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We propose a method for analyzing both theoretically and experimentally the behavior of the phase of the
waves diffracted by gratings. The method is applied to the study of resonance phenomena. It is used
for determining the optogeometrical parameters of a metallic grating. We show that the experimental
setup, which is insensitive to mechanical drifts or thermal fluctuations, can be used for sensing purposes.
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1. Introduction

Electromagnetic resonances have been studied exten-
sively, both theoretically and experimentally.1,2

These phenomena, which can commonly be observed
in optics, can have applications in various domains.
For example, when a waveguide is placed in the vi-
cinity of a prism illuminated in total reflection, under
certain conditions the incident light can be coupled
into the guide. This phenomenon has been used to
detect bulk inhomogeneity in optical materials3 or to
determine the refractive index and the thickness of
thin films for filtering applications.4 Electromag-
netic resonances can also be observed when the re-
fractive index of a layer placed within a stack of thin
films is spatially periodically modulated. If the
stack is designed so that a propagation mode of the
structure can be excited, then for a given angle of
incidence a resonance can be obtained at a given
wavelength.5 In this case the guided mode is excited
by the evanescent field generated by the grating. It
has been shown that, in certain cases, the reflectivity
can reach 100%.5,6 Because the phenomenon is
strongly sensitive to the wavelength, this technique

is used to design narrow-band filters for telecommu-
nication applications.7 Resonance phenomena can
also be observed by use of a metallic plane surface.
In this case a prism is used to couple the incoming
light into a surface wave whose amplitude decreases
rapidly during propagation.8 The resonance phe-
nomenon leads to a strong variation of the structure’s
reflection coefficient. The amplitude of the dif-
fracted light is strongly sensitive to the optogeometri-
cal parameters of the structure and in particular to
the refractive index of the region located in the vicin-
ity of the metallic surface. Such sensitivity is used
in commercial systems to detect low concentrations of
species in chemistry or biology �see, for example,
Refs. 9 and 10�. The study of resonances on metallic
plane surfaces can be extended to diffraction grat-
ings. It has been shown that in certain conditions
an incident plane wave can be totally absorbed by a
shallow grating.11 For a bare grating this phenom-
enon, which was first studied by Wood,12 occurs only
in TM polarization. The quick variation of the dif-
fracted efficiencies �with respect to the incidence an-
gle or to the wavelength� can be explained only by use
of electromagnetic theory. Some studies have
shown that the resonance is due to the existence of a
pole in the diffracted efficiency.13 As in the case of a
plane surface, the resonance phenomenon can be
used to study the presence of chemical reactions that
occur near the grating’s surface.14

Electromagnetic resonances of metallic gratings
are usually detected by measurement of the varia-
tions of the diffracted efficiencies. However, it can
be shown that the phases of the diffracted waves
exhibit a particular behavior. In a previous paper
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Giovannini et al. measured such variations by means
of an angle-resolved ellipsometer.15 In the current
paper, the variations of the phase of the diffracted
waves relative to the angle of incidence are detected
by means of an interferometric setup that has proved
insensitive to thermal fluctuations or vibrations.
The study of the phase both theoretically and exper-
imentally allows us to determine the optogeometrical
parameters of the grating. In certain cases we have
found that the phase is more sensitive than the effi-
ciency on the optogeometrical parameters of the grat-
ing. Some examples are presented to illustrate this
property, which can be used to improve the sensitiv-
ity of systems used for sensing purposes.

In Section 2 we recall some well-known theoretical
results on resonance phenomena. Section 3 pro-
vides an interferometric method to measure the
phase of diffracted waves. In Section 4 we describe
the experimental setup we developed to measure
both the intensity and the phase of the diffracted
orders of a metallic grating. In Section 5 we de-
scribe the configuration used for the measurements.
In Section 6 we present the obtained results. These
results were used, in Subsection 7.A, to determine, by
use of a numerical code based on a rigorous method,
the optogeometrical parameters �groove distance,
height, refractive index of the metal, thickness and
refractive index of a layer of oxide� of the grating. In
Subsection 7.B we confirm that the phase can be
calculated from a simple formula. In Section 8 we
show that our principle of measurement can be used
to improve the performances of sensing systems
based on the detection of resonance phenomena.

