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Information-theory-based snake adapted to
inhomogeneous intensity variations
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A new snake-based segmentation technique of a single object (simply connected) in the presence of inhomo-
geneous Gaussian noise is proposed, in which the mean in each region is modeled as a polynomial function
of the coordinates and which is thus adapted to inhomogeneous illumination. It is shown that the minimi-
zation of the stochastic complexity of the image, which can be implemented efficiently, allows one to auto-
matically estimate not only the number and the position of the nodes of the polygonal contour used to de-
scribe the object but also the degree of the polynomials that model the variations of the mean. © 2007
Optical Society of America
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Noisy image segmentation is a key problem in image
processing. This paper addresses the particular case
where the image is composed of a single target (sim-
ply connected) lying on a background. The goal is
then to retrieve as precisely as possible the contour of
this target, i.e., the segmentation task is reduced to a
more restricted contour estimation task. Instead of
detecting the edges in the image and then linking
them to obtain the shape of the object, snakelike ap-
proaches [1] generally consist of deforming a curve.
One of the main issues of such snake methods is re-
lated to the choice of the criterion used to drive the
curve to the desirable position [2–4].

In [4], a statistical approach that presents clear op-
timal properties in the context of statistical estima-
tion theory for a given image model was developed
with a polygonal description for the snake. This
method has been generalized in [5] and has been
implemented using a fast computation scheme. Fur-
thermore, it has been demonstrated that the number
of control points for a B-spline representation of the
contour [6] or the number of nodes for a polygonal
contour [7] can be estimated by minimizing the sto-
chastic complexity of the image [8].

All these statistical techniques rely on the hypoth-
esis of statistically homogeneous regions. The pixel
gray levels in each region are thus assumed to be dis-
tributed with a probability density function (pdf)
whose parameters remain constant all over the re-
gion.

In the following, a more general model is consid-
ered, involving the possibility of inhomogeneous illu-
minations. More precisely, the pixel gray levels are
assumed to be distributed inside each region as a
Gaussian pdf with a constant variance inside each re-
gion but whose mean parameter can vary as a poly-
nomial function of the image coordinates. To reduce
the computation complexity, at most second-degree
polynomials will be considered for the experimental
validations (i.e., constant, affine, or quadratic polyno-
mials), even if the theoretical developments are valid

whatever the polynomial degree is. Such variations of
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the mean values, which can notably be caused by
nonhomogeneous image enlightenment or when ob-
jects with different surface orientations are observed,
have already been taken into account, notably in [9]
in a minimum description length [8] region merging
scheme.

In this paper, a polygonal snake whose convergence
relies on the minimization of the stochastic complex-
ity of the image is proposed. This approach allows
one to automatically estimate the number of nodes of
the polygon and thus to regularize the contour with-
out needing to tune any parameter in the optimized
criterion. Moreover, it is shown that the maximum
likelihood (ML) estimate of the polynomial coeffi-
cients and of the variance can be obtained with a fast
algorithm.

Let us consider an image s= �s�x ,y�� composed of
two regions �r, r� �a ,b�, where index a denotes the
target region and b the background region. In each
region �r, the pixel gray levels are assumed to be in-
dependent realizations of Gaussian random vari-
ables, with a variance �r

2 constant over the whole re-
gion (but different between the regions). On the
contrary, the mean parameter of this Gaussian pdf is
assumed not to be constant inside each region but to
vary as a degree d�2 polynomial function of the
�x ,y� coordinates. The mean parameter in �r is thus
approximated with

mr
d�x,y� = �

0�i+j�d
ar

d�i,j�xiyj with �i,j� � N2, �1�

where ar
d�i , j� are the polynomial coefficients.

Let w= �w�x ,y�� be a two-valued function that de-
notes a partition of the image so that w�x ,y�
=r⇔ �x ,y���r. The stochastic complexity ��w� of the
image s associated with the partition w is the sum of
three terms: the code length �L�w� of the gray-level
description when the partition w and the parameters
of the pdf inside each region are known, the code

length �P�w� of the description of the pdf parameters
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inside each region, and the code length �C�w� of the
description of the snake contour, i.e., the partition w.

