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“Don’t Stop Believin’ ”

Just a small town girl

Livin’ in a lonely world

She took the midnight train

Goin’ anywhere

Just a city boy

Born and raised in South Detroit

He took the midnight train

Goin’ anywhere

A singer in a smokey room

The smell of wine and cheap perfume

For a smile they can share the night

It goes on and on, and on, and on

Strangers waiting

Up and down the boulevard

Their shadows searching

In the night

Streetlight people

Livin’ just to find emotion

Hidin’ somewhere in the night

Workin’ hard to get my fill

Everybody wants a thrill

Payin’ anything to roll the dice

Just one more time

Some will win

Some will lose

Some were born to sing the blues

Oh, the movie never ends

It goes on and on, and on, and on

Don’t stop believin’

Hold on to that feelin’

Streetlight people

Don’t stop believin’

Hold on

Streetlight people

Don’t stop believin’

Hold on to that feelin’

Streetlight people

by Journey
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Introduction and outline

“That’s one small step for man, one giant leap for mankind.”
-Neil Armstrong, Astronaut

Introduction

Microscope magnifies small objects to observe a magnified image. Magnified image
of the objects enables us to see finer details which are invisible to the human eyes.
Various fields (microelectronics, biology, material science, medicine etc.) require mi-
croscopy tools to observe objects with micron, sub-micron and nanometric resolution
on wide range of samples for better understanding. Though there are varying forms
of microscopes, optical microscopy has an unique advantage with its non-destructive
and contact-free probing nature in the optical regime. Optical microscope was in-
vented around 16th century, it has been revolutionized since then. This is evident
from the Nobel Prize for Chemistry 2014 being awarded for the development of
super-resolution microscopy [1].

Classical optical microscopy is limited in resolution by the wavelength of light
(diffraction limit) restricting lateral resolution to about λ/2, and axial resolution
to about λ (the wavelength) [2]. The Nobel Prize for Chemistry 2014 winning
microscopes depend on the fluorescent markers to achieve super-resolution. It can be
detrimental to introduce fluorescent markers in to the probed sample, these markers
are non-permanent, they introduce artifacts into the sample, the resolution depends
on the labeling density etc. On the other hand, the invention of computers and
increase in the computational power coupled with the accurate understanding of the
light is pushing the horizons of the optical microscopy further beyond the diffraction
limit.

This PhD thesis is devoted to the optical tomographic diffractive microscopy
(TDM) for improving the three-dimensional isotropic resolution to observe label-
free objects beyond diffraction limit by only optical means. The TDM is one of the
techniques in the recent years that has seen a tremendous development in high and
super-resolution imaging, pushing the spatial resolution beyond its diffraction limit
with help of optics and computational algorithms. The principle is to illuminate
the sample successively with various angles of coherent light, collect the complex
(amplitude and phase) diffracted field and reconstruct the sample 3D permittivity
map through an inversion algorithm.
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Motivation

The motivation to pursue this thesis is to break the optical diffraction limit and
resolve nano-scale objects in the optical regime. Fluorescence Super-resolution mi-
croscope techniques (Stimulated emission depletion microscopy [STED], Stochastic
optical reconstruction microscopy [STORM] and Photo-activated localization mi-
croscopy [PALM]) resolve beyond the diffraction limit but with the limitations dis-
cussed earlier. One of the microscopy application field namely microelectronics does
not have the opportunity to take advantage of the fluorescent markers to perform
the required super-resolution microscopy. On the other hand, Transmission electron
microscopy (TEM) and scanning electron microscopy (SEM) need rigorous sample
preparation, measurements have to be performed in the vacuum, and the interaction
of the electron beam with the sample are some of the disadvantages of these micro-
scope techniques. Most of the research groups working on TDM utilize transmission
configuration because of its simplicity, objects located on reflective surface cannot
be resolved with transmission TDM. These disadvantages motivates us to develop
a global microscopy tool to obtain a three-dimensional reconstruction of the object
with its constitutive material properties (e.g. permittivity etc.) using an optical
microscope; namely TDM.

Objective

The objective of the PhD thesis was to improve the transverse resolution beyond λ/2,
and axial resolution beyond λ by using optical tomographic diffraction microscopy
(TDM) coupled with non-linear inversion algorithms. Improve the TDM experimen-
tal setup with the sate-of-art instruments for ameliorating the measured diffracted
field data which we believed would help in improving the resolution. Probe the role of
polarization on the resolution. To image the objects measured in noisy environment
using TDM was also an objective. To experimentally validate the mirror-assisted
tomography for axial-resolution improvement, which was theoretically proposed by
Mudry et al., [3]. Further explore various horizons in improving the overall perfor-
mance of the TDM and simplification of the sample fabrication, experimental setup,
data processing and non-linear inversion algorithm.