2. Plasmon Resonances of Metallic Gratings

Wood12 experimentally observed the anomalies of dif-
fraction gratings in 1902. Since then we have been
using the term Wood anomaly to describe every phe-
nomenon that occurs when a slight modification of
the characteristic parameters of the incident wave
produces a strong variation of the grating efficiency.
Among these singularities we take interest in those
that result in a drop in the total diffracted efficiency
when one of the diffracted orders propagates in the
vicinity of the grazing direction. These phenomena
can be observed with imperfectly conducting metallic
gratings, in TM polarization �H parallel to the
grooves�. These singularities are commonly known
as plasmon anomalies.16

From a mathematical point of view this kind of
anomaly is a solution of Maxwell’s equations with the
associated boundary conditions, without any wave
impinging on the structure. Researchers refer to
such a solution as the resolution of a homogeneous
problem13; the corresponding physical phenomenon
is generally called a resonance. This phenomenon is
attributed to the collective oscillations of electrons
near the surface. The corresponding surface wave,
which propagates along the periodic structure, car-
ries energy parallel to the mean plane of the surface
but is attenuated during propagation. Thus it is
common to speak of leaky wave.

Let us consider a metallic grating illuminated at
incidence angle �. The wavelength-to-groove spac-
ing ratio is chosen such that, in the incident medium,
only the zero order propagates, with an amplitude B0.
The grating acts as a mirror, since the incident and
the diffracted orders are symmetrical relative to the
grating’s normal. Thus the only interesting quan-
tity from an experimental standpoint is B0, which
depends on �0 � sin �. It also depends on the opto-
geometrical parameters of the grating, and it can be
calculated by means of solving Maxwell’s equations.
Besides, in the case of periodic metallic surfaces, it
has been shown16 that B0��0� can be approximated by
a simple expression:

B0��0� � r��0�
�0 � �z

�0 � �p , (1)

where r��0� is the Fresnel reflection coefficient for a
plane surface and �Z and �P are two complex num-
bers called zero and pole, respectively, which can be
calculated numerically. It has been shown that the
real parts of the pole and the zero of B0 are close
together.11 Consequently the efficiency of the order
exhibits a minimum value when sin � � Re��Z� �
Re��P�.

Assuming that �Z � �	Z 
 i��Z and �P � �	P 
 i��P

with �	Z � �	P, the argument of B0 can be written as
follows:

arg�B0��0�
 � arc tan� ���Z

�0 � �	Z� � arc tan� ���P

�0 � �	P�
� arg�r��0�
. (2)

The study of this function reveals a significant vari-
ation near �0 � �	Z. Thus the resonance phenome-
non leads not only to a drop in the efficiency but also
to a significant variation of the phase of the diffracted
wave.

For dielectric coated gratings another type of res-
onance can be observed, with absorption weaker than
for bare metallic gratings. When the layer is thick
enough, the incoming wave can be coupled into a
guided wave propagating within the layer. In this
paper we are not concerned with this kind of reso-
nance. In the more general case of a bare grating
diffracting several radiative orders, the authors dem-
onstrate that an element Sn,m��0� of the scattering
matrix S defined by

B � SA,

where A and B are vectors representing the normal-
ized incident and the diffracted amplitudes, respec-
tively, can be written as13

Sn,m��0� � Cn,m

�0 � �n,m
Z

�0 � �P , (3)

where Cn,m is a complex number that depends on the
optogeometrical parameters of the grating. Note
that the pole is the same for all the orders.
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3. Method of Measurement

In optics, measurements do not allow one to deter-
mine the phase of the diffracted waves directly. To
solve this problem, we designed an experimental
setup whose mainstay is an interferometer insensi-
tive to mechanical drifts or thermal fluctuations.
This section is devoted to the description of the
method we used to measure both the efficiencies and
the phase of the diffracted orders as a function of the
incidence angle.

