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Study of waveguide grating eigenmodes for
unpolarized filtering applications
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The dispersion relation of eigenmodes of two-dimensional waveguide gratings is studied with a perturbative
model. The analytic expression of the complex wavelength of the modes permits us to predict the shape of the
anomalies in the grating reflectivity with respect to the wavelength and the polarization of the incident plane
wave. The simultaneous excitation of two independent modes is necessary for obtaining high-efficiency fil-
tering of unpolarized light. We show how this requirement can be met. © 2003 Optical Society of America
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1. INTRODUCTION
Resonant gratings can be viewed as periodically per-
turbed planar waveguides. It is well known that the
curves of efficiencies of such structures with respect to the
wavelength or the angle of incidence may present peaks
generated by the excitation of guided waves propagating
inside the layers. These anomalies have been widely
studied in the case of one-dimensional (1D) gratings illu-
minated with in-plane mounting, in particular when only
one order is reflected and transmitted by the grating.1

When the periodic perturbation is small, the reflectivity of
the structure is close to that of the planar waveguide ex-
cept when the space and time frequencies imposed by the
incident beam are close to those of an eigenmode of the
resonant grating. In this case, the reflectivity presents a
sharp peak that reaches 100% when the structure has
certain symmetry properties.2 This remarkable behav-
ior, which may be valuable for designing narrowband fil-
ters, has motivated a lot of theoretical and experimental
work.3,4 In particular, heuristic models and perturbative
approaches have been proposed to determine the influ-
ence of the grating parameters (height, filling factor, per-
mittivity, finite length) on the width and centered wave-
length of the peak of reflectivity5,6 and on the angular
behavior of the structure.7 The reflectivity of two-
dimensional (2D) resonant gratings and of 1D gratings in
conical mounting has been less studied. The first nu-
merical and experimental work concerned 2D square
gratings illuminated under normal incidence.8 These
structures are interesting because their filtering proper-
ties do not depend on the polarization of the incident
beam, in contrast to 1D gratings in classical mounting.
Now many technology applications require unpolarized
filters working under oblique incidence. This issue has
been addressed with 1D lamellar gratings illuminated un-
der off-plane (conical) mounting.9 Numerical simula-
tions show that a reflectivity peak, irrespective of the in-
cident polarization, is observed for certain values of the
filling factor. The same property can be obtained with
2D gratings10 whose parameters are numerically opti-
mized. A phenomenological theory has recently been
presented11 to explain the reflectivity behavior of 2D reso-
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nant gratings as a function of the incident polarization,
wavelength, and angle of incidence. It is shown that
high-efficiency unpolarized filtering requires the simulta-
neous excitation of two uncoupled guided waves.

The aim of this paper is to develop a perturbative
model that permits us to understand how to obtain the si-
multaneous excitation of two independent modes with 2D
gratings illuminated under oblique incidence. We pro-
vide an analytic expression of the complex resonant wave-
lengths of the modes existing in the waveguide grating for
a given real wave vector. Combining this perturbative
analysis with the phenomenological theory,11 we obtain
all the features of the filter as a function of the grating
parameters.

In Section 2 we sketch the main results of the phenom-
enological theory. Then we study the eigenmodes of reso-
nant gratings, and we derive their dispersion relation
with a perturbative approach. Finally, we illustrate our
theory with various numerical simulations.

2. PHENOMENOLOGICAL STUDY OF TWO-
DIMENSIONAL RESONANT GRATINGS
A. Presentation of the Structure and Notation
Throughout the paper we use a time dependence in
exp(2ivt), and we assume that all media are nonabsorb-
ing. We consider a planar waveguide consisting of a
single homogeneous layer with dielectric constant e l and
thickness e along the z axis, embedded in a substrate with
dielectric constant es , and a superstrate with dielectric
constant ea , with e l . es . ea . For convenience, we in-
troduce the permittivity eref (z) of the planar waveguide,
which is equal to es , e l , or ea depending on whether the
abscissa z is located in the substrate, the layer, or the su-
perstrate, respectively. We modify the reference geom-
etry by depositing a grating on top of the layer (Fig. 1).
The permittivity e(r) of the whole structure becomes pe-
riodic with periods dx and dy along the directions (Ox)
and (Oy) in a domain V bounded by z 5 0 and z 5 h.
We denote eper(r) the periodic permittivity of the pertur-
bation defined as eper(r) 5 e(r) 2 eref (z), which is equal
to 0 outside V. The two directions of periodicity are not
necessarily orthogonal, as shown in Fig. 2. The recipro-
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cal space P of the grating is defined by P 5 $K m,n
5 mk x 1 nk y , (m, n) integers% with k x defined by

k x • x̂ 5 2p/dx , k x • ŷ 5 0, (1)

and similar equations are obtained for k y by replacing x
with y in Eq. (1).

