Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm

Héliène Krol
Institut Fresnel—UMR CNRS 6133
Domaine Universitaire de Saint Jérôme
13397 Marseille Cedex 20
France
and
CILAS Marseille
Zone Industrielle St Mitre
Avenue de la Roche Fourcade
13400 Aubagne
France
E-mail: helene.krol@cilas-marseille.com

Laurent Gallais
Mireille Commandré, MEMBER SPIE
Institut Fresnel—UMR CNRS 6133
Domaine Universitaire de Saint Jérôme
13397 Marseille Cedex 20
France

Catherine Grèzes-Besset, MEMBER SPIE
Didier Torricini
Guy Lagier
CILAS Marseille
Zone Industrielle St Mitre
Avenue de la Roche Fourcade
13400 Aubagne, France

1 Introduction

Laser-induced damage in optical components remains a key problem for high-power optics. Due to interaction of photons with dielectric materials, electromagnetic energy can be converted to electronic, thermal, chemical, and mechanical energy, and lead to irreversible degradation of optical properties (transmission, reflection, absorption), or damage. Thus much attention has been paid, during the last 30 years, to laser-induced damage in optical components, especially with regard to the study of fundamental mechanisms of damage initiation and growth. It is today widely accepted that material breakdown of large-bandgap transparent insulators irradiated by nanosecond-pulse lasers is often linked to the presence of nanosized defects, located at surfaces and interfaces or in the bulk of coatings and substrates. Different theoretical and experimental studies have confirmed that in the nanosecond regime, absorbing nanometer-sized particles could be responsible for the initiation of the damage process. In most cases these defects are not identified, since they themselves may be on the nanoscale and be distributed at low concentration. In the case of surface damage, defects could be contaminants coming from the steps of polishing and cleaning, and also from the deposition techniques and materials involved in the coatings.

One way to obtain information about these defects, also referred as nanoprecursors, is to plot laser damage probability curves. Indeed, the damage probability is linked to the probability of the presence of nanoprecursors under the irradiation laser beam, and depends on their physical characteristics: threshold and density. This probability can be expressed as a function of fluence, thanks to a statistical model that permits one to fit the curves and to extract useful information about nanoprecursors: the number of nanoprecursor classes and the density and threshold for each class. This analysis tool allows us to compare precursors involved in the different processes (polishing and cleaning) and to estimate their real influence on laser-damage resistance.

First we describe the experimental setup that permits acquisition of accurate probability curves at 1064 nm with small spot size, and then we describe the data analysis method. In Sec. 3, the influence of polishing and cleaning on the laser damage resistance of bare silica substrates is studied. In Sec. 4, the influence of polishing on the laser damage resistance of single and multilayer coatings at 1064 nm is presented.
2 Experimental Setup and Analysis Method

The apparatus used for laser-damage testing has been described in detail in another paper, and only a brief description is given here. The setup involves a YAG laser beam with 1064-nm wavelength and 5-ns pulse duration. The beam is focused down to a spot diameter of 12 μm (at 1/e²) on the sample. The energy of the incident beam is measured with a pyroelectric detector. The spatial profile of the focused beam is analyzed with an optical system linked to a CCD camera, and the temporal profile is measured with a fast photodiode.

Samples are observed through an in situ optical microscope (magnification, 50× to 1000×), used in Nomarski mode. Laser damage is defined as an irreversible modification of the sample observed through the microscope. An image of the irradiated zone is acquired before and after each shot, using a CCD camera connected to a computer. Then the difference between the two images is turned into a binary image. The damage criterion is defined as a given number of white pixels. A resolution better than 1 μm is reached.

The damage test procedure 1-on-1 is used to measure laser damage probability curves on our samples. We obtain these curves by counting the number of damaged regions at each fluence \( F \) in order to estimate the probability curve \( P(F) \). Each curve \( P(F) \) is plotted with 1000 data points that involve 20 different fluences and 50 tested regions at each fluence.