We consider the interference between two different
orders propagating in the same direction, created by
two coherent incident beams in TM polarization.
The two beams illuminate the same area of the grat-
ing surface under two different incidence angles de-
noted �1 and �2 �see Fig. 1�. These angles are chosen
so that orders 0, 1, and 2 diffracted by the grating
when illuminated by beam 1 will propagate in the
same direction as orders �1, 0, and 1, respectively,
created by beam 2 �Fig. 1�. We denote Bn,m the am-
plitude of the nth order created by the mth beam
�m � �1, 2��, with �n,m the angle between the grating’s
normal and the direction of propagation of the corre-
sponding order, and In,m � �Bn,m�2 the intensity.
The light intensity that results from the coherent
superposition of the two incident beams in the direc-
tion �2,1 � �1,2 �channel a� is given by

Ia � �B2,1��0� � B1,2��0��2, (4)

Ia � I2,1 � I1,2 � 2�I2,1I1,2�
1�2cos �a, (5)

where �a is the phase shift defined by

�a �
2��

�
� arg�B2,1� � arg�B1,2�. (6)

The two interfering beams propagate from the beam
splitter to the grating’s surface. The optical path
difference between them is � �see Fig. 2; from the
surface to the detector, the optical paths of the two
diffracted waves are identical�. Equation �6� shows
that �a depends on �, which is sensitive to thermal
fluctuations or mechanical drifts in the setup. This
drawback can be eliminated if the grating diffracts at
least three orders in the conditions of illumination, by
use of a reference channel �measurement channel b�.
In this channel we observe another signal produced

by the interference between two other diffracted
orders—each one produced by one of the incident
beams. The analysis of the signals obtained in chan-
nels a and b permits us to calculate the phase differ-
ence

���1� � ���a��1, �2� � �b��1, �2�


� �(arg�B2,1��1�
 � arg�B1,2��2�


� �arg�B1,1��1�
 � arg�B0,2��2�
�) (7)

as a function of �1. Equation �7� shows that � is
independent of �. The diffracted orders are super-
imposed; thus �1 and �2 are not independent. For
this reason � can be considered to be a function of
variable �1 only. Since the diffracted orders pro-
duced by the two incident beams are superimposed,
when either incident beam is such that one of the
diffracted orders propagates in a grazing direction,
the same situation is obtained for the other. As a
consequence, a plasmon resonance may occur for all
the orders involved in the interference phenomenon.

4. Experimental Setup

The experimental setup we developed to measure the
phase difference ���1� is presented schematically in
Fig. 2.

The He–Ne laser �wavelength � � 0.633 �m� is TM
polarized. The beam splitter �BS� produces two
beams. Beam 1 propagates through an electro-optic
lithium niobate phase modulator �EOPM�. Beam 2
is coupled into a polarization-maintaining optical fi-
ber. The collimated output beam illuminates the
same area of the grating as beam 1.

The grating and the optical fiber can be rotated
independently around a vertical axis. Thus both in-
cidence angles �1 of beam 1 and �2 of beam 2 can be
adjusted separately. Both beams are in the same
plane of incidence. �1 and �2 are chosen so that the
orders produced by the incident beams may be super-
imposed. The detectors are silicon photodiodes used
in a photovoltaic mode. To observe the interference

Fig. 1. Schematic representation of incident beams 1 and 2 and of
the diffracted orders. �1 and �2 are the angles of incidence of
beams 1 and 2, respectively.

Fig. 2. Schematic of the experimental setup. The two detectors,
the grating, and the optical fiber can be rotated independently
around a vertical axis. The length of the optical path delay may
be adjusted. The choice of an appropriate optical density allows
one to maximize the amplitude modulation to continuous signal
ratio. BS, beam splitter; EOPM, electro-optic lithium niobate
phase operator.

