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Abstract
The filtering effect we are dealing with in the present paper is obtained by
using a diffraction grating made by perturbing a planar waveguide. A
phenomenological theory allows us to deduce important properties of the
sharp filtering phenomena generated by this kind of structure when the
incident light excites guided waves. It is shown that the resonance
phenomenon occurring when a single guided mode is excited acts on a
single eigenvalue of the Hermitian reflection matrix. As a consequence, we
demonstrate that a high efficiency filtering of unpolarized light requires the
simultaneous excitation of two uncoupled guided waves. This criterion is
reached when these guided waves propagate in orthogonal directions.
Numerical examples are given.
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1. Introduction

Curves of efficiency of dielectric diffraction gratings versus the
wavelength may present sharp peaks (classified as anomalies)
generated by the excitation of guided waves. These anomalies
occur when the space and time frequencies imposed by the
incident beam are close to those of an eigenmode of the
structure. They have been widely studied in the case of
classical one-dimensional (1D) gratings illuminated with in-
plane mountings, in particular when only one order is reflected
or transmitted by the grating [1, 2]. It has been shown that the
reflectivity of these gratings is, in general, close to that of the
planar structure except for a sharp peak culminating at 100%,
corresponding to the excitation of a guided mode, at least for
1D symmetrical shallow surfaces. This remarkable property
may be valuable for light filtering, but unfortunately it is limited
to polarized light [3, 4]. In order to use this property for many
technological applications of filtering, it has been suggested
to use off-plane (conical) mounting or two-dimensional (2D)
gratings in order to design filters for unpolarized light [5–7].
However, the main difficulty is in handling the large number
of parameters describing these gratings, since the behaviour of
the reflectivity versus the wavelength, angle of incidence and
incident polarization in the general vectorial case is still little
understood.

In order to overcome this difficulty, we have developed
a phenomenological theory of filtering properties of 1D
or 2D gratings deposited on planar waveguides. Our
phenomenological study makes use of the notion of analytic

continuation of complex functions of a real variable in the
complex plane. Poles and roots of the eigenvalues of Hermitian
matrices derived from scattering matrices allow us to predict
the filtering phenomena for polarized and unpolarized light.

Our first result is that high efficiency filtering properties for
unpolarized light are quite impossible to obtain if the incident
light cannot excite a couple of guided modes at the same
wavelength. The second result is that this goal is reached
when the two guided modes propagate in almost orthogonal
directions. This interesting property is interpreted in terms of
the Brewster effect. Rigorous numerical results will confirm
these theoretical predictions for some kinds of gratings.

2. The physical problem

The periodic guiding structure presented in figure 1 in a
Cartesian coordinate system of axes xyz is limited on top
(z = 0) by air and at the bottom (z = −e) by a substrate of
real relative permittivity εs . Its relative permittivity ε(x, y, z)
for −e < z < 0 is real and periodic along one or two different,
possibly non-orthogonal, directions of the xy plane, vectors �d1

and �d2 symbolizing the two periodicities ( �d2 is infinite for a
1D grating). Figure 2 shows examples of such structures. The
permittivity ε(x, y, z) is supposed to be obtained by perturbing
slightly a permittivity ε′(z) in a periodic manner, the non-
perturbed structure being a waveguide (for example, ε′(z) may
be constant and greater than εs).

The incident plane wave with wavevector �ki+ (with |�ki+| =
k = 2π/λ, λ wavelength in vacuum) illuminates the grating
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Figure 1. The periodic guiding structure.
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Figure 2. Examples of periodic guiding structures. (a) Classical
lamellar grating used in conical mounting. (b) Crossed grating with
circular bumps and hexagonal symmetry.

with an incidence characterized by angles φ (angle between
the x axis and the projection of �ki+ on the xy plane) and
θ (angle between the z axis and �ki+). To define properly
the scattering matrix of the structure, it is also necessary to
introduce an incident plane wave coming from the substrate,
with wavevector �ki− (with |�ki−| = k

√
εs) that has the same

tangential component �ki
on the (xy) plane as �ki+. Since these

two wavevectors have the same projection �ki
on the xy plane,

they generate reflected and transmitted waves in the same
directions.