It has been shown in [6,7] that in the case of a
single simply connected object, the approximation for
the description of the contour �C�w�=k log N can be
used, where k is the number of nodes of the snake
polygon and N is the pixel number in the image.

According to [8], the code length needed to encode
the pdf parameters in region �r is equal to
��dr� /2 log Nr, where Nr is the number of pixels in �r
and ��dr� is the number of parameters of the pdf in
�r, when using a polynomial of degree dr. The pdf in
�r depends on the mean parameters �ar

dr�i , j� , i+ j
�dr� and on the parameter �r, leading to a total
number of parameters equal to ��dr�=1+ ��dr+1�
��dr+2�� /2 [9]. The total code length to encode the
pdf parameters in both �a and �b is thus equal to

�P�w� = �
r��a,b�

��dr�

2
log Nr, ��dr� =

dr
2 + 3dr + 4

2
.

�2�

The last term �L�w� is equal to �L�w�=
−�r��a,b�L��r ��r

dr�, where L��r ��r
dr� is the log-

likelihood of the pixel gray levels inside region �r
and where �r

dr is the parameter vector that embedded
the parameters �r and �ar

dr�i , j�� of the Gaussian pdf
in �r, when using a polynomial of degree dr for the
mean. Since �r

dr is a priori unknown, it needs to be
estimated. Because of good behaviors of ML esti-
mates in the exponential family [10,11], this param-
eter will be estimated in the ML sense, which is
equivalent to minimizing the stochastic complexity.
The log-likelihood inside �r is equal to

L��r��r
dr� = −

Nr

2
log 2��r

2 − �
�x,y���r

�s�x,y� − mr
dr�x,y��2

2�r
2 ,

�3�

where mr
dr�x ,y� depends on �ar

dr�i , j��. The ML esti-
mates âr

dr�i0 , j0� of ar
dr�i0 , j0� for each couple �i0 , j0� is

obtained from �L��r ��r
dr� /�ar

dr�i0 , j0�=0, leading to

�
i+j�dr

Sr�i0 + i,j0 + j,0�âr
dr�i,j� = Sr�i0,j0,1�, �4�

where Sr�i , j ,k�=��x,y���r
xiyj�s�x ,y��k. Since the differ-

ent terms Sr�i , j ,k� are simple summations over �r,
each of the polynomial coefficients âr

dr�i0 , j0� can be
obtained by inverting the linear system of Eq. (4).

Moreover, the ML estimate of the variance �r
2 in

each region is equal to

�̂r
2 =

1

Nr
	Sr�0,0,2� − 2 �

i+j�dr

Sr�i,j,1�âr
dr�i,j�

+ �
i+j�dr

�
k+l�dr

Sr�i + k,j + l,0�âr
dr�i,j�âr

dr�k,l�
 .

�5�
Finally, when substituting these expressions into Eq.
(3), the following profile log-likelihood is obtained [4],
in which each unknown parameter has been substi-
tuted with its ML estimate:

L��r��̂r
dr� = −

Nr

2
log�2��̂r

2� −
Nr

2
. �6�

Using the expression of �C�w� and Eqs. (2) and (6),
the stochastic complexity of an image can thus be cal-
culated. It can be shown that using polynomials of
degree d, �5d2+9d+6� /2 summations Sr�i , j ,k� over
the regions have to be performed (including Nr
=Sr�0,0,0�), i.e., 3 summations when d=0, 10 when
d=1, 22 when d=2, and 39 when d=3. This increase
notably explains why experimental results have been
restricted to d�2. These summations over the target
and the background can be very time consuming
since they must be re-evaluated after each modifica-
tion of the partition w. Fortunately, some methods
have been proposed to provide fast computation of
such summations [5,12]. In our case, the methodol-
ogy introduced in [5] has been implemented, which
consists of replacing these 2D summations over the
regions with 1D summations over their contour. In
the following, the computation time t (in seconds) ob-
tained on a standard PC with a 3.2 GHz processor
will be shown under each segmentation result.