We link the probability of damage, \( P(F) \), to the probability of presence of a defect that receives more energy density than its intrinsic threshold. This probability is given by a Poisson law and can be expressed as a function of fluence \( F \) (the energy per unit of surface):

\[
P(F) = 1 - \exp \left( - \int_0^F g(T) \cdot \frac{\pi w^2}{2} \ln \left( \frac{F}{T} \right) \, dT \right)
\]

with \( w \) the laser spot radius at the laser waist (half width at 1/e²). A Gaussian distribution \( g(T) \) of nanoprecursor thresholds is considered, taking into account that all defects of a given class do not fail at the same fluence due to example to a possible size and absorption distributions:

\[
g(T) = \frac{2 \sqrt{2} \cdot d}{\Delta T \cdot \sqrt{\pi}} \exp \left[ - \frac{1}{2} \left( \frac{T - T_0}{\Delta T/2} \right) \right]
\]

The ensemble function \( g(T) \) depends on three parameters: the threshold mean value \( T_0 \), the threshold standard deviation \( \Delta T \) (full width at 1/e²), and the defect density \( d \). The relationship between \( g(T) \) and defect density \( d \) is obtained from the normalization condition

\[\int_0^\infty g(T) \, dT = d.\]

This model allows us to fit laser damage probability curves and to extract information such as the number of nanoprecursor classes and the densities \( d \) and thresholds \( T_0 \) of nanoprecursors for each class. The accuracy is ±20% for the nanoprecursor density \( d \), and ±5% for the threshold \( T_0 \).

![Fig. 1 Influence of polishing on laser damage resistance of a silica substrate.](image)

The laser-induced damage threshold (LIDT) of the component is defined as the greatest fluence for which the measured probability \( P(F) = 0 \).

3 Influence of Polishing and Cleaning on the Laser Damage Resistance of Bare Silica Substrates

The fabrication steps of optical coatings are clearly involved in the laser damage resistance of a component. Our aim is to optimize the surface quality of silica substrates before coating deposition. Thus the influence of two polishing processes and three types of cleaning on the laser damage resistance of an Infrasil silica substrate is particularly studied. We prepared one sample for each combination of polishing and cleaning processes. Samples are transported in special boxes to avoid any contamination. Then all laser damage measurements are made under laminar flow. This systematic analysis permits us then to determine the best polishing and cleaning processes for better laser damage resistance of the final component.

First, we compare two samples cleaned with the same cleaning procedure (cleaning 3 in our study) but polished according to two different processes. Laser damage probability curves are plotted in Fig. 1, and information about nanoprecursors (densities and thresholds for each class) is given in Table 1. For polishing process 1, we observe three classes of nanoprecursors, whereas for polishing 2, only two classes are present. The comparison of densities and

| Table 1 Comparison of nanoprecursors classes versus polishing processes. |
|---|---|---|---|
| | Polishing 1 | Polishing 2 |
| \( T_1 = \text{LIDT} \) | 49 J/cm² | 49 J/cm² |
| \( d_1 \) | \( 3 \times 10^5 \) mm⁻² | \( 3 \times 10^5 \) mm⁻² |
| \( T_2 \) | 80 J/cm² | — |
| \( d_2 \) | \( 3.4 \times 10^4 \) mm⁻² | — |
| \( T_3 \) | 141 J/cm² | 142 J/cm² |
| \( d_3 \) | \( 1.5 \times 10^5 \) mm⁻² | \( 1.4 \times 10^5 \) mm⁻² |
thresholds for each class (Table 1) shows that the first and third classes of nanoprecursors are the same for the two polishing processes and that the second class of nanoprecursors does not exist for polishing 2. Even if the LIDT remains the same (49 J/cm²), we improve the general laser damage resistance of silica substrate with polishing 2. For example, if we use this silica substrate with a fluence of 140 J/cm², in case of polishing 1 we have a 70% probability of damage, whereas in the case of polishing 2 we have only 20%. The same measurements for cleanings 1 and 2 show that whatever the cleaning process, polishing 2 is always better than polishing 1.