The resonant grating is illuminated from the super-
strate by an incident plane wave characterized by its
wave vector kinc , whose projection onto the Oxy plane is
denoted ki, and its wavelength l inc , [Fig. 1(a)]. To define
the polarization of the incident wave, the amplitude of the
incident electric field is projected onto two unit vectors,

Fig. 1. Notation. (a) Illumination configuration, (b) geometry
of the perturbed planar waveguide.

Fig. 2. Top view of the gratings. (a) Lamellar grating periodic
along one direction; (b) grating periodic along two orthogonal di-
rections, square bumps; (c) grating periodic along two directions,
triangular lattice, circular bumps; (d) Description of the basis in
the direct space, (x̂, ŷ), and reciprocal space, (kx , ky). The bi-
sector of x̂ and ŷ belongs to a vertical plane of symmetry of the
structure. The planar incident wave vector ki is chosen along
the bisector of (Ox) and (Oy).
ŝinc 5 kinc 3 ẑ/ukinc 3 ẑu and p̂inc , where
( ŝinc , kinc /ukincu, p̂inc) is a direct orthonormal basis. The
periods of the grating are assumed to be small enough
that only one order is reflected or transmitted. Similarly
to the incident field, the transmitted amplitude of the
electric field is projected onto two orthonormal s and p
vectors belonging to the plane normal to the transmitted
direction of propagation. We introduce the 2 3 2 matrix
T that links the s and p projections of the transmitted am-
plitude to the s and p projections of the incident field. T
depends on the spatial and temporal frequencies imposed
by the incident beam (ki, l inc).

B. Reflectivity of Resonant Gratings in the Vicinity of a
Resonance
We now assume that the grating’s parameters have been
chosen in such a way that the structure supports an
eigenmode whose pseudoperiodicity is governed by the
real spatial frequencies ki and whose resonant wave-
length l is close to l inc . The electric field of the mode can
be written as

E~r! 5 f~r!exp~iki
• ri!

5 f~r 1 mdxx̂ 1 ndyŷ!exp~iki
• ri!, (2)

with r 5 (ri , z) and (m, n) integers. The resonant
wavelength l is linked to ki in such a way that the homo-
geneous equation,

¹ 3 ¹ 3 E~r! 2 e~r!S 2p

l
D 2

E~r! 5 0, (3)

has a nonnull solution in the form of Eq. (2) that satisfies
outgoing-wave boundary conditions. In our case, since
l ' l inc and uki u , Aea2p/l inc , the mode presents propa-
gative outgoing waves in the substrate and superstrate.
As a result, the resonant wavelength necessarily has a
nonnull imaginary part to account for the leaks.

It is demonstrated11 that when the incident wavelength
is in the vicinity of the real part of the resonant wave-
length l, one and only one eigenvalue of the transmission
matrix can be written as

l1
T~l inc! 5 u~l inc!

l inc 2 lT,root

l inc 2 l
. (4)

Here, both u, lT,root and l depend on h. u is a function,
with no zeros, close to the eigenvalue of the transmission
matrix of the planar waveguide and lT,root is a complex
zero that is introduced for continuity reasons.11 When
the grating height h is diminished, the complex zero
lT,root tends toward l, whose imaginary part vanishes.
In the limit h 5 0, one retrieves the eigenvalue of the pla-
nar waveguide. When the grating is symmetrical with
respect to the z axis, lT,root is real, whatever the periodic
perturbation.