Defining the reciprocal grating by the vectors (�a1, �a2)
given by 〈�ai , �d j 〉 = 2πδi, j , with δ the Kronecker symbol
(for 1D gratings �a2 vanishes) and using a time dependence in
exp(−iωt), the total electric field outside the inhomogeneous
region at point �r = x x̂ + y ŷ + zẑ = �r + zẑ can be expressed by

�E± = �Ei± + �Es± = �Pi± exp(i�ki · �r ∓ iγ ±z)

+
+∞∑

n=−∞

+∞∑
m=−∞

�P±
n,m exp(i(�ki

+ n�a1 + m�a2) · �r ± iγ ±
n,mz).

(1)

The symbol ± indicates whether we are placed in the air or in
the substrate:

γ +
n,m =

√
k2 − |�ki

+ n�a1 + m�a2|2

and

γ −
n,m =

√
k2εs − |�ki

+ n�a1 + m�a2|2

with Re(γ ±
n,m) + Im(γ ±

n,m) � 0. Throughout the paper, it
is assumed that only one scattered order (the zeroth order,
corresponding to n = m = 0 in equation (1)) propagates
towards z = ±∞ in the air or in the substrate, all the others
being evanescent.

In order to define the polarizations of the incident and
scattered waves, the amplitudes �Pi± and �P±

0,0 of the incident
electric field and of the two propagating orders are projected
on two unit vectors ŝ i±, p̂i±, ŝd±, p̂d± orthogonal to the
corresponding wavevectors, vectors p̂ lying in the plane of
incidence, with positive or null component on the z axis, the
trihedrons (�k, p̂, ŝ) being direct for waves propagating towards
z = −∞ and inverse otherwise. We call Pi±,s, Pi±,p, Pd±,s

and Pd±,p the projections of the polarization vectors on these
unit vectors.

3. Scattering matrices: definitions and properties

Four incident and diffracted column matrices of two elements
are defined by

I± =
(

Pi±,s
√

γ ±
0,0, Pi±,p

√
γ ±

0,0

)
,

D± =
(

Pd±,s
√

γ ±
0,0, Pd±,p

√
γ ±

0,0

) (2)

and from the linearity of Maxwell’s equations, the diffracted
matrices can be expressed linearly from the incident ones
through square reflection matrices R1 and R2 and transmission
matrices T1 and T2 of size 2 × 2:

D+ = R1 I + + T2 I− (3)

D− = T1 I + + R2 I−. (4)

Incident and diffracted column matrices I and D having four
components are respectively equal to

(
Pi+,s

√
γ +

0,0, Pi+,p
√

γ +
0,0, Pi−,s

√
γ −

0,0, Pi−,p
√

γ −
0,0

)

and
(

Pd+,s
√

γ +
0,0, Pd+,p

√
γ +

0,0, Pd−,s
√

γ −
0,0, Pd−,p

√
γ −

0,0

)

in such a way that equations (3) and (4) can be condensed into
a single one:

D = S I, with S =
(

R1 T2

T1 R2

)
. (5)

Since the materials are lossless, the energy balance entails
that the scattered intensity is equal to the incident one, thus
|D| = |I |. This property shows that the S matrix is unitary:

S∗S = 1 (6)

1 denoting here the unit diagonal matrix and S∗ the adjoint of S.
Secondly, the reciprocity theorem [8] allows one to show

from tedious but straightforward calculations that, when the
diffracting structure is symmetrical with respect to the z axis,
the S matrix is symmetrical. Other symmetry properties of the
S matrix can be derived from other kinds of symmetries of the
structure.
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4. Singularities and roots of the S matrix in the
complex plane

We have assumed that the non-perturbed structure is a
waveguide. After introducing a perturbation, it remains a
waveguide and it is well known that a guided wave propagating
with a propagation constant or wavevector �kg

in the xy plane
can be expressed from equation (1) by removing the incident
terms:

�E± =
+∞∑

n′=−∞

+∞∑
m′=−∞

�Pg±
n′,m′

× exp(i(�kg
+ n′ �a1 + m ′ �a2) · �r ± iγ g±

n′,m′ z) (7)

γ
g+

n′,m′ =
√

(kg)2 − |�kg
+ n′ �a1 + m ′ �a2|2,

γ
g−

n′,m′ =
√

(kg)2εs − |�kg
+ n′ �a1 + m ′ �a2|2.

