w (beam waist), a inc , and z0 are used to
modify the angular width, the mean angle of incidence
u inc , and the position of the beam waist of the incident
field.

For z . D, the field can be cast in the form

F~x, z ! 5 F inc~x, z ! 1 E f1~a!exp@iax 1 ig1~a!z#da.

(5a)

For z , 0 we have

F~x, z ! 5 E f2~a!exp@iax 2 ig2~a!z#da, (5b)

where f1 and f2 are the amplitudes to be calculated from
the plane-wave expansion. The DRC and the differential
transmission coefficient (DTC), which give the fraction of
the total incident energy that is scattered into an angular
interval dus about the scattering direction defined by the
scattering angle us , are given by13

]R
]us

5
ug1~as!f1~as!u2

P inc
, (6a)

]T
]us

5
ug2~as!f2~as!u2

P inc
, (6b)

where as 5 k1 sin us for the reflection and as 5 k2 sin us
for the transmission. P inc is the total incident flux
through the plane z 5 D (see Fig. 1),

P inc 5 E uP~a 2 a inc!g1~a!u2da. (7)

In Section 5 we study deterministic and stochastic geom-
etries. In the latter case we introduce the mean DRC
^]R/]us&, which is calculated through ensemble averag-
ing (Monte Carlo simulations).

3. DIFFERENTIAL METHOD
This formalism has been widely used in the grating do-
main, but it has also been extended to a nonperiodic
obstacle14 for s polarization. Its main advantage is that
the geometry of the system is described in a very general
way, with the variations of the permittivity «(x, z). The
fact that those fluctuations may stem from the presence of
rough surfaces, buried objects, or bubbles has no impact
on the numerical scheme. Unfortunately, until recently,
this versatile technique was plagued by numerical insta-
bilities that restricted its domain of application and its
significance. The introduction of the R- or S-matrix
algorithm10,11 in 1994, which has permitted researchers
to overcome those difficulties, has been decisive in the re-
vival of interest for this method. In the following we
briefly recall its main steps.
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A. S Polarization
In the perturbed region, 0 , z , D, the y component
E(x, z) of the electric field satisfies the wave equation

¹2E 1 k2~x, y !E 5 0, (8)

where k2(x, z) 5 «(x, z)v2/c2. To define k2(x, z) more
precisely, we assume that it can be written as

k2~x, z ! 5 k2~z ! 1 Dk2~x, z !, (9)

with Dk2(x, z) 5 0 if uxu . L/2. Hence the x variations
of the permittivity are restricted to an interval of length
L. When dealing with allegedly infinite rough surfaces,
we take to be L much larger than the illuminated section
by the Gaussian beam, to minimize edge effects. Let
e(a, z) and Dk2(a, z) be the Fourier transforms at con-
stant z of E(x, z) and Dk2(x, z), respectively,

E~x, z ! 5 E e~a, z !exp~iax !da, (10)

Dk2~x, z ! 5 E Dk2~a, z !exp~iax !da. (11)

Inserting Eqs. (10) and (11) into Eq. (8) leads us to an
integro-differential equation of the second order for
e(a, z),

]2e~a, z !

]z2
1 @k2~z ! 2 a2#e~a, z !

1 E Dk~a 2 a8, z !e~a8, z !da8 5 0. (12)

We can transform this equation into a differential system
of the first order by introducing the variable
@]e(a, z)#/]z. Knowledge of the field and its derivative
at a given ordinate z P @0, D#, $e(a, z), @]e(a, z)#/]z%
(for all a) allows us, by integrating Eq. (12), to calculate,
at any ordinate z8 P @0, D#, $e(a, z8), @]e(a, z8)#/]z%
(for all a). The continuity of E and ]E/]z at z 5 0 and
z 5 D is then used to evaluate the scattered amplitudes
f1(a) and f2(a) as defined in [Eq. (5)]. However, to cal-
culate the linear relationship between $e(a, z),
@]e(a, z)#/]z%, and $e(a, z8), @e(a, z8), #]z%, one has to
transform Eq. (12) into a finite set of differential equa-
tions by discretizing and truncating the Fourier represen-
tations of the field E and of Dk2. Finally, the relation-
ship between the field at z and the field at z8 can be
written, in matrix notation, as

F e
]e
]a

G ~z ! 5 TO ~z, z8!F e
]e
]a

G ~z8!, (13)

where

e~z ! 5 F e~2NDa, z !