The phenomenological theory permits us to analyze
with accuracy the behavior of the reflectivity with respect
to the incident wavelength. If the polarization vector of
the incident beam coincides with the eigenvector V1

T of the
transmitted matrix T associated with l1

T , the reflectivity
of the structure presents a peak that reaches 100% for
symmetrical gratings. The width and position of the
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peak are given by the imaginary and real parts of l. In
contrast, if the incident polarization vector is orthogonal
to V1

T , the reflectivity remains close to that of the planar
waveguide if the periodic perturbation is small. In this
case, the incident beam does not couple to the eigenmode.
Hence, to get a peak of reflectivity whatever the incident
polarization, it is necessary to have two independent
eigenmodes with the same wave vector ki and the same
real part of the wavelengths so that both eigenvalues of
the T matrix can be written as Eq. (4). This condition is
easily fulfilled when ki 5 0 and the structure is invariant
under a p/2 rotation.8 It has proved much more difficult
to fulfill when ki Þ 0, i.e., when the filter is used under
oblique incidence.

In Section 3 we study the eigenmodes of waveguide
gratings and evaluate their complex-resonance wave-
length. We show that some structures may support two
independent eigenmodes with the same wave vector and
the same real part of the wavelength.

3. APPROXIMATE STUDY OF THE
EIGENMODES OF A WAVEGUIDE GRATING
Hereafter, we assume that the planar waveguide supports
only one guided mode in the domain of spatial and tem-
poral frequencies of the incident beam. We assume that
the mode is TE polarized (a similar approach could be de-
rived for TM-polarized modes). We call lref(k) the real
function that links the resonant wavelength to the modu-
lus of the wave vector of this mode of reference. Since we
are interested in a possible mode degeneracy, we choose
the grating periods and illumination configuration such
that in the limit of h 5 0, two eigenmodes exist with the
same wavevector ki and the same resonance wavelength
close to l inc . In other words, one can find two different
reciprocal space vectors Kp,q and Ku,v such that

lref ~ uki 1 Ku,vu! 5 lref ~ uki 1 Kp,qu! 5 l~0 !. (5)

Then we study the change of the resonance wavelengths
of these two degenerate modes when the grating height is
increased. Throughout the paper, the mode wave vector
ki is kept constant. It is generally observed that the
wavelengths of degenerate modes separate when a peri-
odic perturbation is introduced (a local bandgap is opened
in the dispersion relation).1,12 Yet it is possible to reduce
the gap between the two wavelengths by minimizing the
coupling between the two modes with appropriate grating
parameters.7 In particular, if the grating presents a ver-
tical plane of symmetry (S) and if the wave vector is fixed
in this plane of symmetry, the two eigenmodes have dif-
ferent symmetry properties that forbid any coupling be-
tween them.13 It will be shown in the following that is
possible to make the gap disappear in this case.

A. Formulation and Resolution of the Homogeneous
Equation
It appears convenient for developing our perturbative
model to rewrite homogeneous equation (3) satisfied by
the eigenmodes in the form

¹ 3 ¹ 3 E~r! 2 eref ~z !k0
2E~r! 5 k0

2eper~r!E~r!,
(6)
with k0 5 2p/l. Introducing the Green-tensor solution
of

¹ 3 ¹ 3 G% ~ri 2 ri8 , z, z8!

2 eref ~z !k0
2G% ~ri 2 ri8 , z, z8! 5 d ~r 2 r8!I%,

(7)

where I% is the identity tensor, that satisfies an outgoing-
wave boundary condition, one transforms differential
equation (6) into an integral equation,

E~r! 5 k0
2EEE

0

h

eper~r8!G% ~ri 2 ri8 , z, z8!E~r8!dri8dz8.

(8)

The vector E(r) is pseudoperiodic, and Eq. (2) can be writ-
ten as

E~r! 5 (
m

(
n

Em,n~z !exp@i~ki 1 Km,n! • ri#. (9)

The function eper(r) is periodic, and we will assume that,
for z P @0, h#,

eper~r! 5 (
m

(
n

em,n exp~iKm,n • ri!. (10)

The replacement of E and eper by their Fourier expansions
in both members of Eq. (8) finally leads to an infinite set
of coupled equations,

Em,n~z ! 5 k0
2(

j
(

l
em2j,n2l

3 E
0

h

g% ~Km,n 1 ki, z, z8!Ej,l~z8!dz8,

(11)

where g% is the Fourier transform of G% , defined as

g% ~Km,n 1 ki, z, z8! 5 EE G% ~ri 2 ri8 , z, z8!

3 exp~2i~Km,n 1 ki!