For the unperturbed planar waveguide, the expression of the
guided wave reduces to a single term, which corresponds to
n′ = m ′ = 0. As a consequence,

|�kg| > kg. (8)

The question which arises is the following: the guided
wave expressed in equation (7) can be considered as a scattered
field which exists without any incident wave (see equation (1)).
If an incident plane wave can excite this guided wave, it will
generate a resonance phenomenon (grating anomaly), resulting
in rapid variations of the scattered amplitudes. The double
conditions to reach this goal are the following:

(a) to use an incident wave with a wavenumber k equal to the
wavenumber kg of the guided wave,

(b) to match the propagation constants �ki
+ m�a1 + n�a2 in the

xy plane of the incident wave to the propagation constants
�kg

+ m ′ �a1 + n′ �a2 of the guided wave, thus

�ki = �kg + nt �a1 + mt �a2. (9)

The first remark to be made on equation (9) is that nt

or mt or both must be different from zero. Indeed, |�ki |, the
constant of propagation of a plane wave in the xy plane, is less
than the wavenumber k = kg , in contrast to �kg , according to
equation (8).

The second remark is that the wavenumber kg must be
complex; thus condition (a) cannot be fulfilled exactly. Indeed,
if both conditions are satisfied, the propagation constants of the
terms placed in the summation of equation (7) are identical to
those corresponding to the scattered field in equation (1). This
means that it contains at least one scattered plane wave on both
sides of the periodic region, or in other words that the structure
presents losses, due to these radiations. Since there is no
incident wave in equation (7), these losses cannot be offset by
any incident energy. An obvious consequence is that the field
must decrease with time, and since it behaves in exp(−iωt) the
frequency ω = kgc is complex, with a negative imaginary part.

On the other hand, when the perturbed waveguide tends to
a planar structure, the amplitudes of the lossy terms vanish in
equation (7) and kg becomes real and equal to the wavenumber
kg,planar of the guided wave of the planar structure with
propagation vector �kg in the xy plane. However, we know that

this guided wave cannot be excited by an incident plane wave
since the single term with propagation vector �kg in equation (7)

cannot match the single term with propagation vector �ki in the
scattered field contained in equation (1).

It is worth noting that condition (a) can be satisfied if
we renounce condition (b), in other words if we assume that
the propagation vector �kg is complex. In that case, the field
decreases as it propagates but does not decrease with time.
In the frame of the present paper, we are interested in the
behaviour of the scattered field when the wavelength is varied,
and the choice of using complex values of the wavenumber is
much more adequate, as we will see later.

Now, from a mathematical point of view, we are led
to the following conclusion. The guided mode given by
equation (7) has the same expression as the scattered field of
equation (1), which would exist without any incident field for
propagation vector �kg . In other words, under the conditions
where the guided wave exists, the diffracted column matrix
D of equation (5) is different from zero while the incident
column matrix I vanishes: thus the scattering matrix S has a
pole. Since this pole corresponds to a complex value kg of
the wavenumber, it can be concluded that kg is the pole of
the analytic continuation of the S matrix (which is unique)
in the complex plane of k, when the propagation constant �ki

is fixed and equal to that of the guided wave �kg . Of course,
the wavenumber k of a plane wave is real but the existence
of the pole outside the real axis has a vital importance on
the behaviour on the real axis: a resonance phenomenon
occurs as soon as the real wavenumber k of the incident plane
wave comes close to the location of the pole, especially if the
imaginary part of the pole is small.

In general, the fact that the determinant of S has a pole
entails that all the coefficients of the S matrix, and hence all the
sub-matrices R1, R2, T1, T2, have the same pole, as shown in
the study of grating anomalies [1, 2]. Furthermore, the unitar-
ity of the S matrix on the real axis and the extinction of the res-
onance phenomenon when the structure becomes planar lead
to the conclusion that the determinant of the S matrix has a root
kr

S, called the root of the S matrix in the following. When the
waveguide becomes planar, this root becomes equal to the pole:

kr,planar
s = kg,planar . (10)

In contrast with the pole, the root of det(S) is not the same
as the roots kr

R1
, kr

R2
, kr

T1
, kr

T2
of the sub-matrices. However,

all these roots have the same limit given by equation (10).
Furthermore, it can be shown that the root and the pole of a
given sub-matrix are the root and the pole of a single eigenvalue
of this matrix, the other one having no pole and no root in the
vicinity. Now, let us consider the matrix T1. Its first eigenvalue
can be expressed in the form

l(1)
T1

(k) = u(k)
k − kr

T1

k − kg
. (11)

Since u(k) has no pole and no root in the vicinity of the
resonance, it can be considered as an analytic function and if
the structure is slightly perturbed, the pole and root are very
close to each other and close to the real axis, and u(k) can be
considered as constant in the resonance region, as well as the
second eigenvalue l(2)

T1
(k). Equation (10) shows that, for the
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planar structure, the root identifies with the pole in such a way
that the anomalous behaviour of the first eigenvalue does not
hold.