Outline of the thesis

This PhD thesis contains four chapters:

• In the first chapter, the principles of optical microscopy will be introduced
and the optical diffraction limit will be described in detail. With help of phase
microscopy I explain the principle to obtain a 3D quantitative reconstruction
of the object, which is tomography approach. The basic principles of optical
tomographic diffractive microscopy will be explained using rigorous electro-
magnetic diffraction. The approximations to this diffraction such as Born
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and Rytov are explored in detail to understand the transmission and reflec-
tion configuration of the TDM microscope. The last part of the first chapter
deals with experimental setup, the process involved in obtaining full-vectorial
complex diffracted field data.

• In the second chapter, I will present the numerical imaging of various mi-
croscopy techniques such as bright-field microscopy, dark-field microscopy,
phase contrast microscopy, confocal microscopy, 2D synthetic aperture mi-
croscopy and 3D synthetic aperture microscopy from the measured TDM com-
plex diffracted field data under scalar approximations. These numerical modal-
ities are possible to realize from a single TDM measurement, thanks to the
complete measurement one obtains from TDM. Each of the above stated mi-
croscopy techniques will be explained with underlying basic principle, numeri-
cal realization with TDM, advantages and disadvantages of their experimental
realizations against the numerical realization from TDM data.

• In the third chapter, I will firstly explain the meaning and importance of nor-
malization of measured data. Then, the role of polarization to obtain the
isotropic transverse resolution will be demonstrated on an experimental sam-
ple. The brief understanding of rigorous non-linear inversion algorithm will
be explained with help of forward problem and inverse problem theory. The
experimental results corresponding to the coupling of TDM measurement with
non-linear inversion algorithm are detailed to achieve λ/4 transverse resolu-
tion. It will be shown that this coupling is efficient in reconstructing any
defects in the sample too. Further, the imaging of objects in the noisy envi-
ronment with help of singular value decomposition (SVD) will be presented
with experimental data. Finally, SVD noise reduction will be applied on the
experimental data and the non-liner inversion algorithm will be provided with
a priori information about the sample, this will help in achieving λ/10 trans-
verse resolution.

• In the last chapter, I will present the experimental demonstration of the axial
resolution improvement by mirror-assisted tomography. First steps will be
to validate on numerical data, fabricate the samples on top of a mirror and
perform TDM measurement. The final step will be to perform non-linear
inversion on the measured complex scattered field data accounting for the
presence of mirror. The challenges facing the mirror-assisted tomography and
perspectives to solve them will be detailed.





Chapter 1

Principles of tomographic
diffractive microscopy

“Seeing Is Believing”
-Manfred von Heimendahl, Materials scientist

1.1 Introduction

Tomographic Diffractive Microscopy (TDM) is a developing advanced digital imag-
ing technique. The technique was first proposed by E. Wolf in 1969 [4], it had to
wait until recently for the experimental realization by V. Lauer [5]. This convinced
experts and made them realize of a new imaging technique which can image beyond
the optical diffraction limit.

In the last 7 years it has seen a growth in the number of publications over the
world. This microscopy is also known as synthetic aperture microscopy, tomographic
phase microscopy, optical diffraction tomography, digital holographic microscopy,
scanning holography microscopy etc. The TDM is a label free imaging tool, it has
the ability to reconstruct the 3D refractive index of the sample [6] reconstruction of
biological samples [7]; it can probe the profile of a surface [8], etc.

To understand the TDM and its working principle, we start with understanding
the wide-field general optical microscope. In wide-field microscope we understand
the general principles governing the microscopy, method to obtain a good quality
image and the resolution limit in the general optical microscopes. Wide-field mi-
croscope does not provide 3D reconstruction of the sample, since TDM is a 3D
phase microscope, we briefly explore the phase microscope and the information the
phase microscope can provide to obtain the 3D reconstruction of the sample and the
permittivity map.

Later in this chapter, the basic principles and classical approaches to Tomo-
graphic Diffractive Microscopy are explained in detail. Then, models (eg., Born
approximation) for reconstruction of TDM data and the role of polarization, wave-
length, environment are discussed. Finally, experimental methods to obtain the
quantitative phase, the experimental setup I developed are presented.
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1.2 Conventional wide-field optical microscope

Light propagation and interaction with matter can be understood by Maxwell equa-
tions and classical electrodynamics. This section will explain light and sample in-
teraction that would lead to magnify intensity image starting from the wide-field
conventional optical microscope and progress towards understanding of the Tomo-
graphic Diffractive Microscopy via phase microscopy.