1 November 2001 � Vol. 40, No. 31 � APPLIED OPTICS 5577



phenomena for all incidence angles �1 and �2, the
detectors are mounted on separate arms that can
rotate around a vertical axis.

By applying a sawtooth voltage modulation on the
EOPM, whose amplitude corresponds to a 2� phase
shift at operating wavelength, we induce a linear
phase modulation in beam 1. This allows us to ob-
tain a pure cosine electrical signal in each channel,
whose frequency is equal to that of the sawtooth sig-
nal. By using a lock-in amplifier in its phase detec-
tion mode, we measure the phase term � of Eq. �7�.

The use of an adjustable optical-path-delay assem-
bly allows rough equalization of the optical path of
the two arms of the interferometer, which prevents a
possible decrease in the visibility of the interference
phenomena induced by the relatively small coherence
length of the source ��10 cm�. Using an optical den-
sity, we can adjust the intensity of the two beams in
order to increase modulation amplitude to continuous
signal ratio. The optical density is chosen so that
maximum visibility of the interference phenomenon
is obtained in channel b, i.e., the reference channel of
the lock-in amplifier.

5. Measurement

A holographic aluminum grating with 924
grooves�mm �grating period d � 1.082 �m� was stud-
ied by use of the system described in Section 4. In
normal incidence the grating diffracts three orders at

� � 0.633 �m. The grating formula applied with
�n,1 � �90° allows us to calculate the incidence angle
�1L for which the nth order becomes radiative,

�1L � arc sin��1 � n
�

d� . (8)

Figure 3 shows the number of diffracted orders as a
function of the incidence angle. Because the dif-
fracted orders created by the two incident beams are
superimposed, �1 and �2 must verify

sin �2 � sin �1 � k
�

d
, (9)

where k is an integer. Because of the grating period
and the operating wavelength, k can be equal either
to 
1 or to �1. The range of variation of �1 has been
chosen to

• excite a resonance,
• avoid problems that are due to the obstruction

of the beams by mechanical parts,
• work at low-incidence angles to limit the size of

the illuminated surface of the grating.

Fig. 3. Diffracted orders for different values of the angle of inci-
dence. Grating period d � 1.082 �m and wavelength � � 0.633
�m. Shaded areas correspond to the variation range of i1 and i2

around a resonance. Measurements are made on the highlighted
orders.

Fig. 4. Measured efficiencies of the orders involved in the determination of differential phase �. The measurements are made in the
vicinity of two resonances. Incidence angles �1 and �2 are linked by Eq. �9�. �a� Efficiencies of diffracted orders 1 and 2 as a function of
�1 �incident beam 1�. �b� Efficiencies of diffracted orders 0 and 1 as a function of �2 �incident beam 2�.

Fig. 5. Measured phase difference � as a function of �1.
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These considerations led to the choice of k � 1. Con-
sequently, if �1 varies in the interval ��1

min; �1
max
,

then �2 varies in the interval

�arc sin�sin �1
min �

�

d� ; arc sin�sin �1
max �

�

d�� .

�1 was chosen to vary within the interval ��29°; �23°

and �2 within the interval �5.73°; 11.18°
 �see Fig. 3�.

6. Experimental Results

The sample is a holographic aluminum-coated sinusoi-
dal grating. The grating period d � 1.082 �m was
determined by use of a Littrow mount. We measured
the efficiencies, in TM polarization, of four diffracted

orders as a function of the incidence angle by using the
experimental setup described in Fig. 2. As predicted
by theory, the efficiency of the 
1 order was found to be
symmetric to that of the �1 order with respect to �1 �
0. In addition, we noted that the efficiency in the �1
order for an incidence angle �1 varying near the reso-
nance is identical to the efficiency in the 
1 order for
an incidence angle �1	 so that sin �1 � k���d� � sin �1	.
This can be written by use of the notation in Section 3
in the form I�1,2 � I1,1.

Figure 4 shows the experimental results obtained
when the grating is illuminated in the vicinity of the
resonance.