5. Vital influence of the symmetries of the waveguide
on the roots

Symmetries of the structure entail very important properties of
the roots of the eigenvalues, which may become real. Using
elementary theorems on analytic functions of the complex
variable, it can be shown that the extension of equation (6)
to the complex plane, in the vicinity of the real axis, can be
written as

S∗(k̄)S(k) = 1. (12)

Developing this equation using the sub-matrices R1 , R2, T1, T2,
it emerges that the conjugate k̄r

T2
of the root of T2 is equal to the

root kr
T1

of T1. Now, if the structure is symmetrical with respect
to the z axis, T2 is the transpose of T1 since S is symmetrical.
Thus the root of T2 is the root of T1 as well and k̄r

T1
is a root of

T1. Since T1 has a single root in the vicinity of the resonance
region, these two roots are equal and kr

T1
is real.

This interesting result can be expressed in the following
way: when the diffractive structure is symmetrical with respect
to the z axis, there exists a real wavelength λ = 2π/kr

T1
and a

polarization I + of the incident wave propagating in air (equal
to the value of the first eigenvector V (1)

T1
of T1 at k = kr

T1
)

such that the transmitted energy is rigorously equal to zero.
As a consequence, the reflected energy is equal to the incident
one.

It can be shown that in these conditions, called the ‘total
reflection configuration’, the diffracted column matrix D+ is
equal to V̄ (1)

T1
.

It is worth noting that I + = V (1)
T1

does not correspond
to a linearly polarized incident wave in general. Thus it is
interesting to study what happens when, starting from the total
reflection configuration, the polarization or the wavelength of
the incident wave is changed. We suppose that the polarization
is linear and that the incident energy 〈I +|I +〉 is equal to unity
(〈V |U 〉 = V̄1U1 + V̄2U2 is the Hermitian scalar product). Then
the reflected energy ρ is given by

ρ = 〈D+|D+〉 = 〈R1 I +|R1 I +〉 = 〈R∗
1 R1 I +|I +〉. (13)

Thus we are led to the study of the Hermitian reflection
matrix R∗

1 R1 which has two real and positive eigenvalues l(1)

R∗
1 R1

and l(2)

R∗
1 R1

associated with two orthogonal eigenvectors V (1)

R∗
1 R1

and V (2)

R∗
1 R1

. The R∗
1 R1 matrix has two poles (k = kg due to R1

and k = k̄g due to R∗
1 ) and two conjugate and complex roots.

These poles and roots are present in the first eigenvalue l(1)

R∗
1 R1

whilst the second one, l(2)

R∗
1 R1

, which has no pole and no root,
is not sensitive to the resonance phenomenon when k is close
to kg.

Mathematically, the reflected energy can be written in the
form

ρ = l(1)

R∗
1 R1

|〈I +|V (1)

R∗
1 R1

〉|2 + l(2)

R∗
1 R1

|〈I +|V (2)

R∗
1 R1

〉|2. (14)

Using the following notation:

V (1)

R∗
1 R1

= (cos q, sin q exp(iϕ)) (15)

taking into account the orthogonality of V (1)

R∗
1 R1

and V (2)

R∗
1 R1

, and
bearing in mind that the incident wave is unitary and linearly
polarized yields

I + = (cos(δ), sin(δ)) (16)

and a straightforward calculation shows from (14) that

ρ = l(1)

R∗
1 R1

+ l(2)

R∗
1 R1

2
+

l(1)

R∗
1 R1

− l(2)

R∗
1 R1

2
τ cos(2δ − ψ) (17)

τ =
√

cos(2q)2 + sin(2q)2 cos(ϕ)2 (18)

tan(ψ) = tan(2q) cos(ϕ). (19)

When k = kr
T1

, the reflected energy oscillates sinusoidally
as the polarization angle δ is varied, the maximum value of
1 − 1

2 (1 − l(1)

R∗
1 R1

)(1 − τ) and a minimum value of 1 − 1
2 (1 −

l(1)

R∗
1 R1

)(1 + τ ) being obtained when δ = 1
2ψ and 1

2 (ψ + π),
respectively.