It is not very clear about who invented the first optical microscope but the tech-
nique has evolved enormously. Optical microscopy itself is a general term, present
day has seen several astonishing optical microscopy techniques such as bright field [9],
dark field [10], phase contrast [11], differential interference contrast [12], fluores-
cence [13], confocal [14], light sheet [15], structured illumination [16], single photon
and multiphoton microscopy [17, 18] etc.

Detection
Objective lens

Incident field

Sample

Emitted 

field

z

Tube lens

θ θ'  

Object focal 

plane

θmax 

Figure 1.1 : Wide-field microscope - a general representation

To understand the optical microscopy principle we will consider transmission
optical microscope. In the transmission optical microscope Fig. 1.1, the light from a
source is illuminated on the sample. Usually, the light is passed through a lens called
condenser lens to focus it on the sample to get maximum illumination uniformly.
The light passing through the sample is collected by a lens called objective lens.
The tube lens then provides a magnified image of the sample on the detector. The
magnified image is detected by a detector usually a CCD (Charge Coupled Device)
camera. Later, the captured images can be analyzed. It has to be noted that
wide-field microscopy does not provide quantitative information about the sample,
it provides intensity variation image of the field in the vicinity of the sample.

The electromagnetic field can be defined as,

E(r) = Ea(r)e
iφ(r) (1.1)

where r is the position vector, Ea is the amplitude and φ is the phase. The image
on a detector is recorded as intensity,

I(r) = |E(r)|2 (1.2)
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the variations in the intensity is recorded on the detector.
Conventional wide-field optical microscope consists of simultaneous illumination

of the whole sample. The simultaneous illumination of whole sample is illumination
of a sum of plane waves simultaneously with each plane wave propagating in different
directions [19]. As the light propagates through the sample, not all the light is
collected, light scattering in the sample may also changes the direction of propagation
of light. The direction of propagation of light is described by the wave vector k =
kxx+ kyy+ kzz. We can define, k‖ = kxx+ kyy being k projected on (x,y) sample
plane. The k is the wave vector, being ‖k‖ = k0 = 2π/λ. When

∥∥k‖

∥∥ ≥ k0, kz is
given by,

kz = i

√∥∥k‖

∥∥2 − k2
0 (1.3)

Microscope can be considered as a filter which magnifies and collects some of
the plane waves (some of k for detection) which are propagating in the z direction
away from the sample for detection. The detection of the light would depend on
the numerical aperture (NA) of the collecting lens, which collects the light emerging
out of the sample. Numerical aperture, NA = ni sin θmax, where θmax (shown in
Fig. 1.1) is the maximum polar angle of the plane wave that can be collected by the
objective lens and ni is the refractive index of the medium in which the object is
placed. The collecting lens is called objective lens. The objective lens is combined
with tube lens to magnify the light and to image on the detector to form a wide
field image.

Wide-field microscopy provides an intensity variation image of the object, it does
not provide a quantitative link between the object and the detected image. The
intensity image is obtained due to the intensity variation caused by the constitutive
material properties and the geometrical properties of the sample. But it is difficult
to link the intensity image to the geometrical shape or the material properties of the
sample. It is important to have access to this quantitative information about the
object, because it would provide insights into the sample and its behavior in optical
domain. For example, knowing the permittivity of the object under observation will
help in understanding the behavior of the object to polarization, to electric field,
to know its material composition etc. It also provides understanding about the
reflection, transmission and absorption properties of the object.

The goal of a microscope is to achieve a good quality magnified image of the
object. To achieve this there are certain optical limitations and conditions. By
understanding these, we will be better able to understand the image obtained using
a microscope.

1.2.1 Abbe sine condition for aberration free imaging

Abbe sine condition helps in designing a microscope to have a good quality image
of the sample. The actual image of the sample is magnified by the microscope, the
amount of magnification is defined by the Magnification factor (MF). Magnification
is defined as the ratio between the image formed on the detector and the initial
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sample size.

MF =
Size of the image formed on the detector

Initial size of the sample
(1.4)

In microscope all the light emerging out of a point P (let us say a point P on the
object focal plane shown in Fig. 1.1) on the sample should be imaged on the detector
at point a P′ (a point P′ on the image plane shown in Fig. 1.1), in this case a sharper
image of the sample will be formed on the detector. P′ is called conjugate point of P.
Such a microscope is called aberration free microscope or stigmatic optical imaging
system. In practical cases, imaging is performed with least possible aberrations. The
phase of the light emerging out of a point P on the sample varies from the phase
detected on the image plane point P′, though they are conjugate points. This can
be due to the imperfections in the optical components, optical alignment etc.

