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Eigenmodes �plasmons or guided modes� in dielectric or metallic gratings can be excited by an incident free
space wave. This excitation yields an anomaly in the reflectivity curves with respect to the incident wavelength
or angle. The anomaly is often used experimentally to exhibit the mode dispersion relation. By studying the
reflectivity of a weakly corrugated dielectric waveguide, we show that, at the crossing of two independent
mode dispersion relations, the anomaly disappears for a wide range of incident angles, thus forming a k gap.
We point out that, in this case, the loci of the anomaly differ strongly from the dispersion relation of the modes.
We derive a simple model that accounts for this phenomenon.
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Dielectric or metallic multilayer stacks can support eigen-
modes �guided modes or plasmons� that can be excited with
an incident plane wave provided that a suitable grating is
included in the structure. The coupling and decoupling of the
mode induces rapid variations, from a minimum to a maxi-
mum, of the grating reflected orders with respect to the
wavelength and angle of incidence. These are the so-called
Wood anomalies.1 Experimentally, the dispersion relation of
the eigenmode is inferred from the reflectivity maximum �for
dielectrics� or minimum �for metals or dielectrics�, with re-
spect to the incident temporal frequency � and spatial fre-
quency k �hereafter, k is the projection of the incident wave
vector on the plane of the layers�.2–4 This approach is in
general accurate. Yet, for some metallic configurations,5 the
reflectivity minimum locus revealed the existence of a k gap
at the crossing point of the dispersion relation of the plas-
mon, instead of an � gap.6–8 After some confusion,9 theoret-
ical works pointed out that the opening of the k gap in the
reflectivity extrema locus was connected to a weak direct
coupling between the two modes,10,11 hence to a small � gap
in the mode dispersion relation. In this case, the dispersion
relation of the mode cannot be inferred simply from the re-
flectivity anomaly. In this paper, we point out the nontrivial
link between the radiative properties and the mode disper-
sion relation when two modes are excited simultaneously in
the structure. We consider a weakly periodically perturbed
waveguide and we study the excitation of guided modes in-
stead of plasmons. Taking advantage of the absence of loss,
of the symmetry properties of the structure and of the possi-
bility of exciting independent modes, we are able to exhibit
well-pronounced k gaps both for the reflectivity and trans-
mittivity minima. We provide a simple model that explains
thoroughly this phenomenon. The surprising radiative behav-
ior of these multimode structures could be used for designing
new optical functions.

Since the 1970s, an important theoretical work has been
performed to show that the Wood anomalies can be inter-
preted in terms of poles and zeroes of the reflection and
transmission coefficients of the resonant grating, in the spe-
cial case where only the specular order is propagative.12

More precisely, when only one eigenmode is excited, with a
fixed incident temporal frequency �, and a varying incident
spatial frequency k the reflection and transmission coeffi-
cients of the structure can be written as

R = rref
k − kzr

k − kp
and T = tref

k − kzt

k − kp
, �1�

where rref and tref are the reflection and transmission coeffi-
cients away from the resonance, and kzr, kzt, and kp are a
priori complex zeroes and pole. It has been shown13 that
curves obtained from Eq. �1� fit perfectly the reflectivity and
transmittivity curves obtained from rigorous numerical cal-
culation. Hence the knowledge of the pole and zeroes is suf-
ficient to account for the reflectivity and transmittivity prop-
erties of the resonant grating. Note that the pole and zeroes
can be obtained numerically by studying R and T for com-
plex incident spatial frequencies k. In this Brief Report, we
derive expressions of kzr and kzt in relation to kp, thanks to an
approached model. We consider a dielectric multilayer stack,
with relative dielectric constant �ref�z�. We assume that this
reference structure supports one or several guided modes in
the range of wavelengths under study. In the following, we
will consider only TE modes �electric field perpendicular to
the direction of propagation�. We introduce a periodic pertur-
bation to the reference structure. The period d is small
enough as compared to the wavelength, so that solely the
specular order is propagative in the substrate and superstrate.
Due to the periodic perturbation, the guided modes of the
reference structure become leaky and they can be excited
with an appropriate incident wave, and decoupled into free
space. In this Brief Report, we assume that the structure is
periodic along one direction �Ox�, with spatial frequency K
=2� /d, and invariant along the orthogonal direction �Oy�
�Fig. 1�. We call ��x ,z� the relative dielectric constant of the
structure, and we introduce the dielectric constant of the per-
turbation,