]

e~NDa, z !
G .

In Eq. (13), Da is the step of discretization, and amax
5 NDa is the highest spatial frequency that is retained in
the description of the field. The matrix TO is obtained by
computation with a Runge–Kutta algorithm, of the im-
ages of 2N –1 independent vectors.9 Note that, for large
values of D, the transmission matrix TO (0, D) is not well
calculated because of the decaying and increasing expo-
nentials that are involved in the integration. It is thus
necessary to decompose the perturbed region in Np
elementary slices with sufficiently small thickness d,
(D 5 Npd). When one correctly evaluates
TO @(p 2 1)d, pd#, p P @1, Np#, one can deduce the corres-
ponding scattering matrix SO p.10,11 The global scattering
matrix SO 5 Pp51

Np SO p relates the impinging waves on the
scatterer (i.e., the perturbed region) to the outgoing ones.
Hence we get a linear system that links the reflected and
transmitted outgoing plane waves to the incident ones,

F f1~2NDa!

]

f1~NDa!

f2~2NDa!

]

f2~NDa!

G 5 SOF 0
]

0
P~2NDa 2 a inc!

]

P~NDa 2 a inc!

G . (14)

Note that the Fourier transform of the incident field [Eq.
(3)] has been discretized and truncated in the same way
as that of the field inside the perturbed region [Eq. (10)].
Once f1 and f2 are known, we can evaluate the differen-
tial reflection and the transmission coefficients by using
Eq. (6).

B. P Polarization
A similar treatment is used for p polarization. The main
difference lies in the differential equation satisfied by the
y component of the magnetic field H,

]

]x
S 1

k2

]H

]x
D 1

]

]z
S 1

k2

]H

]z
D 1 H 5 0. (15)

This equation is rewritten as a differential system of the
first order so that the continuously derivable product Ẽ
5 @(1/k2) (]H/]z)# is never split,

]H
]z

5 k2Ẽ, (16a)

]Ẽ
]z

5 2
]

]x S 1

k2

]H
]x D 2 H. (16b)

Assuming that the x variations of the permittivity are re-
stricted to a finite interval of length L, we put 1/k2 in the
form

1

k2
~x, z ! 5

1

k2
~z ! 1 D

1

k2
~x, z !, (17)

with

D
1

k2
~x, z ! 5 0 if uxu . L/2.

By introducing the Fourier transforms h(a, z), ẽ(a, z)
Dk,(a, z), D(1/k2)(a, z) of H(x, z), Ẽ(x, z), Dk,
D(1/k2), respectively, we can write the system (16) in the
Fourier space as
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]h

]z
~a, z ! 5 k2~z !ẽ~a, z !

1 E Dk~a 2 a8, z !ẽ~a8, z !da8, (18a)

] ẽ

]z
~a, z ! 5 h~a, z !Fa2

1

k2
~z ! 2 1G

1 aE a8D
1

k2
~a 2 a8, z !h~a8, z !da8.

(18b)

This coupled differential system of the first order and the
continuity of H and Ẽ at z 5 0 and z 5 D allows us to
calculate the scattering matrix of the perturbed region
with the same method as that described for s polariza-
tion.