Then, we compare two samples polished with the same best polishing procedure (polishing 2) but cleaned according to three different processes: manual wiping with acetone (cleaning 1), and two automatic aqueous procedures involving ultrasonic immersion and detergents followed by deionized water rinsing and drying (cleanings 2 and 3). Laser damage probability curves are plotted in Fig. 2, and information about nanoprecursors (densities and thresholds for each class) are given in Table 2. For cleaning processes 1 and 2, there are three classes of nanoprecursors, whereas for cleaning 3, only two classes of nanoprecursors are present. The comparison of densities and thresholds for each class (Table 2) shows that the first and third classes of nanoprecursors are present whatever the cleaning process and that the second class of nanoprecursors has been removed with cleaning process 3. Even if the LIDT still remains the same (49 J/cm²), we improve the general laser damage resistance of silica substrates with cleaning 3.

This study of the first fabrication steps (polishing and cleaning) permits us to improve the laser damage resistance of Infrasil silica substrates by choosing the appropriate procedure. It highlights also that polishing and cleaning have to be studied together. For all samples, however, the first class of nanoprecursors (T=49 J/cm², d=3x10⁵ mm⁻²) is always present and limits improvement of the LIDT. Better polishing and cleaning processes have to be set up in order to decrease the influence of this first class of nanoprecursors and to considerably increase the LIDT.

### 4 Influence of Polishing on the Laser Damage Resistance of Coatings at 1064 nm

We have shown that polishing and cleaning have an influence on the laser damage resistance of silica substrates. Our aim is now to evaluate the influence of polishing on the laser damage resistance of optical coatings at 1064 nm. The same type of Infrasil silica substrates is used, and all samples are cleaned with best process cleaning. Three types of coatings were realized with the dual ion-beam sputtering (DIBS) technique: silicon dioxide (SiO₂) single thin films, tantalum pentoxide (Ta₂O₅) single thin films, and Ta₂O₅/SiO₂ antireflection coatings. The optical thickness of the single thin films was λ/2 at 1064 nm in order to avoid any influence of electric field. The antireflection coating was a two-layer design with R<10⁻⁴ at 1064 nm. For

### Table 2 Comparison of nanoprecursor classes versus cleaning processes.

<table>
<thead>
<tr>
<th>Cleaning 1</th>
<th>Cleaning 2</th>
<th>Cleaning 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁=LIDT</td>
<td>50 J/cm²</td>
<td>50 J/cm²</td>
</tr>
<tr>
<td>d₁</td>
<td>1.8x10⁵ mm⁻²</td>
<td>1.8x10⁵ mm⁻²</td>
</tr>
<tr>
<td>T₂</td>
<td>105 J/cm²</td>
<td>113 J/cm²</td>
</tr>
<tr>
<td>d₂</td>
<td>3x10⁴ mm⁻²</td>
<td>4.5x10⁴ mm⁻²</td>
</tr>
<tr>
<td>T₃</td>
<td>140 J/cm²</td>
<td>145 J/cm²</td>
</tr>
<tr>
<td>d₃</td>
<td>2x10⁵ mm⁻²</td>
<td>1.8x10⁵ mm⁻²</td>
</tr>
</tbody>
</table>

![Table 2](attachment:image.png)

Fig. 2 Influence of cleaning on laser damage resistance of a silica substrate.

Fig. 3 Influence of polishing on laser damage resistance of SiO₂ single thin films deposited on silica substrate.

Fig. 4 Influence of polishing on laser damage resistance of Ta₂O₅ single thin films deposited on silica substrate.
each coating we realized two samples, obtained with different polishing processes (polishings 1 and 2). Then laser-induced damage measurements were made for the six different components.

First we compare the LIDTs of two SiO2 single thin films deposited on a silica substrate. Laser damage probability curves are plotted in Fig. 3. With polishing 1, the LIDT of the SiO2 single thin film is 9 J/cm², whereas with polishing 2 it increases to 24 J/cm². Use of a judicious polishing process permits an increase of the coating LIDT by a factor 2.6. This result shows that the quality of the interface between substrate and coating is critical for laser damage resistance of SiO2 films.