�per�x,z� = ��x,z� − �ref�z� , �2�

and � the domain where �per is nonzero. We consider an
incident monochromatic plane wave coming from the super-
strate �dielectric relative permittivity �a�, whose wave vector
in the �Oxz� plane is described by its spatiotemporal frequen-
cies �k,��. The incident wave is TE polarized, and its electric
field along �Oy� is Einc�x ,z�=exp�ikx− i�az�, where �a

=���ak0
2−k2�, and k0=� /c is the wave number in vacuum �c

is the celerity of light in vacuum�. Hereafter, the exp�−i�t�
dependency is omitted. We note E�x ,z� and Eref�z� the elec-
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tric fields solutions of the diffraction problems for the whole
structure, and the reference �planar� structure, respectively.
Hence the field E−Eref is the solution of the equation

��E − Eref� + k0
2�ref�E − Eref� = − k0

2�perE , �3�

that satisfies an outgoing-wave boundary condition. Due to
the periodicity along �Ox�, the field E is pseudoperiodic: it
can be written as a Floquet-Bloch expansion E�x ,z�
=�nen�z�exp�ix�k+nK��. To solve Eq. �3�, we introduce the
pseudoperiodic Green function G�k ,x−x� ,z ,z��, the solution
of Eq. �3� with the right-hand side equal to the Dirac distri-
bution sum �n��x−x�−nd ,z−z��exp�ik�x−x���.14 Finally, we
can show that the coefficients en are the solution of a coupled
set of equations

en�z� = �n,0eref�z� + �
�

dz�Gn�z,z���
m

�̃n−m�z��em�z�� ,

�4�

where �̃m are the coefficients of the Fourier expansion of �per,
Gn�z ,z�� are the coefficients of the Floquet-Bloch expansion
of G, and eref is defined by Eref�x ,z�=eref�z�exp�ikx�. In the
superstrate, eref�z�=rref exp�i�az�+exp�−i�az�, and in the
substrate �dielectric relative permittivity �s�, eref�z�
= tref exp�−i�sz�, where �s=���sk0

2−k2�. From Eq. �4�, it is
possible to derive an analytic expression for e0, which yields
the reflection and transmission coefficients as functions of
the temporal frequency � and spatial frequency k. Indeed, in
the superstrate, e0�z�=R exp�i�az�+exp�−i�az�, and in the
substrate, e0�z�=T exp�−i�sz�. In the following, we choose to
keep � real constant, and to search for the complex spatial
frequency k such that the reflectivity or transmittivity of the
structure is null.

First, we choose the period of the structure and the inci-
dent wave in such a way that only one leaky eigenmode,
with spatial frequency km at the incident temporal frequency
�, is excited through the qth grating order. In other words,
the incident spatial frequency k varies in the vicinity of kp
=km−qK. As a consequence, the field in the qth order of the
grating is prevailing when k is in the vicinity of kp. Hence, in

our perturbative calculation of e0, we will take into account
only the term coming from the decoupling of the mode �the
qth order�, plus the reference field, and neglect the other
terms:

e0�z� � eref�z� + �
�

dz�G0�z,z���̃−q�z��eq�z�� , �5�

where eq�z��	�dz�Gq�z ,z���̃q�z��eref�z��.15 To take into ac-
count the existence of the resonance, we write the qth coef-
ficient of the Green function as

Gq�z,z�� �
Aq�z,z��
k − kp

, �6�

for k in the vicinity of kp. Injecting Eq. �6� into Eq. �5�, we
obtain the following expressions for the reflection and trans-
mission coefficients:

R � rref +
Xq

k − kp
and T � tref +

Yq

k − kp
, �7�

where

Xq = �
�

dz�g0r�z���̃−q�z���
�

dz�Aq�z�,z���̃q�z��eref�z�� ,

�8�

and Yq is obtained by replacing g0r with g0t in Eq. �8�. To
obtain Eq. �7�, we used the following property of the Green
function: G0�z ,z��=g0r�z��exp�i�az� for z in the superstrate

FIG. 2. Trajectory of the minimum of reflectivity �void circles�
and the minimum of transmittivity �black stars� with respect to the
temporal and spatial frequencies � and k �criterion: 
R
2 and 
T
2 are
less than 10−4�. A wide k gap is observed in both trajectories. The
grating parameters are �see Fig. 1� h=300 nm, d=1076 nm, a
=538 nm, and �g=2.1609. The thickness and relative permittivity of
the layers are �t1=187 nm, �1=4.2849�, �t2=264 nm, �2=2.1609�,
�t3=187 nm, �3=4.2849�, �t4=264 nm, �4=2.1609�, �t5=187 nm,
�5=4.2849�, �t6=264 nm, �6=2.1609�, �t7=1000 nm, �7=2.0967�
from top to the middle layer. The surrounding media is air, �a=1. In
all figures, the calculations are performed with a rigorous Fourier
modal method �Ref. 16�.