C. Validation of the Results
The numerical implementation of the differential formal-
ism is straightforward, but it requires a careful testing of
all the parameters that are introduced in the quantiza-
tion and truncation of the Fourier transforms, in the
Runge–Kutta algorithm, and in the S-matrix algorithm.
Note that, if the Fourier transform of the field is trun-
cated at amax , the highest spatial frequency needed for Dk
and D(1/k2) is 2amax . In general the evaluations of Dk,
D(1/k2) are performed with a fast-Fourier-transform
technique. In this case the parameters L, N, and Da are
linked by the relation 2(2N 1 1)2p 5 LDa. For the re-
sults presented in Section 5, convergence was usually
reached with Da 5 k1/20 and amax 5 5k1 . These values
correspond to N 5 128 and L 5 16l1 , where l1 is the
wavelength in the upper medium. However, in some
cases, where the scattering structures are very small
(scatterers in snow), it was necessary to increase amax up
to 10k1 . In the Runge–Kutta algorithm an integration
step Dz 5 l1/10 was sufficient, and in the S-matrix algo-
rithm a decomposition of the perturbed region into slices
of thickness d 5 l1/3 was enough. Note that these pa-
rameters need to be tested systematically against conver-
gence because they clearly depend on the values of the
permittivity (we studied dielectrics with permittivities
smaller than 9). Energy conservation was satisfied up to
1026 in the lossless cases, but this test is not representa-
tive of the accuracy of the results.

The results given by the differential method are com-
pared with those of the surface-integral method15 in the
case of homogeneous rough-surface scattering. In Fig. 2
we plot the DRC of one realization of a rough surface
made of glass in the optical domain, with Gaussian
statistics,16 calculated with both methods. The rms
height d of the surface is 0.1l1 ; the correlation length a
5 l1 . The length along the x axis of the perturbed re-
gion is L 5 16l1 . Good agreement is obtained for both s
and p polarizations.

We now turn to a completely different formalism based
on a mixed representation of boundary-integral equa-
tions.
4. INTEGRAL METHOD
Surface integral methods were first developed to tackle
scattering from homogeneous rough surfaces. Recently
they were extended to more complicated geometries, such
as a cylindrical object buried beneath a one-dimensional

Fig. 2. DRC of a rough surface. d 5 0.1, a 5 1, L 5 16, «2
5 2.25, l1 5 1. The waist of the incident beam is w 5 1; nor-
mal incidence for (a) s polarization, (b) p polarization.
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rough surface.12,17,18 This object may be either a
bounded homogeneous scatterer or another rough inter-
face separating two homogeneous media (Fig. 3). In this
section we present an extension of the integral-boundary
technique that is adapted to the case in which many small
scatterers are present under a rough surface. The main
advantage of the integral-boundary formalism as com-
pared with the standard surface integral methods is that
the former leads to a single-integral equation with single-
scalar unknown, namely, a surface density along the
boundaries. It is based on a single-layer representation

1. of the scattered field in the upper medium V1 , with
density f1 ,

F~P ! 5 F inc 1 E
C1

G1~P, M8!f1~M8!ds8, if P P V1 ,

(19)

where Gj denotes the free-space Green’s function with
wave number kj , proportional to the Hankel function of
zero order Gj(P, M8) 5 2

i
4 H0

(1)(kj PM8) and F repre-
sents either the electric or the magnetic field, depending
on whether the polarization is s or p, respectively;

2. of the total field in V2 , with density f2 ,

F~P ! 5 E
C2

G2~P, M8!f2~M8!ds8, if P P V2 .

(20)

Note that Eq. (19) is equivalent to Eq. (5a) when the
Green’s function is written in the Fourier space. Taking
the limits when P tends to the boundary and taking into
account the boundary conditions, we obtain the value of
the field on the boundary and the limits of its normal de-

Fig. 3. Geometry of the problems: (a) stack of two rough inter-
faces, (b) buried cylindrical object under a rough surface. The
structures considered are invariant along the y axis.
rivative as a function of f1 and f2 . Finally, applying the
Green’s theorem in V and taking the limit on the bound-
aries, we obtain

1
2

F~M ! 5 E
C1øC2

F2G~M, M8!S dF
dn8D

V

~M8!