Now, if the structure is close to the planar waveguide, we
can conjecture that the eigenvalues of R∗

1 R1 (and therefore the
reflectivity) are close to that of the planar structure when k is
taken far enough from kr

T1
. In the vicinity of kr

T1
, the eigenvalue

l(1)

R∗
1 R1

has two poles and two roots. Its value increases from
that of the planar waveguide to unity when k tends to kr

T1
. If

the incident wave has this polarization, the reflected wave will
have exactly the same behaviour. Thus, if the planar waveguide
is a poor reflector, the perturbed waveguide will constitute a
high efficiency filter for a given polarized light. On the other
hand, for the orthogonal polarization, the structure will reflect
the incident light as the planar waveguide.

It can be deduced from these considerations that it is quite
impossible to use the grating structure as a selective frequency
filter with an efficiency close to unity for unpolarized light if
one mode only is excited.

6. Numerical examples

Our first example illustrates the fact that if one mode only is
excited, the reflectivity cannot reach 100% for any polariza-
tion of the incident beam. We consider a grating that supports
one guided mode only, with wavevector �kg

, in the range of
wavelength we are interested in. The parameters of the grating
are chosen so that one order only is diffracted in the substrate
and in the air. We study the reflectivity of the structure versus
the wavelength for s and p polarization, under conical inci-
dence as shown in figure 3(a). For a wavenumber close to the
real part of kg , sharp peaks appear in the reflectivity curves for
both s and p polarizations (figure 3(a)). The peaks have differ-
ent maximum values, and none of them reach 100%. Indeed, in
that case, only one eigenvalue of the reflectivity matrix, l(1)

R∗
1 R1

,

reaches one, while the other, l(2)

R∗
1 R1

, is not affected by the pres-
ence of the mode (figure 3(b)). As a result, the reflectivity
oscillates between one and l(2)

R∗
1 R1

as a function of the angle of
polarization δ (figure 3(c)). In order to make both eigenvalues
reach one, two modes have to be excited by the incident beam,
for the same spatial frequencies and the same wavenumber.
This amounts to saying that two dispersion curves, that relate
the wavenumber to the wavevector of the modes, intersect. The
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Figure 3. Reflection factor of a 2D grating with square bumps,
refractive indices of the substrate ns = 1.5, layer nc = 2.5,
thickness ec = 133 nm, bump height h = 7 nm, period d = 930 nm
and bump width c = 465 nm. The index of the bumps is equal to nc.
The incident parameters are θ = 15◦ and φ = 28◦. (a) Reflection
factor versus wavelength for both s (full curve) and p (broken
curve) polarizations. (b) First (full curve) and second (broken curve)
eigenvalues versus wavelength. (c) Reflection factor versus the
angle of polarization δ.

issue is thus to find gratings that support eigenmodes whose
dispersion relations present points of degeneracy.

Intersection of the dispersion relations can be obtained
easily with a structure that supports TE and TM modes.
Under a classical mount these two dispersion relations
are independent and can cross with well chosen grating
parameters. In this case, one obtains peaks of reflectivity that
reach one for all angles of polarization (figures 4(a) and (b)).
It yields a filter for unpolarized light working under oblique
incidence [7].
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Figure 4. Reflection factor of a 1D lamellar grating, with refractive
index of the substrate ns = 1.5, layer nc = 2.0, thickness
ec = 300 nm, groove depth h = 87.5 nm, period dx = 904 nm and
groove width c = 226 nm. The incident plane is perpendicular to
the lines of the grating, and the angle of incidence is θ = 4◦. The
guide supports a TE and a TM mode. (a) Reflection factor versus
wavelength for both s (full curve) and p (broken curve)
polarizations. (b) Reflection factor versus angle of polarization δ.