• ~ri 2 ri8!!dri8 . (12)

B. Expansion versus h and Obtaining the Dispersion
Relation
In this subsection we consider that the grating height is
small compared with the wavelength, and we estimate
the complex wavelength l such that Eq. (11) is satisfied
for a nonnull field. We seek l in the vicinity of l (0) [Eq.
(5)]:

l 2 l~0 ! 5 O~h !. (13)

We assume that the electromagnetic field of the mode in
the periodically perturbed structure can be written as a
power series of h,

Em,n~z ! 5 Em,n
~0 ! ~z ! 1 hEm,n

~1 ! ~z ! 1 O~h2!, (14)
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where Em,n
0 (z) are the Fourier coefficients of the normal-

ized mode of the planar waveguide at l 5 l (0). Taking
z 5 0 in Eq. (11) and performing a Taylor development of
the integral with respect to h, we obtain the first term of
the perturbative expansion,

Em,n 5 hk0
2 g% m,n~ki, l!(

j
(

l
em2j,n2lEj,l

~0 ! 1 O~h2 g% m,n!,

(15)

where

g% m,n~ki, l! 5 g% ~Km,n 1 ki, 0, 0 !, Em,n 5 Em,n~0 !,

and

Ej,l
~0 ! 5 Ej,l

~0 !~0 !.

1. Properties of the Green Tensor and of the Mode of
the Planar Waveguide
For convenience, we introduce the set of orthogonal basis
Gm,n associated with the direction defined by Km,n 1 ki.
The Gm,n basis is defined by the three vectors
( ŝm,n , k̂m,n , ẑ), where (k̂m,n) 5 (Km,n 1 ki)/uKm,n 1 kiu
and ŝm,n 5 k̂m,n 3 ẑ. In this particular basis, the Fou-
rier transform of the Green tensor is written in the simple
form

g% m,n~ki, l! 5 F gm,n
s ~ki, l! 0 0

0 gm,n
k ~ki, l! gm,n

kz ~ki, l!

0 gm,n
zk ~ki, l! gm,n

z ~ki, l!
G .

(16)

The expressions of the coefficients of g% m,n are given in Ap-
pendix A. They involve the reflection coefficients, in both
polarizations, of the planar waveguide. These reflection
coefficients present poles corresponding to the existence
of guided waves in the layer. In our problem, l is close to
the resonant wavelength of a TE guided mode of the un-
perturbed structure, l (0), which is equal to lref (uki

1 Kp,qu) and lref (uki 1 Ku,vu). Hence gp,q
s and gu,v

s can
be cast in the form

gp,q
s ~ki, l! 5

Ap,q~ki, l!

l 2 l~0 !
, gu,v

s ~ki, l! 5
Au,v~ki, l!

l 2 l~0 !
,

(17)

where Ap,q , Au,v are gently varying functions. As a re-
sult, gp,q

s and gu,v
s behave as O(1/h) when the wavelength

is varied about the resonant wavelength of the reference
structure. In contrast, all the other Green coefficients
behave as O(1). Moreover, denoting Em,n

s , Em,n
k , Em,n

z

the three components of Em,n in Gm,n , we can see easily
that the sole nonnull Fourier coefficients of the mode of
the reference structure at l 5 l (0) are Ep,q

s(0) and Eu,v
s(0) .

2. Study of the Real Part of l
We project vectorial equations (15) in the Gm,n basis.
This is done by introducing the rotation matrices that
permit us to change from G j,l to Gm,n . We denote cm,n
the angle between the vectors ki and Km,n 1 ki. Bearing
in mind the properties of the Fourier Green tensors and
the properties of the mode of the reference structure, we
obtain the linear system of equations valid up to first or-
der in h:
Ep,q
s~0 ! 5 hk0

2gp,q
s ~ki, l!@e0,0Ep,q

s~0 ! 1 ep2u,q2vEu,v
s~0 !

3 cos~ cp,q 2 cu,v!# 1 O~h !, (18)

Eu,v
s~0 ! 5 hk0

2gu,v
s ~ki, l!@e0,0Eu,v

s~0 ! 1 eu2p,v2qEp,q
s~0 !