1 F~M8!
dG
dn8

~M, M8!Gds8, M P C1 ø C2 ,

(21)

and can thus derive the integral equation with unknown
f1 on C1 and f2 on C2 . In Eq. (21) the normal is di-
rected toward the exterior of V. The equation is trans-
formed into a set of linear equations thanks to a boundary
finite-element method. To ensure accuracy, the singular
part of the kernels is extracted and analytically inte-
grated. Also, to restrict the integration to a finite-
domain interval with length L, the incident field has to
vanish when x goes to infinity. With this goal we use in-
cident Gaussian beams [Eq. (3)]. The method was tested
against classical criteria, such as energy balance or reci-
procity theorem, and compared with other methods.12

However, as a strong shortcoming, when the number of
embedded scatterers is increased, both memory size and
computation time increase rapidly. Therefore we have
developed a new method that drastically reduces the
number of unknowns, at least in the case of scatterers
with dimensions smaller than the wavelength. Our
method is based on the opportunity of describing the field
that is scattered by a small object with a small number of
terms in the Rayleigh expansion. As a counterpart, to re-
main rigorous, the method also requires knowledge of the
scattering matrix of the object. Then including this ob-
ject in any scattering problem introduces the significant
Rayleigh coefficients as new unknowns. For instance, in
the low-frequency range and s polarization, a cylindrical
scatterer radiates an almost isotropic electric field, accu-
rately described by a single complex number, thus leading
to a single additional unknown. The same problem
solved with a boundary finite-element method typically
requires 10 to 20 unknowns, while the singularity of the
kernels must be treated with care. Therefore a mixed
representation of the scattered field is used: an integral
representation for the contribution from the surface den-
sity lying on the rough interface and a Rayleigh expan-
sion for the volume-scattering part.

Let us consider a set of scatterers (V j) j.1 bounded by
(Cj) j.1 , and an associated set of local systems of coordi-
nates Ojxz, with the origin Oj located inside V j . The lo-
cal polar coordinates of a point P are given by rj 5 Oj P
and u j 5 (Oj x, OjP). Denoting by Fj

R the Rayleigh ex-
pansion of the field scattered by the jth rod in terms of
outgoing Hankel functions, we get

Fj
R~P ! 5 (

n52`

1`

bn
~ j !Hn

~l !~krj!exp~ inu j!, (22)

where k represents the wave number in the surrounding
medium. This expression is valid outside the smallest
circle centered at Oj including V j . If the Bessel func-
tions are chosen as a basis for the description of the field
Fj

imp impinging on the jth rod, we obtain
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Fj
imp~rj , u j! 5 (

n52`

1`

an
~ j !Jn~krj!exp~ inu j!, (23)

while the incident and scattered complex amplitudes, an
( j)

and bn
( j), respectively, are linked through the scattering

matrix SO ( j).
Because we keep the same integral representation [Eq.

(19)] for surface scattering, Eq. (21) becomes, when M
P C1 ,

1

2
F~M ! 5 E

C1
F2G~M, M8!S dF

dn8
D

V

~M8!

1 F~M8!
dG

dn8
~M, M8!Gds8

1 (
j.1

Fj
R~M !. (24)

This equation is rigorous, provided that one can plot dis-
jointed circles centered at (Ok)k.1 that include Vk and do
not intersect C1 . It gives a first set of relationships be-
tween the surface density and the scattering amplitudes
bn

( j), whose dimension is equal to the number of finite el-
ements used to describe the surface profile. Note that in
Eq. (24) there are more unknowns than equations. To
complete the system, one writes additional equations that
link the scattering amplitudes bn

( j) to the field impinging
on the rods. With this aim, our first step consists in pro-
jecting this impinging field, namely, F(P) 2 Fj

R(P)
evaluated in the vicinity of Oj for the jth rod, onto the lo-
cal basis of incident fields Jn(krj)exp(inu j). This allows
us to express the incident amplitudes as a function of the
surface density and the bn

( p) ( p Þ j). In a second step
we introduce the scattering matrix SO to link the incident
amplitudes to the scattering ones. The resulting rela-
tionships, which couple the scattering amplitudes to the
surface density, close the system. A matrix inversion is
then used to evaluate both the surface density and the
bn

( p).
To simplify the equations, let us assume that the jth

scatterer is small and that the incident wave is s polar-
ized. In such conditions Fj

R(P) is well described by the
central term b0

( j) of the expansion, and only knowledge of
a0

( j) is needed. Because J0(krj) is the only Bessel func-
tion that does not vanish at Oj , a0

( j) is nothing but

a0
~ j ! 5 ~F 2 Fj

R!~Oj!. (25)

Therefore, provided the scattering matrix SO ( j) is known,
we get a relationship coupling the surface density and the
scattering amplitude b0

( j):

b0
~ j ! 5 S00

~ j !E
C1

F2G~Oj , M8!S dF

dn8
D

V

~M8!