Degeneracy of the dispersion relation can also occur with
structures supporting only one mode. When the height of the
grating tends to zero, the dispersion relation tends toward that
of the planar guide. At the boundaries of the Brillouin zone
we observe degenerate points coming from the crossing of the
various bands. The physical meaning of the intersection, at a
given wavenumber kg,planar , of band (0, 0) and band (m, n)

is that the structure supports two guided waves propagating
along different directions, with wavevector �kg

and �kg

R
= �kg

+

m�a1 + n�a2 with |�kg| = |�kg

R
| (see figure 5). When the height of

the periodic perturbation is increased, these two guided waves
are coupled to each other, through the grating. Indeed, one can
regard the mode with wavevector �kg

R
as the reflection of the

incident mode, �kg
, on the (m, n) Bragg plane of the 2D grating.

As a result, one obtains two pseudo-periodic eigenmodes, that
are a combination of the guided waves, with different photonic
energies [9]. Thus, the dispersion relation presents a band-
gap and the point of degeneracy disappears. The energy gap
is linked to the interaction strength between the two guided
waves. In order to preserve the points of degeneracy, it is
necessary to look for a configuration in which this interaction
is null. This is possible by eliminating the reflection on the
Bragg plane, for example by creating a Brewster effect. This
Brewster effect is well known in a periodic multilayer used
as a dielectric mirror. For a given angle of incidence, in p
polarization, the incident beam can be totally transmitted by the
mirror. It corresponds to a degenerate point of the dispersion
relation of the Bloch waves of the infinite periodic system [10].
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Figure 5. Dispersion relation of the first TE guided mode
propagating in a layer with refractive index nc = 3 and thickness
ec = 80 nm deposited on a substrate with refractive index ns = 1.5.
The period of the fictitious grating (the depth of which is zero) is
d = 507 nm. The numbers of the bands are indicated in brackets.

One can find the same phenomenon with a TE guided wave
propagating in a 1D lamellar grating along the �kg

direction.
Indeed these two configurations are similar from a conceptual
point of view. The Brewster effect being a consequence of
the anisotropy of the field radiated by electric dipoles, it is
obtained when the angle  between the wavevector of the
reflected mode, �kg

R
= �kg

+ m�a1 (with |�kg| = |�kg

R
|) and that

of the incident mode, �kg
, is close to 90◦. A pseudo-Brewster

effect is also observed with a 2D grating when the direction of
propagation of the mode, viewed as a reflection on the (m, n)

Bragg plane, is quasi-orthogonal to that of the incident guided
wave. Actually, the angle  between the two directions of
propagation of the guided waves that minimizes the Bragg
plane ‘reflection’ depends, of course, on the various parameters
of the structure, but, in general, it is about 90◦. To obtain a
two-times degenerate point in the dispersion relation (and a
real Brewster effect), it is also necessary that the eigenmodes
are independent, i.e. that their overlap integral is null. This
condition is fulfilled when the structure is symmetrical with
respect to the bisecting line û of �kg

R
and �kg

, so that the
eigenmodes are either symmetrical or antisymmetrical with
respect to û. In this case, one can find an angle  for which
the energy gap is rigorously zero.

A 1D grating is the simplest grating with a plane of
symmetry. The modes that are excited in the extreme conical
mount (φ = 90◦) are symmetric and antisymmetric about this
plane. By choosing the parameters of the structure so that the
angle  between �kg

R
= �ki + �a1 and �kg = �ki − �a1 is close to 90◦,

one can find an intersection point in the dispersion relations
of the symmetric mode and the antisymmetric mode. In
figures 6(a)–(c) we plot the reflectivity versus the wavelength
before, after and on the point of intersection for which the s
and p resonances occur for the same wavelength λ0. Note
that, with an asymmetric 1D grating with respect to the z
axis, it is impossible to superpose the two peaks since the
eigenmodes are not independent. The reflectivity versus δ

for the wavelength λ0 is plotted in figure 6(d). It illustrates
that this structure can filter unpolarized light under non-
normal incidence. Yet, the condition of orthogonality of the
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Figure 6. Reflection factor of a 1D lamellar grating, with refractive
indices of the substrate ns = 1.2, layer nc = 2.0, thickness
ec = 110 nm, groove depth h = 10 nm, period dx = 1726 nm and
groove width c = 1000 nm. The incident plane is parallel to the
lines of the grating. (a) Reflection factor versus the wavelength for
both s (full curve) and p (broken curve) polarization when the angle
of incidence is θ = 50◦. (b) The angle of incidence is θ = 57◦.
(c) The angle of incidence is θ = 53.2◦. (d) Reflection factor versus
the angle of polarization δ when the angle of incidence is θ = 53.2◦
and the wavelength λ = 1.66 µm.