Then we compare the LIDTs of two Ta2O5 single thin films deposited on the same type of silica substrate. Laser damage probability curves are plotted in Fig. 4, and information about nanoprecursors (densities and thresholds for each class) is given in Table 3. We notice that the first class of nanoprecursors is the same for the two samples, whereas the threshold of the second nanoprecursors class increases by a factor 2.4. In Ta2O5 films, nanoprecursors that limit the LIDT of the SiO2 single thin film deposited on a silica substrate shows that it is responsible for a limitation of the LIDT, as it brings nanoprecursors with a lower threshold than those from the substrate surface.

The behavior of an antireflection coating under a high-power laser is linked to steps of fabrication. To build multilayer components with high laser-induced damage threshold, improvement in fabrication steps has a great role to play.

Acknowledgments

This research was supported by CEE under contracts FEDER No. 2640 and FSE No. 2003.21.02.0037.

References


Table 3 Comparison of nanoprecursors classes of Ta2O5 single thin films deposited on silica substrate versus polishing processes.

<table>
<thead>
<tr>
<th></th>
<th>Polishing 1</th>
<th>Polishing 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 = LIDT</td>
<td>5 J/cm²</td>
<td>5 J/cm²</td>
</tr>
<tr>
<td>d1</td>
<td>1.7 x 10²⁹ mm⁻²</td>
<td>1.9 x 10²⁹ mm⁻²</td>
</tr>
<tr>
<td>T2</td>
<td>18 J/cm²</td>
<td>44 J/cm²</td>
</tr>
<tr>
<td>d2</td>
<td>6 x 10⁵ mm⁻²</td>
<td>1.5 x 10⁶ mm⁻²</td>
</tr>
</tbody>
</table>

Table 4 Comparison of nanoprecursors classes of an antireflection coating deposited on silica substrate versus polishing processes.

<table>
<thead>
<tr>
<th></th>
<th>Polishing 1</th>
<th>Polishing 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 = LIDT</td>
<td>6.5 J/cm²</td>
<td>6.5 J/cm²</td>
</tr>
<tr>
<td>d1</td>
<td>200 mm⁻²</td>
<td>200 mm⁻²</td>
</tr>
<tr>
<td>T2</td>
<td>30 J/cm²</td>
<td>—</td>
</tr>
<tr>
<td>d2</td>
<td>5 x 10⁵ mm⁻²</td>
<td>—</td>
</tr>
<tr>
<td>T3</td>
<td>51 J/cm²</td>
<td>50 J/cm²</td>
</tr>
<tr>
<td>d3</td>
<td>1.8 x 10⁶ mm⁻²</td>
<td>1.4 x 10⁶ mm⁻²</td>
</tr>
</tbody>
</table>
   Relationship between surface roughness and subsurface damage,”  
   and N. Daurios, “Building high-damage-threshold surfaces at 351 nm,” in  
   Optical Fabrication, Testing, and Metrology, R. Geyl, D. Rimmer, and  
   process on silica surface laser-induced damage threshold at 355 nm,”  
    age in some single crystalline optical materials,” Appl. Opt. 44(12),  
    and T. T. Hart, “Influence of deposition parameters on laser-damage  
    threshold of silica-tantala AR coatings,” Appl. Opt. 21(20), 3689–  
    3694 (1982).
14. H. Krol, L. Gallais, C. Grèzes-Berset, J. Y. Natoli, and M. Commandré,  
    “Investigation of nanoprecursors threshold distribution in laser-  
    42(6), 960–971 (2003).

Hélène Krol is development engineer at CILAS Marseille, the Thin  
Film Coatings Department of CILAS (Compagnie Industrielle des  
Lasers). Dr. Krol graduated from Institut d’Optique Graduate School,  
Orsay, France, and obtained her PhD in 2006 in the field of laser-  
induced damage phenomena in optical multilayer components.

Biographies and photographs of the other authors not available.