1 F~M8!
dG

dn8
~Oj , M8!Gds8

1 S00
~ j !(

pÞj
Fp

R~Oj!. (26)
When j is varied, the number of equations given by Eq.
(26) is equal to the number of unknown scattering ampli-
tudes. Consequently, Eqs. (24) and (26) lead to a linear
set with the same number of equations and unknowns.
The derivation of the scattering amplitude in the upper
medium, expressed as a function of the surface density
f1 , remains unchanged:

f1~a! 5
2i

4pg1~a! E f1~a!exp@2iax8 2 ig1~a!z8#ds8.

(27)

The validity of this approach is tested by comparison of
the DRC of a rod placed below a flat surface with the re-
sults given by the boundary-integral method [see Fig. (4)].
The circular rod with a diameter of l1/20 and a relative
permittivity of « 5 5 is centered at l1/20 below a flat in-

Fig. 4. (a) Buried object (cylinder) under a flat surface. (b) Com-
parison between a boundary finite-element description and the
mixed representation. Dashed curve, 5 elements are used to de-
scribe the rod; dotted–dashed curve, 15 elements are used to de-
scribe the rod. Solid curve, 50 elements are used to describe the
rod (convergence reached); dotted curve, mixed representation
with one term in the Rayleigh expansion.
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terface separating vacuum (up) from a semi-infinite me-
dium with a permittivity of «2 5 2. The incident field is
described by an s-polarized Gaussian beam with normal
incidence and a waist of w 5 4. Note that one gets the
same accuracy (2%) with one scattering amplitude (i.e.,
one term in the Rayleigh expansion) as with 15 boundary
elements. This permits one to solve scattering problems
with a great number of small scatterers with low compu-
tational cost.

5. NUMERICAL RESULTS
To check the validity of the methods described in Sections
3 and 4 and to point out their wide range of application,
we have studied the scattering from different kinds of
structures and drawn comparisons. In all the calcula-
tions presented in this section the wavelength of the inci-
dent light is l1 5 1. The upper medium is air with
«1 5 1.

We have computed the DRC of a structure composed of
a buried object under a rough surface in a deterministic
case (Fig. 5). This calculation corresponds to a remote
sensing experiment. One can see in Fig. 6 the angular
pattern of the scattered light obtained with both methods.
A good agreement is found between the two results.

We have also studied the scattering from a structure
composed of 87 scatterers, whose diameter is equal to
l1/20, buried in a homogeneous medium under a rough
surface (Fig. 7). The computations were made for two
different values of the permittivity «s of the scatterers.
For «s 5 3.15 the parameters of the considered geometry
are similar to those of the snow at 17 GHz described in
Ref. 19. One can see that, as expected, when the value of
«s is increased, the scattering becomes stronger [see Fig.
7(b)]. Figure 7 shows that once again a good agreement
is found between the two methods. In light of the results
of Figs. 2, 6, and 7, it seems clear that these methods per-
mit one to handle both surface and volume scattering.

We now focus on the differential method whose versa-
tility and ease of implementation are worth emphasizing.
We have calculated the scattering from a snow layer (see
Fig. 8) as described in Ref. 19. The scattering problem
involves many small scatterers (cylinders in a structure
invariant along the y axis) and two uncorrelated rough in-
terfaces. In this stochastic case the mean DRC was cal-
culated by averaging over 50 realizations. The results of
Fig. 9 show that the amount of scattered light depends on
the density of scatterers. We have also studied another
model for the snow layer (Fig. 10) corresponding to that
given in Refs. 20–22. In this model the snowcover is de-

