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Stochastic complexity integral image based
technique for fast video tracking
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We propose a new method based on the minimization of the stochastic complexity for fast and efficient track-
ing adapted to video images with a static camera. The obtained criterion combines the advantages of
background-subtraction-based techniques and those of using measures of similarities to a target model with-
out requiring any tuning of a weighting parameter. It is then demonstrated that this approach can be imple-
mented with a fast integral image technique to estimate the location and the rectangular shape of the target
in a few milliseconds. © 2008 Optical Society of America
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Tracking in video image sequences is a key point in
many applications and particularly in video surveil-
lance. Owing to real-time constraints, fast and effi-
cient solutions are required. Moreover, in the general
case, the tracked target can evolve in depth and is
nonrigid. Therefore, not only the target location but
also its size have to be estimated. In this Letter, a
new technique based on the minimization of the sto-
chastic complexity [1] and on an integral image [2]
implementation is proposed. It is shown that it al-
lows one to perform target tracking very quickly
without requiring assumptions on the target size or
embedded parameters that need to be tuned by the
user, and with simple probability density functions
(PDFs) for the background and target gray levels.
The particular case of a static camera is studied,
which makes it possible to model the fluctuations of
the background [3] during a learning period. This as-
sumption is combined with the knowledge of the tar-
get gray levels extracted from the previous frames.

Let bt�x ,y� be the background value in pixel �x ,y�
and at time t. In the following, bt�x ,y� is assumed to
be the realization of a random stationary variable
with a PDF P�x,y�

B that depends on the coordinates of
the considered pixel. This PDF P�x,y�

B can be estimated
during a calibration step or online. Let st be the im-
age at time t. Background subtraction approaches
can be implemented [3–5] to detect whether or not
the pixel value st�x ,y� should be considered as a real-
ization of the background PDF P�x,y�

B . Blob-matching
techniques [3] are then required to recover the target
location from this binary detection map. Although
these techniques can lead to efficient tracking algo-
rithms, the main limitation is that tracking and de-
tection processes are performed independently.

Other approaches were proposed [6–8] that directly
try to recover a known target in the image. Generally
these approaches consist of finding the target loca-
tion that optimizes a measure of similarity between

the features extracted from target candidates at time
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t and the expected features of the target. Neverthe-
less, these approaches do not take benefit from the
learned background PDF P�x,y�

B . Moreover, as demon-
strated in [9], the estimation of the target size cannot
be directly addressed with such approaches without
strong regularization.

The method proposed in this Letter takes into ac-
count that the camera is fixed and that the radiom-
etry of the target is partially known. As shown in the
following, these two hypotheses allow one to cope
with the aforementioned limitations.

Let � denote a set of pixels that correspond to a
candidate target, and let �C be the complementary
region of � in st. The stochastic complexity �t��� of
the image st is defined as the code length needed to
encode st with entropic codes and with a given candi-
date target region �. This code length is the sum of
three terms:

�t��� = �shape
t + ��

t + ��C
t . �1�

The first term �shape
t corresponds to the encoding of

the target shape �, and the two others, denoted ��
t

and ��C
t , correspond to the encoding of the gray level

values of the pixels inside � and �C, respectively.
Since the camera is assumed to be fixed, it is useless
to directly encode the pixel values inside �C, but only
their fluctuations with respect to the previously
learned background model P�x,y�

B that are assumed
spatially independent. In this case, according to
[1,10], the code length necessary to encode the pixel
value st�x ,y� [with �x ,y���C] can be approximated
by its Shannon quantity of information, i.e.,
log P�x,y�

B �st�x ,y��, leading to

��C
t = − �

�x,y���C
log P�x,y�

B �st�x,y��. �2�

On the contrary, inside �, the pixel values are sup-
A
posed to be in adequacy with the target model. Let P
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denote the target PDF (identical for the whole pixels
of the target) that has been estimated in previous im-
ages. Similarly, the code length required to encode
the pixel values inside � is thus

��
t = − �

�x,y���

log PA�st�x,y��. �3�

For the sake of computational cost reduction, the
PDFs PA and P�x,y�

B are assumed to be Gaussian PDFs
with mean and variance equal to mA and �A

2 for the
target and equal to mB�x ,y� and �B

2 �x ,y� for the back-
ground. It will be shown in the following that the pro-
posed stochastic complexity framework allows one to
obtain good results with such a simple modelization.

Equations (2) and (3) can then be directly rewritten
as

��
t =

N�

2
log 2� +

N�

2
log �A

2 +
1

2 �
�x,y���

fA
t �x,y�,

��C
t =

N�C

2
log 2� +

1

2 �
�x,y���C

fB
t �x,y�, �4�

with N� and N�C as the pixel number inside � and
�C and with

fA
t �x,y� =

�st�x,y� − mA�2

�A
2 ,

fB
t �x,y� = log �B

2 �x,y�

+
�st�x,y� − mB�x,y��2

�B
2 �x,y�

. �5�

To estimate very quickly the size and location of
the target, it is proposed to model the target shape
with a rectangle (with horizontal and vertical direc-
tions). In this case, the shape � can be encoded by
providing the coordinates of two opposite nodes of the
rectangle, which leads to a code length independent
on �. The minimization of the stochastic complexity
�t��� is then equivalent to the minimization of ��

t

+��C
t , i.e., the estimated target shape �̃t at time t is

the shape that minimizes ��
t +��C

t .
When defining

Kt =
1

2 �
�x,y��Image

fB
t �x,y�, �6�

the expression of ��C
t [Eq. (4)] can be rewritten as

��C
t = Kt +

N�C

2
log 2� −

1

2 �
�x,y���

fB
t �x,y�, �7�
leading to
��
t + ��C

t = Kt +
N

2
log 2� +

N�

2
log �A

2

+
1

2 �
�x,y���

�fA
t �x,y� − fB

t �x,y��, �8�

where N=N�+N�C is the number of pixels in the
whole image. Since Kt and N

2 log 2� do not depend on
�, the computation of ��

t +��C
t mainly requires the

summation over the shape � of the function ft�x ,y�
= fA

t �x ,y�− fB
t �x ,y�, which can be performed in a very

efficient way using integral images [2]. Indeed, the
summation of ft�x ,y� over the surface of any rectangle
�= ��x ,y�� �x1 ,x2�� �y1 ,y2�� can be obtained with four
additions, provided the integral image Ft�x ,y�
=�x0�x,y0�yft�x0 ,y0� has been precomputed:

�
�x,y���

ft�x,y� = Ft�x1,y1� + Ft�x2,y2� − Ft�x1,y2�

− Ft�x2,y1�. �9�

The minimization algorithm thus consists of first es-
timating the target translation and then in refining
the target shape by deforming its rectangular con-
tour as long as the stochastic complexity decreases.
To reduce the computation time, the integral image
at time t is calculated only on the search window,
which corresponds to the target shape �̃t−1 estimated
at time t−1 and dilated by 20 pixels. With such an
implementation, the estimation of the target size and
location can be performed in about 2 ms on 640
�480 pixel images [with a standard 3.2 GHz per-
sonal computer using Linux and C programming].

This approach is illustrated on the video sequence
of Fig. 1 (row 1), which has been acquired under
snowy weather conditions. The rectangular shape ob-
tained with the proposed method is displayed with
continuous contours (see Fig. 1, row 1). These track-
ing results have been performed with using only the

Fig. 1. Snowy video sequence �640�480 pixels�. Compari-
son of the results obtained with the proposed stochastic
complexity criterion (row 1) and the Bhattacharryya dis-
tance (row 2), when estimating both the target size and lo-
cation (continuous contours) or only its location (dashed
contours). Row 3, detection map obtained with a standard
background subtraction method. Results obtained on the L*

component of the L*a*b* color-space (average computation

time with the proposed method: 1.1 ms per frame).
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lightness information of the scene (the L* component
of the L*a*b* color space commonly employed in com-
puter vision tasks as in [11]), i.e., only scalar images
are used. As for all the results presented in this Let-
ter, the target parameters mA and �A

2 have been esti-
mated the first time the target appears, and the
background parameters mB�x ,y� and �B

2 �x ,y� have
been learned by averaging the time series �st�x ,y��t
before the target appears. To demonstrate the perfor-
mance of the proposed stochastic complexity crite-
rion, the results obtained when using a standard ap-
proach based on the Bhattacharryya distance (which
consists of maximizing the similarity between the es-
timated Gaussian PDF inside � and the expected
PDF PA for the target) are shown in Fig. 1 (row 2),
still with continuous contours. It clearly appears that
the proposed method based on the stochastic com-
plexity improves the results in comparison to the
Bhattacharryya-based approach, since neither the
target location nor its size have been correctly esti-
mated in that latter case. It is thus shown in Fig. 1
that even if only the location of the target is esti-
mated (the size of the shape is kept constant), the
target is better located with the approach proposed in
this Letter (dashed contours in row 1) than with the
Bhattacharryya distance (dashed contours in row 2).
Furthermore, the results of Fig. 1, row 3 demonstrate
that contrary to the proposed approach, a standard
background-subtraction method (based on the detec-
tion map �st�x ,y�−mB�x ,y�� /�B�x ,y�) is not sufficient
to recover the target without strong regularization to
detect the whole shape of the walking person and to
reduce the high number of false alarms due notably
to snowflakes.

The results obtained with the proposed approach
on another video sequence are shown in Fig. 2 (row
1), still using the L* component of the L*a*b* color
space. Although this sequence presents a highly tex-
tured background with lightness quite similar to the
target one, the target is correctly tracked all along
the video sequence.

This approach can be generalized to vectorial im-
ages. For example, in Fig. 2 (row 2), the a*b* chro-
matic components of the L*a*b* color space are used.

A B

Fig. 2. Tracking results obtained on two outdoor video se-
quences �640�480 pixels�. Row 1, results obtained on the
L* component of the L*a*b* color-space (2.0 ms per frame).
Row 2, results obtained on the a*b* chromatic components
of the L*a*b* color-space (1.9 ms per frame).
In this case, P and P�x,y� are assumed to be two-
dimensional Gaussian PDFs with mean mA and
mB�x ,y� and covariance matrix �A and �B�x ,y�.
Therefore, Eqs. (5) and (8) have to be generalized,
leading to

��
t + ��C

t = Kt + N log 2� +
N�

2
log��A�

+
1

2 �
�x,y���

�fA
t �x,y� − fB

t �x,y��, �10�

with

fA
t �x,y� = �st�x,y� − mA�†

���A�−1�st�x,y� − mA�,

fB
t �x,y� = log��B�x,y�� + �st�x,y�

− mB�x,y��†��B�x,y��−1�st�x,y�

− mB�x,y��, �11�

where † denotes vector transposition and �M� is the
determinant of the matrix M. As shown in Fig. 2 (row
2), this generalization to vectorial images still leads
to a reduced computation time. Moreover, these re-
sults demonstrate that this approach allows one to
deal with strong variations of the target size without
requiring the tuning of any parameter.

One of the perspectives of this Letter is to general-
ize it to a tracking framework for more complex
tracking situations, such as multitargets, disappear-
ing targets, and nonparametric PDFs while keeping
very low computational costs.
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