For each point of P on object focal plane to have a point P′ on the image plane
imposes a condition proposed by Ernest Abbe called Abbe sine condition. A plane
wave emerging out of object focal plane makes an angle θ (shown in Fig. 1.1) with
the optical axis. The wave travels through the tube lens and detected on the detector
in the image plane with an angle θ′ with the optical axis [20] as shown in Fig. 1.1.
Such that,

nisin θ = MFndsin θ′ (1.5)

where, ni is the refractive index of the medium surrounding the sample and nd is
the refractive index of the detection medium. When the above condition is satisfied
we obtain an aberration free image on the detector from an imaging system. We
established a condition to obtain sharp image, the following criterion define the
resolution we can reach with a microscope.

1.2.2 Rayleigh criterion for resolution limit

Let us consider two point sources which are separated by a distance ∆r observed
through a microscope. When ∆r is significantly large, the two point sources can
be distinguishable with the microscope. On the other hand, as we bring the two
point sources closer, the smallest distance ∆r that is possible to distinguish the two
point sources is the resolution of a microscope. There have been several definitions
of resolution [21], we will understand few of them here.

Diffraction limit imposes a limit on the resolution. Resolution is limited by the
size of the numerical aperture used in the microscope. The plane waves emerging out
of a sample with k having an angle greater then the angle θmax (shown in Fig. 1.1)
cannot be collected by the microscope objective. So, plane wave with

∥∥k‖

∥∥ > k0NA
cannot be detected. Where, NA = ni sin θmax being the numerical aperture.

The interest has been to increase the NA by some means and bring new informa-
tion to improve the resolution of the microscope. In this direction, water immersion
and oil immersion objectives have been designed to have a numerical aperture close
to 1.5 with the sample being placed in the water or oil medium. Due to the immer-
sion medium the NA is enhanced to an extent. It is challenging to design a high
numerical objective and be aberration free.
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Figure 1.2 : Airy disk formation in a microscope for a point source

In Fig. 1.2, the objective lens forms a Fourier transform of the object and the
tube lens an inverse Fourier transforms to obtain the magnified image of the sample.
If the detector is placed between the objective lens and tube lens we will detect the
Fourier spatial frequencies (kd) corresponding to the sample.
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Figure 1.3 : In Fig.A, the Airy disk formation from a single point source is seen.
In Fig.B when two points are closer than the Rayleigh criterion, the two points
cannot be resolved and an overlapping intensities is observed. In Fig.C when the
first minimum of one of the Airy disk overlaps with the maximum of other Airy
disk, the two point sources can be resolved, this is at the Rayleigh criterion limit.

Resolution is generally different in transverse direction (in the (x,y) plane) and
axial direction (z or optical axis plane) for a given microscope. Usually, the axial
resolution is worse than the transverse resolution. The reason being the range of
accessible spatial frequencies being different in axial and transverse direction, which
can be understood from Sec. 1.5.3. The axial resolution is discussed in detail later.
Here we will focus on transverse resolution. One of the possible definition of the
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transverse resolution of a microscope is given by Rayleigh criterion. The Rayleigh
criterion defines the transverse resolution as:

∆r =
0.61 λ

NA
=

0.61 λ

ni sin θmax

(1.6)

where, ∆r is the minimum separation distance between two distinguishable point
sources in the transverse direction of observation under a microscope, λ being the
wavelength, NA being the numerical aperture.

The limit in resolution is mainly due to the wave nature of light interaction
with microscope objective, in particular diffraction and scattering. Let us consider
a single point source at the detection as show in Fig. 1.2. The image formed at the
detection plane is an airy disk, which is bright spot which contained 84% of energy
surrounded by the diffraction rings. The airy disk formed is shown in Fig. 1.3.A.

The objective lens performs a Fourier transform of the point source and the
tube lens an inverse Fourier transforms to form the image on the detector, shown in
Fig. 1.2. Each point source forms a Airy disk in the image space, Fig. 1.3.A. Now,
let us consider two point sources separated by a distance ∆r, the image formed is
shown in the Fig. 1.3.B or Fig. 1.3.C. The intensity pattern detected on the detector
is a superposition of two airy disks formed by two different point sources. When
the two point sources are close to each other, the superposition of two point sources
does not allow to resolve them, shown in Fig. 1.3.B. As we increase the separation
distance ∆r the two point sources can be distinguished individually. Thus defining
the resolution for a particular microscope with given a NA and observing wavelength.
The Rayleigh criterion is obtained when the radial position of the first zero of the
two Airy disks is equal to the ∆r. Which means that the first minimum of the one
of the Airy disk superpositions with the maximum of the other Airy disk and vice
verse.