3 cos~ cu,v 2 cp,q!# 1 O~h !. (19)

Note that these equations have been derived without any
assumption about the shape of the grating. Now we as-
sume that the structure presents a vertical plane of sym-
metry (S) taken for simplicity along the bisector of the
axes (Ox) and (Oy), and we set ki in (S); see Fig. 2(d).
For each pair of integers (m, n), Km,n 1 ki is symmetri-
cal with respect to S of Kn,m 1 ki and en,m 5 em,n . The
reciprocal vectors Kp,q and Ku,v are also symmetrical
about (S); thus v 5 p and u 5 q. Moreover, the eigen-
modes are either symmetrical or antisymmetrical about
(S), which means that Em,n

s 5 2sEn,m
s , Em,n

k 5 sEn,m
k ,

and Em,n
z 5 sEn,m

z , where s 5 1 and s 5 21, respec-
tively. These symmetry properties can be demonstrated
by group theory13 or directly from Eq. (11) by noting that
if Em,n is a solution, then Vm,n with Vm,n

s 5 Em,n
s

6 En,m
s , Vm,n

k 5 Em,n
k 7 En,m

k , Vm,n
z 5 Em,n

z 7 En,m
z is

also a solution. Inserting Eq. (17) into Eq. (18) yields the
expression of the wavelengths of the symmetrical and an-
tisymmetrical eigenmodes up to first order in h,

l~ki! 5 l~0 ! 1 S 2p

l~0 !D 2

hAp,q~ki, l~0 !!

3 @e0,0 2 sep2q,q2p cos~2cp,q!# 1 O~h2!.

(20)

The wavelength lS of the symmetrical eigenmode is ob-
tained when s 5 1, and the wavelength lAS of the anti-
symmetrical eigenmode is obtained when s 5 21. Im-
portant conclusions can be drawn from the analysis of
(lAS 2 lS). First, note that the symmetry of the struc-
ture and the property of nonabsorption of the materials
imply that all the Fourier coefficients of the grating are
real. It can also be seen from the expression of the Green
tensor given in Appendix A that g% m,n(ki, l) is real as long
as uKm,n 1 kiu > Aesk0 . Hence gp,q

s and Ap,q are real,
and the first term with respect to h of lS and lAS is real,
too. Hence, when ep2q,q2p and cos(2cp,q) are different
from zero and h is small enough, the sign of (lAS 2 lS) is
given by ep2q,q2p cos(2cp,q). As a consequence, when
ep2q,q2p or cos(2cp,q) increases from a negative value to a
positive one, (lAS 2 lS) inevitably becomes null. This
happens for a particular value of ep2q,q2p or cos(2cp,q),
which is, in general, slightly different from zero in order
to compensate for the contribution of higher orders.
Thus it is shown that configurations for which the real
parts of lS and lAS are strictly the same can be found.
This observation explains the results obtained with 1D
lamellar resonant gratings illuminated under pure coni-
cal mounting (the axis of invariance belongs to the inci-
dent plane).9 By modifying the filling factor, it is possible
to superpose the resonance peaks in both p and s polar-
ization. This 1D configuration is a special case of our
general study, as will be shown in Section 4. We have
verified that the filling factor of the grating that achieves
the unpolarized filtering application is optimized such
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that the Fourier coefficient of the permittivity responsible
for the coupling between the modes, ep2q,q2p is almost
null.

3. Study of the Imaginary Part of l
In order to obtain the imaginary part of lS and lAS , it is
necessary to develop Eq. (11) up to second order in h.
Considering only the contributions to the imaginary part
of the wavelength, the infinite set of coupled linear equa-
tions reduces to five equations that is, Ep,q

s , Eq, p
s , and

the three components of E0,0 . Indeed, among all the
Fourier Green tensors, only g% 0,0(k

i, l) has a nonnull
imaginary part. A rather simple analytical expression
for the imaginary part F(l) of the wavelength is then ob-
tained for both eigenmodes:

F@l~ki!# 5 h2S 2p

l~0 !D 4

Ap,q~ki, l~0 !!uep,qu2

3 @ g0,0
s ~ki, l~0 !!cos2~ cp,q!~1 2 s!

1 g0,0
k ~ki, l~0 !!

3 sin2~ cp,q!~1 1 s!# 1 O~h3!. (21)

Since s 5 1 for the symmetrical eigenmode and s 5 21
for the antisymmetrical one, Eq. (21) expresses that the
width of one resonance peak depends on cos( cp,q), while
the other depends on sin( cp,q). Hence the widths of the
peaks in the reflectivity curves due to the excitation of a
symmetrical or an antisymmetrical mode are different ex-
cept when cp,q is close to 45°. In the configurations pro-
posed by Lacour et al.9 this condition is not satisfied, and
the widths of the peaks in p and s polarizations are
clearly different. In contrast, in the work of Mizutani
et al.,10 unpolarized filters are obtained with hexagonal
gratings illuminated along an axis of symmetry in such a
way that the angle between the directions of propagation
of the two degenerate modes, excited in the limit of h
5 0, is almost 90°. This implies that cos(2cp,q) is close to
zero and that cos2( cp,q) is almost equal to sin2( cp,q). In
this case, the peaks in s and p polarizations have almost
the same width, and they can be easily superposed by
slightly varying ki.