FIG. 1. Geometry of the studied configuration. The structure is
invariant along �Oy� and symmetrical with respect to the �Oxy� and
�Oyz� planes. The periodicity of the structure and the spatial fre-
quency of the incident wave are chosen in order to excite two in-
dependent eigenmodes.

BRIEF REPORTS PHYSICAL REVIEW B 73, 233405 �2006�

233405-2



and G0�z ,z��=g0t�z��exp�−i�sz� for z in the substrate.18 We
deduce from Eq. �7� the expressions of the zeroes:

kzr � kp −
Xq

rref
and kzt � kp −

Yq

tref
, �9�

where rref and tref are the reference planar structure reflection
and transmission coefficients �e.g., the reflection and trans-
mission coefficient away from the resonance�. In Eq. �7�, it
appears that the field diffracted by the structure is the sum of
the field diffracted by the planar structure and the field com-
ing from the coupling and decoupling of the eigenmode.
Hence the zeroes in reflection and transmission can be inter-
preted in terms of destructive interferences between these
two fields. Note that these results are available whatever the
structure symmetry. In the particular case when the structure
is symmetrical with respect to the �Oxy� and �Oyz� plane �see
Fig. 1�, it can be shown from Eq. �8� that Xq and Yq are not
proportional to rref and tref. Hence, from Eq. �9�, we note that
the zeroes kzr and kzt, in general complex, follow the pole kp,
and that the zero of reflection �transmission� will be all the
farther from the pole than the reference structure reflectivity
�transmittivity� is low. Similar expressions are obtained for
the temporal frequency of the zeroes �zr by fixing the spatial
frequency k �real�.

Now, we consider a structure presenting a plane of sym-
metry parallel to the plane of the layers �Fig. 1�, and we
choose the grating period and the incident wave in such a
way that a symmetric and an antisymmetric mode are simul-
taneously excited, in opposite directions, through the orders
q+ and q− of the grating, respectively. We note km

+ and km
− are

the spatial frequencies of the symmetric and antisymmetric
modes at the incident temporal frequency �, and we intro-
duce the notations kp+=km

+ −q+K and kp−=−km
− +q−K. In other

words, the incident spatial frequency k varies in the vicinity
of kp

+�kp
−. Taking inspiration from Eq. �7�, and reminding

that the two modes are independent, it can be shown that the
reflection coefficient takes the following form:

R � rref +
Xq+

k − kp
+ +

Xq−

k − kp
− , �10�

where the expression of the numerator Xq± is the same as that
obtained when exciting one eigenmode independently of the
other. Hence it is easy to show that, at a given �, when both
modes are excited, the zero of reflectivity is obtained for two
spatial frequencies,

kzr
j �

kzr
+ + kzr

−

2
±

1

2
��kzr

+ − kzr
− �2 + 4�kzr

+ − kp
+��kzr

− − kp
−� ,

�11�

where j=1 or 2 according to the sign before the square root,
and kzr

+ and kzr
− are given by Eq. �9�, with kp

+ and kp
− replacing

kp. Similarly, when the spatial frequency k is fixed, one finds
two temporal frequencies at which the reflectivity is null,

�zr
j �

�zr
+ + �zr

−

2
±

1

2
���zr

+ − �zr
− �2 + 4��zr

+ − �p
+���zr

− − �p
−� ,

�12�

where �zr
± are the zeroes obtained when only one mode is

excited. Similar expressions are obtained for the zeroes in
transmission, kzt and �zt, by replacing the index r by t in Eqs.
�11� and �12�. In the following, we limit our discussion to the
zeroes in reflection, but the same properties apply to the
zeroes in transmission.