Phase � was measured relative to the angle of in-

Fig. 6. Comparison between experimental results �plain solid curve� and numerical results �marked curve�. �a� Efficiencies of orders 1
and 2 as a function of �1 �incident beam 1�. �b� Efficiencies of orders 0 and 1 as a function of �2 �incident beam 2�. �c� Phase difference
� as a function of �1.

Table 1. Values of the Complex Pole and Zero and of the Square Modulus of Constant C for Each Order Involved in the Calculation of Differential
Phase �a

Order 1, Beam 1 Order 2, Beam 1 Order 0, Beam 2 Order 1, Beam 2

�C�2 2.553 � 10�1 2.6929 � 10�2 3.8762 � 10�1 2.2219 � 10�1

�	Z �4.3546 � 10�1 �4.3928 � 10�1 1.48556 � 10�1 1.48781 � 10�1

��Z 9.807 � 10�3 4.543 � 10�3 1.6238 � 10�2 1.5796 � 10�2

�	P �4.37032 � 10�1 �4.37032 � 10�1 1.4929 � 10�1 1.4929 � 10�1

��Z �1.5831 � 10�2 �1.5831 � 10�2 1.4889 � 10�2 1.4889 � 10�2

aWe determined the values by fitting efficiency curves, by using Eq. �3�.
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cidence. When the sawtooth signal applied to the
electro-optic phase modulator is used as the reference
signal of the lock-in amplifier, the phase measure-
ment becomes extremely sensitive to the instabilities
of the setup. This effect clearly brings out the ad-
vantage of the configuration described in Fig. 2. �

was measured with an accuracy better than 1° for a
bandpass of 1 Hz. The result of the phase measure-
ment is shown in Fig. 5. We can observe a strong
variation of the phase � near the plasmon resonance.

The repeatability of the measurement has proved
be better than 1% in the measurement span.

The experimental results were used to determine
the optogeometrical parameters of the grating. The
refractive index of aluminum, the thickness of the
oxide layer, and the groove’s height were determined
with approximately 5% accuracy by fitting of the ex-
perimental curves to the curves given by a numerical
simulation.

7. Numerical Calculations

A. Resolution of Maxwell’s Equations

Calculations were made with a computer code based
on the differential formalism17 with the S-matrix al-
gorithm.18,19 The code gives the efficiency and the
phase for each diffracted order. Both the curves giv-
ing the efficiencies and those giving the phase � were
taken into account. A plane area on the aluminum-
covered substrate allowed us to determine the reflec-
tion coefficient R of the metallic surface. A value of

Fig. 7. Comparison between experimental results �plain solid curve� and numerical results �marked curve� in the vicinity of the
resonance. The efficiencies are calculated from Eq. �3�. For the calculation the values of the parameters of Table 1 have been taken. �a�
Efficiency of order 1 produced by beam 1 as a function of �1 �incident beam 1�. �b� Efficiency of order 2 as a function of �1 �incident beam
1�. �c� Efficiency of order 0 produced by beam 2 as a function of �2 �incident beam 2�. �d� Efficiency of order 1 produced by beam 2 as a
function of �2 �incident beam 2�.

Fig. 8. Comparison between measured phase � �plain solid curve�
and phase � calculated from Eqs. �2� and �7� �marked curve�. For
the calculation the values of the parameters of Table 1 have been
taken.
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R � 0.9 was found at � � 0.633 �m. Knowing this
quantity allowed us to link the real part n and the
imaginary part k of � �� � n 
 ik, with i2 � �1� as
given by Eq. �10�:

k � ��n2 � 1 � 2n
1 � R
1 � R�1�2

. (10)

To obtain good agreement between experimental
results and numerical ones, we had to consider a thin
layer of alumina �Al2O3� of thickness hox � 12 nm and
with a refractive index �ox � 1.63. Figure 6 shows
the results obtained with grating depth h � 0.102
�m, and the refractive index of aluminium � � 1.5 

i7.33. Good agreement is found between numerical
results and experimental ones. The small discrep-
ancies obtained for the phase curves can be attrib-
uted to scattering effects produced by the roughness
of grating’s surface. The values found for the grat-
ing’s depth and for the period were confirmed by
atomic force microscopy measurements showing that
approximately 3% accuracy was obtained.