Fig. 5. Buried object (cylinder) under a rough surface. The
structures considered are invariant along the y axis.
scribed by an inhomogeneous layer sandwiched between
two identical rough surfaces. The permittivity of the
layer satisfies the equation «(x, z) 5 1.57 1 1021d,
where d(x, z) is the distance of the point (x, z) to the up-

Fig. 6. DRC of the structure shown in Fig. 5: d 5 0.1, a 5 1,
L 5 16, «2 5 2.25 1 1022i, «3 5 9. « is «2 in the bulk and «s in
the scatterer. The waist of incident beam is w 5 1. Normal in-
cidence for (a) s polarization, (b) p polarization.
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per interface. Figure 11 shows the angular pattern of
the scattered light for two different thicknesses H of the
snow layer. The total amount of scattered light depends

Fig. 7. DRC of a rough inhomogeneous medium with 87 cylin-
drical scatterers randomly distributed. d 5 0.1, a 5 1, L
5 16, «2 5 1.482. Thickness of the nonhomogeneous region,
D 5 0.6; diameter of the scatterers. f 5 l1/20; waist of the in-
cident beam: w 5 1. Normal incidence and S polarization for
(a) «s 5 3.15, (b) «s 5 9.
on H. We can use this property to determine the thick-
ness of the snow layer by comparing experimental data
given by a remote sensing technique with the numerical

Fig. 8. Model of the snow layer. Structures considered are in-
variant along the y axis. Diameter of the scatterers is f
5 l1/30. d1 5 8.1022, a1 5 4.1021, d2 5 3.1022, a2
5 1.6.1021, «2 5 5, «3 5 1.482, «s 5 3.15; « is «3 in the bulk
and «s in the scatterer.

Fig. 9. DRC of the structure described in Fig. 8 for two densities
(in volume) of the scatterers. Scatterers are randomly distrib-
uted. Average of 50 realizations. The waist of the incident
beam is w 5 1. Normal incidence for s polarization.

Fig. 10. Model of the snow layer as a graded index medium.
The upper surface and the lower surface are identical. d
5 0.1, a 5 1, L 5 25; «2 5 5; «(x, z) 5 1.57 1 1021d, where d
is the distance of the point (x, z) from the surface.
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results obtained with the differential method. Some ap-
proximate models have been proposed to calculate scat-
tering from this kind of structure,23 but, to our knowl-
edge, no methods based on a rigorous formulation of
Maxwell’s equations have been proposed to solve this
problem. Although examples are given here in the radio-
frequency domain, the methods described in Sections 3
and 4 can also be used to compute scattering from paints
(which can be considered rough inhomogeneous media) in
an optical domain.2,24

6. CONCLUSION
Two methods capable of calculating the scattering from
rough one-dimensional inhomogeneous films have been
presented and compared. We have shown that, thanks to
a mixed representation in the coordinate and spectral do-
mains, both surface and volume scattering can be handled
with a boundary-integral method. We have also ex-
tended the fields of application of the differential methods
to the problem of scattering from rough inhomogeneous
films. These methods have been applied to the study of
scattering from snowcovers or objects buried under a
rough surface illuminated by a Gaussian beam. Note
that when the incident beam is large, the beam simula-
tion method25 can be implemented in both cases.

The derivation of the propagation equation in the Fou-
rier space (differential method) permits one to study the
scattering from a wide range of structures, such as stacks
of rough inhomogeneous films with interpenetrating lay-
ers, overhanged rough surfaces, graded index media, etc.,
that are difficult to treat with an integral method. More-

Fig. 11. DRC of the structure described in Fig. 10. Average of
200 realizations, plane incident wave. Normal incidence for s
polarization.
over, if we assume that the computer memory size is suf-
ficient, the extension of the differential method to the
three-dimensional problem is immediate,26 as no singu-
larities of the functions used in the set of coupled differ-
ential equations have to be handled during integration.
The price to pay for these potentialities is the time of com-
putation, which is nearly ten times longer than that of the
integral method described in this paper.

Consequently, the two methods presented in this paper
appear to be complementary, and, in addition to the ap-
plications shown in this paper, they can be used to study
near-field and enhanced backscattering from rough inho-
mogeneous structures.
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