4. NUMERICAL EXAMPLES
In this section we present simulations of the dispersion
relation and the reflectivity of resonant gratings obtained
with a rigorous Fourier modal method.14 In all ex-
amples, ki is set along the bisector of (Ox), (Oy) that be-
longs to a vertical plane of symmetry of the structure.
The grating periods are chosen such that the incident
beam is coupled to a TE eigenmode via the reciprocal
space vectors K1,0 and K0,1 . Hence the wavelength is
varied about l (0) 5 lref(uk

i 1 K1,0u) 5 lref(uk
i 1 K0,1u).

Our first example is meant to validate the expressions
versus h of the resonance wavelengths of the symmetrical
and antisymmetrical eigenmodes. We study the disper-
sion relation of a 1D lamellar grating when ki is directed
along the axis of invariance. This particular configura-
tion can be addressed by our model if we take (Ox) and
(Oy) perpendicular to the grating grooves and in opposite
directions; see Fig. 2(a), so that Km,n 5 (m 2 n)2p/dx̂.
In this case, the bisector of (Ox) and (Oy) is the axis of in-
variance, and it belongs to the vertical plane of symmetry
(S) of the structure.

We calculate rigorously the values of the wavelengths
lS(ki) and lAS(ki) of the symmetrical and antisymmetri-
cal modes by seeking the poles of the scattering matrix of
the waveguide grating. The latter is evaluated with a
Fourier modal method.14 In Fig. 3 we plot the real part
and the square root of the imaginary part of the sym-
metrical and antisymmetrical wavelengths as a function
of h, obtained with the perturbative model (dotted lines)
and with the rigorous simulations (solid lines). The pla-
nar waveguide has been chosen such that, l (0)

5 1.55 mm. We verify that the symmetrical and anti-
symmetrical wavelengths coincide in the limit of h 5 0
(although the rigorous calculations could not be con-
ducted with enough accuracy for h , 0.005 mm). A good
agreement between the perturbative and the rigorous re-
sults is observed as long as their linear dependence with
respect to h is preponderant. When the height is in-

Fig. 3. Comparison of the resonant wavelengths obtained with
the rigorous (solid line) and the perturbative (dotted line) meth-
ods for both symmetrical and antisymmetrical eigenmodes. The
structure is a lamellar grating periodic along one direction with
period d 5 864 nm and filling factor f 5 0.75, deposited on the
planar waveguide described in Fig. 1(b); e 5 130 nm, ea 5 1.0,
e l 5 9.0, es 5 2.25, ukiu 5 3.5 mm21. 25 orders (from 212 to
112) are used in the Fourier modal method to calculate the reso-
nant wavelength with enough accuracy. (a) Square root of the
imaginary part of the resonant wavelengths versus the grating
height h, (b) real part of the resonant wavelengths versus h.
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creased, the divergence between the two methods is due
to the growing influence of the higher orders of the expan-
sion that have not been taken into account. The analytic
expressions of the real and imaginary parts of the reso-
nant wavelength, validated by Fig. 3, can be useful in the
design of grating filters. Indeed, the real part is related
to the centering wavelength of the filter and the imagi-
nary part to its width. In Fig. 3(a) the imaginary part of
the symmetrical wavelength is almost four times larger
than that of the antisymmetrical one. This implies that
the reflectivity peak will be four times wider when the in-
cident beam is p polarized than when it is s polarized.
Here we use the fact that the eigenvector V1

T of the trans-
mitted matrix associated with a symmetrical mode is di-
rected along p̂inc , whereas that associated with an anti-
symmetrical mode is directed along ŝinc .11

