Unsupervised SAR Images Change Detection With Hidden Markov Chains On a Sliding Window

HMC on a sliding window

- Original image
- HMC
- HMC $\lambda=40$
- Step 1: Parameters Initialization using "K-means" for example
- Step 2: Parameters Estimation using "Estimation-Maximization" (EM)
- Step 3: Segmentation using "Maximal Posterior Mode" (MPM) or "Maximum A Posteriori" (MAP)
- Original Signal (y)
- Segmented Signal (\hat{x})

Change detection on simulated SAR images

- Image before I_1
- Introduced changes
- Image after I_2
- Criterion image
- $I_{k,n}(\cdot,\cdot) = \log\left(\frac{\sum_{k \in A_n \cap A_0} I_1(k, \cdot)}{\sum_{k \in A_0} I_1(k, \cdot)}\right)$
- $\lambda=40$
- $\text{FAR}=17.45\%$
- $\text{GKLD}^{(*)}$

Change detection on real SAR images

- Image before eruption
- $\text{FAR}=25.07\%$
- HMC
- Image after eruption
- $\text{HMC}^{(*)}$
- $\lambda=40$
- $\text{FAR}=17.45\%$
- $\text{GKLD}^{(*)}$

Conclusion

- **Main contributions of this work**
 - Overcoming stationary constraint of classical HMC model in unsupervised image segmentation.
 - Application in unsupervised change detection on bi-dates SAR images.

- **Further work**
 - Studying optimal size of the sliding window.
 - Studying model selection criteria for small sample.

References