First of all, we note that when two independent modes are
excited simultaneously, we can no more differentiate the zero
of the symmetric mode from the zero of the antisymmetric
mode: a coupling occurs between the zeroes, whereas there is
no coupling between the modes. Second, it can be shown, for
resonant grating presenting a plane of symmetry parallel to
the plane of the layers, and when only one mode is excited,
that the zeroes in reflection �kzr

+ and kzr
− � and ��zr

+ and �zr
− � are

real,13 and that it is the same for the zeroes in transmission.
In this case, the loci of the zeroes are easily seen in the

FIG. 3. Reflectivity with respect to the inci-
dent temporal and spatial frequencies � and k.
The grating parameters �see Fig. 1� are h
=50 nm, d=1076 nm, a=269 nm, and �g

=2.1609. The thickness and relative permittivity
of the layers are �t1=349 nm, �1=2.1609�, �t2

=70.1 nm, �2=4.2849�, �t3=3000 nm, �3

=2.0967� from top to the middle layer. The sur-
rounding media is air, �a=1. A wide k gap is ob-
served in the trajectory of the minimum of reflec-
tivity �in black�.

BRIEF REPORTS PHYSICAL REVIEW B 73, 233405 �2006�

233405-3



reflectivity map R�k ,��, since it corresponds either to a null
or 100% reflectivity. The demonstration13 is based on the
reciprocity theorem and the conservation of energy. Using
the same arguments, one can easily show that when two
modes are excited, the two coupled zeroes kzr

1 and kzr
2 �Eq.

�11�� or �zr
1 and �zr

2 �Eq. �12�� are either real or complex
conjugate. Then, reminding that the real and the imaginary
parts of km are positive, simple arithmetic leads to the con-
clusion that �kzr

+ −kp
+��kzr

− −kp
−� is always positive. This means

that, for a fixed temporal frequency, the zeroes kzr
1 and kzr

2 are
always real, and split-up on each side of a mean value. This
is the proof of the forming of a k gap. In Fig. 2, we plot the
reflectivity maximum and minimum �calculated thanks to a
rigorous Fourier modal method16� of a structure depicted in
Fig. 1. We observe that the loci of the zeroes of reflection
and transmission present a k gap. Moreover, from Eq. �9� and
�11�, we note that the weaker the reflectivity rref of the ref-
erence structure, the larger the k gap between the zeroes in
reflection, and the smaller the k gap between the zeroes in
transmission. This can be seen in Fig. 3, where we plot the
reflectivity of a resonant grating depicted in Fig. 1 with rref
�0 �antireflection coating�. The structure being symmetrical
with respect to the �Oxy� plane and the material lossless, the
reflectivity minimum �in black� and maximum �in white� loci
correspond to the trajectories of the zeroes of reflection and
transmission, respectively. The k gap between the zeroes in
reflection is wide, while the k gap between the zeroes in
transmission is much narrower, it is not visible on the figure.
We have conducted a similar study of the zeroes �zr

1 and �zr
2

obtained for a fixed spatial frequency. Contrary to the previ-
ous case, one can show that ��zr

+ −�p
+���zr

− −�p
−� is always

negative, thus �zr
1 and �zr

2 can be complex conjugate. In Fig.
4, we plot the real and imaginary part of �zr

1 and �zr
2 obtained

numerically with respect to k real, for the same structure as
in Fig. 3. We observe that the zeroes become complex, for k
values belonging to the k gap observed in Fig. 3. Note that
when two counterpropagative modes are excited with a
strong direct coupling between them, an � gap occurs both
for the poles and for the zeroes.17 More precisely, in this
case, the zeroes for � are real and split on each side of a
mean value, while the zeroes for k are complex conjugate.

As a conclusion, we have shown that the loci of the Wood
anomalies of a weakly periodically perturbed waveguide can
strongly differ from the dispersion relation of the excited
mode. More precisely, when two independent modes are ex-
cited, we have demonstrated the existence of a well-
pronounced k gap for the loci of the reflectivity and trans-
mittivity minima. From a practical point of view, the
existence of k gaps may be interesting, since it provides
broadband devices �filters, sensors,¼� with high angular se-
lectivity. In our opinion, the optical properties of structures
in which several eigenmodes of different kinds, guided
waves, plasmons, and cavity modes, are excited simulta-
neously, could be explained with an extension of the simple
model presented here. Such a tool should permit the tailoring
of nanostructures with ultraspecific and requested optical
properties.
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