In our second example we show how it is possible to
make the real parts of the antisymmetrical and sym-
metrical wavelengths coincide. We have seen in Section
3 that, all the other parameters being unchanged, the real
part of lS 2 lAS necessarily cancels out for a particular
value of ep2q,q2p (e21,1 in our case) that is close to but dif-
ferent from zero. This can be done with a 1D lamellar
grating illuminated in pure conical mount by taking a fill-
ing factor close to (but different from) 0.5.9 Here we pro-
pose an example with a 2D grating periodic along two or-
thogonal directions (Ox) and (Oy) with the same period d.
The pattern is composed of four circular pillars centered
on the points A(d/4, d/4), B(3d/4, d/4), C(d/4, 3d/4),
D(3d/4, 3d/4); see inset of Fig. 4(a). We change the Fou-
rier coefficients of the grating by modifying the radius rB
and rC of the B and C pillars. The vector ki is set along
the bisector of (Ox) and (Oy) that belongs to a vertical
plane of symmetry. Again, we search the resonant wave-
length lS and lAS in the vicinity of lref (uki 1 K1,0u). In
Fig. 4(a) we plot the real part of lS 2 lAS versus e21,1 ob-
tained with rigorous simulations. As expected from Eq.
(20), lS 2 lAS is quite linear versus e21,1 when e21,1
moves away from zero. We note that the real part of lS
2 lAS cancels out for a particular structure characterized
by e21,1 5 0.00944. In Fig. 4(b) we plot the reflectivity of
the grating versus the wavelength for both p- and
s-polarized incident plane waves. We observe that the
peaks are centered about the same wavelength but that
their widths differ. This is foreseeable from the expres-
sion of the imaginary parts of lS and lAS . Indeed, the
width of the symmetrical mode peak depends on sin( c1,0),
whereas the width of the antisymmetrical one depends on
cos( c1,0). In this simulation, c1,0 5 68.46°.

According to Eqs. (20) and (21), when c1,0 is close to 45°
it is possible to obtain resonance peaks for both polariza-
tions that are centered about the same wavelength and
present similar widths. This can be done with a 1D grat-
ing, illuminated in pure conical mount,15 by choosing the
period such that ki 1 K1,0 is orthogonal to ki 1 K0,1 .
This condition is satisfied when the modulus k i is almost
equal to K0,1 . As a result, the modulus of the wave vec-
tor of the reference guided wave uki 1 K1,0u is close to
A2k i . Hence the effective index of the mode must neces-
sarily be smaller than A2. This requirement is hard to
meet in practice since most of the substrates have a re-
fractive index greater than 1.4 in the domain of the wave-
lengths we are interested in. Less drastic conditions are
obtained with 2D gratings. In the following we consider
a nonregular triangular lattice with an angle of 80° be-
tween the two directions of periodicity (Ox) and (Oy).
The angle between the vectors kx and ky of the reciprocal
lattice is 100°; see Fig. 5(a). The pattern is a single cir-
cular pillar centered on the point (d/2; d/2), where d is
the period along both directions. As usual, the bisecting
plane (S) of (Oxz) and (Oyz) is a plane of symmetry. We
change ki in (S) in such a way that c1,0 varies about 45°.
We know that for a given c1,0 close to 45°, the real part of
lAS 2 lS necessarily cancels out. For this particular in-
cident angle, we plot in Fig. 5(b) the reflectivity curves
versus the wavelength for both p and s polarizations. As
expected, two peaks centered about the same wavelength
and with approximately the same width are observed
Hence this structure realizes an unpolarized filter under
oblique incidence.

Fig. 4. (a) Difference between the real parts of the symmetrical
and the antisymmetrical resonant wavelengths versus the grat-
ing Fourier coefficient e21,1 calculated with the rigorous method.
The grating is a square lattice of circular holes of depth h
5 10 nm, with period d 5 984.3 nm. e21,1 is modified by
changing the radii of the holes. The holes are drilled in a layer,
e l 5 4, e 5 230 nm, deposited on a substrate, es 5 2.25, ea 5 1.
ukiu 5 3/A2 mm21. The square cell is discretized into 256
3 256 square pixels to describe the motif of the grating.
@23, 3# 3 @23, 3# orders along kx and ky are taken in the Fou-
rier modal method. (b) Reflectivity versus wavelength for p and s
incident polarizations of the resonant grating described in (a)
when the real part of lAS 2 lS 5 0. e21,1 5 0.0096 (rA
5 123 nm, rB 5 38.5 nm, and rC 5 196 nm). The plane of in-
cidence is the bisector of x̂ and ŷ, and the angle of incidence with
respect to (Oz) is 39.5°.
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Note that the condition c1,0 close to 45° is equivalent to
saying that the two modes obtained in the limit h 5 0
propagate along (almost) orthogonal directions. Geo-
metrical considerations (or the Brewster effect) can then
be invoked to explain that in this case, the coupling be-
tween the modes that is due to the grating will be very
small. However, the frequency gap disappears totally
only when the modes have different symmetry properties.
Indeed, if the structure is not symmetrical with respect to
the plane of incidence (for example, a 1D echelette grating
in pure conical mounting), a small frequency gap remains
whatever the value of the angle between the directions of
propagation of the two guided modes.