The optimal partition wopt minimizes the stochas-
tic complexity ��w�. In the following, the two-step
minimization algorithm proposed in [7] has been
implemented. In the first step, the number of nodes is
progressively increased while the contour converges
to capture all the details of the object. The second
step consists of reducing the complexity of the con-
tour to estimate the number of nodes. This two-step
technique allows one to estimate the number of nodes
and their position for highly nonconvex objects (see
[7] for details).

In Fig. 1 (top row), different segmentation results
are presented on a gray-scale video image, when im-
posing a polynomial degree d for the mean for both
the target and the background, equal to d=0, 1, and
2. The case d=0 illustrates the result obtained using
a classical Gaussian model [7]. This approach can
easily be generalized to multicomponent images, e.g.,

Fig. 1. (Color online) Segmentation of two video images
�320�240 pixels�: a gray-scale image of a spoon (top row)
and a color image of an orange lying on a red fabric (bottom
row). Column 1, initial contour; columns 2–4, segmentation
results and computation time t using a polynomial for the
mean with a degree d=0 (column 2), d=1 (column 3), and

d=2 (column 4).
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for the color image of Fig. 1 (bottom row). In the case
where the three RGB components are supposed to be
independent (see, notably, [9] for the correlated case),
the pdf of a color pixel is the product of the pixel
gray-level pdf of each component. The term �L ��P�
for the color image is thus simply the sum of the
terms �L ��P� obtained on each component (see [13]
for details), whereas the term �C remains un-
changed. The segmentation results obtained on this
color image are shown in the bottom row of Fig. 1.
These two experiments show that in case of nonho-
mogeneous enlightenment of the scene, constant and
affine models for the mean variations can be insuffi-
cient: using a quadratic model can thus greatly im-
prove the segmentation results.

In the examples presented in Fig. 1, the degree of
the polynomial function for the mean was assumed
known and identical in every region. We propose in
the following to automatically estimate the polyno-
mial degree d̂r inside each region �r by minimizing
the stochastic complexity of the image, which leads to
d̂r=arg mind��0,1,2����d� /2 log Nr−L��r � �̂r

d�� and thus

��w� = �C�w� + �
r

min
d
	��d�

2
log Nr − L��r��̂r

d�
 .

�7�

This new expression of the stochastic complexity no
longer requires knowledge of the polynomial degrees.

This approach is illustrated in Fig. 2 with two syn-
thetic images corrupted with Gaussian noise [Figs.
2(a) and 2(c)]. These results confirm the good behav-
ior of the algorithm, notably concerning the estima-
tion of the number and position of the nodes of the
polygonal contour and the degrees of the mean poly-
nomials. Indeed, the estimated polynomial degrees
correspond to their true value, i.e., da=0 and db=2 in
Figs. 2(b) and 2(d). The polynomial degrees can also
be estimated on the two real images of Fig. 1, as
shown in Figs. 3(a) and 3(b), where both the target
and the background are estimated to be quadratic
polynomials, which is coherent with the results pre-
viously obtained in Fig. 1.

In this Letter, a new polygonal snake algorithm
has been proposed to deal with noisy images cor-
rupted with Gaussian noise whose mean is inhomo-
geneous inside the inner or the outer regions of the
snake and can vary as a polynomial function of the

Fig. 2. Segmentation with estimation of the polynomial
degree of the mean inside each region. (a), (c) synthetic im-
ages �256�256 pixels� corrupted with Gaussian noise (da

=0, db=2); (b), (d) segmentation results (d̂a=0, d̂b=2). The

initial contours are shown in (a), (c).
image coordinates. This segmentation algorithm is
based on the minimization of the stochastic complex-
ity, leading to a criterion without tuning parameter,
which allows one to automatically estimate the posi-
tion and the number of nodes of the polygonal con-
tour and the degree of the polynomial function of the
mean gray-level values inside each region. The com-
putation of this stochastic complexity involves only
simple summations over the regions, which can be
implemented with an efficient technique.
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