B. Research for the Poles and Zeros at the Resonance

Assuming that the efficiency of the diffracted orders
can be calculated from Eq. �3� in the vicinity of the

resonance, we searched for the zeros, the poles, and
the square modulus of complex constants Cn,m �see
Table 1� for the orders involved in the measurement,
by fitting the experimental curves. Note that all the
orders produced by the same incident beam have the
same pole. Moreover, the real part of a pole is close
to the real part of the corresponding zero. These
conclusions are in agreement with previous publica-
tions.16 Away from the resonance, Eq. �3� cannot be
used. The difference between experimental and nu-
merical results observed at �1 � �24.5° and �2 � 9.8°,
respectively, is due to the apparition of orders �1 and
order �2, respectively �see Fig. 3�. The obtained val-
ues allowed us to calculate the differential phase �
from Eqs. �7� and �2� analytically.

Figure 7 permits one to compare the efficiencies
calculated from Eq. �3�, by use of the values of the
parameters of Table 1, with those experimentally ob-
tained. One can observe that strong agreement is
found near the resonance.

The results shown in Fig. 8 concern phase �. Ex-
cept for the offset value of the curve numerically ob-
tained, good agreement is found between theoretical
results and experimental ones. A fit on the effi-
ciency curves allows one to determine only �Cn,m�2.

Fig. 9. Sensitivity to the thickness of the region located near the grating’s surface. Numerical results obtained for h � 0.11 �m, � �
1.23 
 i9.6, �ox � 1.63, 924 grooves�mm, and hox � 13 nm �plain solid curve� or hox � 15 nm �marked curve�. �a� Efficiencies of orders
1 and 2 as a function of �1 �incident beam 1�. �b� Efficiencies of orders 0 and 1 as a function of �2 �incident beam 2�. �c� Differential phase
� as a function of �1.
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Then the arguments of complex constants Cn,m are
undetermined. This problem explains the offset of
the numerical curve of Fig. 9, which is equal to
��arg�C2,1� � arg�C1,2� � arg�C1,1� 
 arg�C0,2�
.
The results of Fig. 9 confirm the validity of Eq. �3� for
describing the amplitude of the diffracted field near
the resonance.

8. Advantages of the Method

The main advantage of the measurement method
described in this paper is that it does not require
either precise alignments or mechanical or thermal
stabilization. Another advantage is that the sen-
sitivity of the phase to the external parameters �re-
fractive index of a region located near the grating’s
surface, for example� can be increased in the vicin-
ity of a resonance. Indeed it is possible to deter-
mine a configuration for which the phase variations
of the two orders that interfere in channel a have
opposite signs. In this case the variation of differ-
ential phase � would be stronger than that of the
phase of each order. This effect, which cannot be
obtained with a polarimetric configuration, can be
useful for sensing applications. Moreover, phase
measurements provide useful information about
diffracting structures. Figure 9 shows that a small
variation of the thickness of the oxide layer induces
only a slight variation of the diffracted efficiency.
Yet the variation of the thickness causes the phase
to vary strongly.

9. Conclusion

We have demonstrated the operating principle of an
interferometer designed to measure the phase differ-
ence between two orders diffracted by a grating, as a
function of the incidence angle. The measurement
method has been applied to study electromagnetic
resonances and used to determine the optogeometri-
cal parameters of a metallic grating. A theoretical
study of the phase variation around the resonance
has been carried out, and good agreement has been
found between numerical results and experimental
ones. We have shown that the interferometric setup
described in this paper can be used for sensing pur-
poses. The possibility of obtaining information
about the phase of the diffracted wave opens the way
for the study of inverse problems in optics.

The authors are indebted to Hassan Akhouayri for
helpful discussions and to Ludovic Escoubas for man-
ufacturing the grating.
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