5. CONCLUSION
We have presented a perturbative method that gives a
simple analytic expression of the complex wavelength of

Fig. 5. (a) Top view of the structure whose reflectivity is plotted
in (b). The grating is ruled on a multilayer stack that behaves
as an antireflection film outside the resonance. The planar
waveguide is the superposition of a substrate (dielectric constant
2.097), a first layer (dielectric constant 4.285, thickness 79.1 nm),
a second layer (dielectric constant 2.161, thickness 263.5 nm),
and a third layer (dielectric constant 4.285, thickness 404.3 nm).
The grating consists of circular holes drilled in the third layer
(radius 200 nm, depth 30 nm) along a nonregular triangular lat-
tice, with period d 5 953.1 nm. The diamond-shaped cell is dis-
cretized into 256 3 256 pixels. @23, 3# 3 @23, 3# orders are
taken in the Fourier modal method. (b) Reflectivity of the struc-
ture versus wavelength for both s (solid curve) and p (dotted
curve) polarizations. The plane of incidence is the bisector of x̂
and ŷ, and the angle of incidence is 13.5°.
eigenmodes of 2D waveguide gratings existing for a given
real wave vector. Combined with a phenomenological
theory,11 this model permits us to predict the reflectivity
of resonant gratings illuminated by an incident plane
wave as a function of its wavelength and polarization. In
order to get a resonance peak irrespective of the polariza-
tion, it is necessary to design structures that support two
independent eigenmodes for the same wave vector and
the same real part of the wavelength. We show that it is
possible to obtain such a peak by using gratings that
present a vertical plane of symmetry and taking the
modes’ wave vector in this plane of symmetry. We study
the resonance wavelengths of the symmetrical and anti-
symmetrical eigenmodes and point out that for a certain
value of the Fourier coefficient of the permittivity, or for a
certain angle of incidence, it is possible to make the real
parts of the wavelengths coincide. On the other hand,
the imaginary parts remain different in general. Com-
parisons with rigorous simulations confirm the validity of
our approach.

APPENDIX A: FOURIER GREEN TENSORS
In this appendix we write the expressions of g% m,n(ki, l)
stemming from the analytical formulation of the Fourier
transform of the Green tensor16 g% (ki 1 Km,n , z, z8) with
z and z8 greater than 0. We obtain

gm,n
s ~ki, l! 5

ip

gm,n
a ~1 1 Rm,n

s !, (A1)

gm,n
k ~ki, l! 5

ipgm,n
a

eak0
2 ~1 2 Rm,n

p !, (A2)

gm,n
kz ~ki, l! 5

ipkm,n

eak0
2 ~21 2 Rm,n

p !, (A3)

gm,n
zk ~ki, l! 5

ipkm,n

eak0
2 ~21 1 Rm,n

p !, (A4)

gm,n
z ~ki, l! 5

ipkm,n
2

eak0
2gm,n

a ~1 1 Rm,n
p ! 2

2p

eak0
2h

,

(A5)

with Rm,n
s and Rm,n

p the reflection coefficients of the pla-
nar waveguide in s and p polarizations for a tangential
wave vector ki 1 Km,n and km,n 5 uki 1 Km,nu. The re-
flection coefficient of the two-layer medium is given by

Rm,n
s 5

ra,l 1 rl,s exp~i2g m,n
l e !

1 1 ra,lrl,s exp~i2g m,n
l e !

, (A6)

with

rm,n 5
gm,n

m 2 gm,n
n

gm,n
m 1 gm,n

gn (A7)

and gm,n
m 5 (emk0

2 2 km,n
2 )0.5. The expression for Rm,n

p is
the same as Eq. (A6) with replacement of gm,n

m by gm,n
m /em

and gm,n
n by gm,n

n /en in the Fresnel reflection coefficients,
rm,n .
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