wavevectors of the modes that are excited with a 1D grating
under conical incidence requires an effective index of the
guided mode smaller than

√
2, when the superstrate is air. This

is difficult to obtain in practice because the effective index
of the guided mode is limited by the index of the substrate.
Thus, we have also considered 2D gratings. The condition
of orthogonality of the wavevectors of the two guided waves
is strictly realized for a 2D grating with a square cell under
normal incidence. Yet, by varying the parameters of the
grating, degenerate points of the dispersion relation can be
found for  slightly different from 90◦ and thus non-normal
incidence can be used. A filter for unpolarized light has been
obtained in this way in [7]. A triangular lattice seems to be a
better means to excite modes with orthogonal wavevectors out
of normal incidence since the reciprocal vectors of the lattice
are not normal to each other. The triangular lattice is also
interesting for its high order of symmetry. It has six planes
of symmetry, which can be classified into two families: the
planes which contain axes of the real lattice and the planes
which contain axes of the reciprocal lattice. If the plane of
incidence is along one axis of the reciprocal lattice, then the
angle between the reciprocal vectors used to excite the modes is
120◦ (see figure 7(a)). A simple calculation gives the angle of
incidence for which the wavevectors of the excited modes are
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Figure 7. (a) Real and reciprocal lattice for a triangular cell.
(b) Reflectivity factor versus the wavelength for both s (full curve)
and p (broken curve) polarizations of a 2D grating with triangular
cell. The parameters are: refractive index ns = 1.0 for the substrate,
nc = 3.5 for the layer and nc for the grating bumps, grating period
d = 1057.9 nm, depth h = 10 nm, layer thickness ec = 90 nm and
radius of the circular bumps r = 264 nm.

perpendicular versus the period, the propagation constant of the
guided mode and the wavelength. In figure 7(b) we managed
to superpose the s and p peaks for an angle of incidence equal
to 31.3◦. If the incident plane is parallel to one axis of the real
lattice, then the angle between the reciprocal vectors used to
excite the modes is 60◦. The s and p resonances can occur for
the same wavelength for an angle of incidence close to 60◦.
Note that the superposition of the s and p resonances does
not depend on the grating parameters (as long as the latter
presents the required symmetry properties). It suffices to vary
the angle of incidence so that  is modified about 90◦ to find
the degenerate point.

7. Conclusion

We have presented a phenomenological study of the behaviour
of the reflectivity of a resonant grating versus the polarization
of the incident beam. In particular, we can now deduce the
maximum and minimum values of the reflectivity from the
response of the device to s and p polarization for a given
incidence. One only has to calculate the eigenvalues of the
energy reflection matrix expressed in the s and p vectors. The
eigenvectors give the orthogonal polarizations (linear, circular
or elliptic) for which the extremum values of the reflectivity
are obtained.

When the grating supports one guided mode, we showed
that one eigenvalue presents a complex root and a complex
pole in the complex plane of the wavenumber. Moreover, if
the structure is symmetric about the normal to the waveguide,
this eigenvalue reaches unity at the resonance, while the other
remains close to the reflectivity of the device outside the

resonance. Thus, in order to design a high efficiency filter
for all polarizations, both eigenvalues have to reach unity.
With this aim, one has to find two modes that can be excited
for the same incident wavevector and with equal real part of
the wavenumber. This corresponds to a crossing point of
intersection in the dispersion relations of the guided waves.

Pseudo-degenerate points of the relation dispersion
appear, in particular, at the extremity of the Brillouin zone
when the incident beam couples, via the grating, to two
modes propagating in different directions. Unfortunately, the
interaction between the two modes generally removes the
degeneracy. We explained the relationship between the two
modes in terms of reflection on a Bragg plane of the photonic
crystal created by the grating. Then, we found that two
TE guided modes are totally independent if they propagate
along the Brewster directions. Yet, if we develop further the
analogy with the reflection on a multilayer stack, it is obvious
that the interaction (or Bragg plane reflection) can vanish in
other configurations. In particular, for TM guided waves,
independent modes can be found for a particular filling factor
of the grating [6]. A perturbative approach [11] could be used
to derive analytical expressions of the coupling between the
two modes. Our work is in progress in that direction.
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