The wide-field microscopy is the fundamental microscope, it records only the
intensity variations (Eq. (1.2)). We do not have access to the 3D geometrical infor-
mation of the sample or the material properties of the sample. The resolution is also
limited by the diffraction. To go a step further we will explore the phase microscope
which brings in the geometrical information of the sample by exploiting the phase
information φ(r) in Eq.(1.1).

1.3 Phase microscopy

Detectors in general are built to detect the intensity variations (Eq. (1.2)), phase
(φ(r)) cannot be detected directly. The ability to measure phase information in
the last decades has opened up new possibilities. This led to exploit this phase
information to obtain quantitative information on the axial dimensions (along the
optical axis of the microscope) of the object, and thus provide a 3D reconstruction.
The phase of the light propagating through or reflected by an object is affected
by its 3D refractive index. Such that, these changes are encoded in the phase
information. So, the phase information becomes important in obtaining the 3D
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quantitative information about the sample and to reconstruct the relevant material
properties of the sample.

Before we further understand the phase microscopy, I would like to introduce few
definitions. If a sample is illuminated by a field Einc(r), it would diffract the field
Ed(r). Then the total field detected on the camera is given by E(r) = E0(r) +
Ed(r), where E0(r) is the field that would be present in the absence of the object,
called reference field.

There had been vast interest in the phase imaging since the invention of Zernike
phase contrast microscopy (PCM) in 1942 [11] for which Zernike was awarded Nobel
prize (physics) in 1953. The principle behind PCM is explained briefly. As the light
propagates through the objects the amplitude and phase of the light change depend-
ing on the object under observation. Amplitude variation is due to the scattering
and absorption of light by the object. Zernike understood that scattered field and
the incident field have a π/2 phase shift as they are detected on the detector, so
they can undergo interference. This led to poorly contrasted image of the object.
Zernike introduced a supplementary phase shift of π/2 between the diffracted and
the non-diffracted (incident) light from the object. By introduction of this phase
shift Zernike was able to enhance the contrast of the image recorded. Phase contrast
microscope provides only qualitative phase information of the phase object. In 1948,
Gabor demonstrated using holography as a tool to extract the phase information
[22]. This led to the establishment of phase imaging field.

As explained earlier the phase information cannot be recorded directly, it is
usually recovered by some means (e.g. off-axis interference holography [23], phase-
shifting methods [24], wavefront sensor [25] etc.). These methods are discussed in
detail later in this chapter. The phase (φ(r)) information and the amplitude infor-
mation of the sample provide complete information and describe the electromagnetic
total field diffracted by the sample. But we still have not been able to establish a
link between the 3D geometrical properties of the sample or the material properties
of the sample and the detected total field. The next section explore this link.

1.4 Towards 3D imaging by phase microscopy

The most direct way to exploit phase is to adopt a geometric approach of linear
propagation of light. The usual configuration is to illuminate the object of interest
with a collimated laser beam at normal incidence. The incident wavefront on the
object is a plane wave. At the output of the object, the wavefront is distorted by
the optical path variations caused by the presence of the object as shown in Fig. 1.4.

1.4.1 Volumetric sample

Take for example a volume object such as a biological cell (see Fig. 1.4). The
wavefront distorted by the object is accessed by detecting the phase of the field;
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Figure 1.4 : Paraxial approximation of the perturbation of incident wavefront
due to the volume object.

in practice immediately after the object (detection plane in Fig. 1.4). This object
plane is thus conjugated with the image plane of the microscope.

The phase ϕ(x, y) field will then be understood by considering the object being
crossed by undeflected parallel rays, with each propagate a different optical path
depending on their positions in the object. In the paraxial approximation, this gives
the optical phase delay:

ϕ(x, y) = k0

∫ z2

z1

n(x, y, z)dz (2π), (1.7)

where z1 is the position of a plane before the object, z2 is that of the detection
plane, n the refractive index in space and k0 = 2π

λ
, the wave number with λ the

illumination wavelength in vacuum. The variations in the phase in the object plane
are proportional to the variations of the optical thickness of the object along the z
axis, close to modulo 2π, which is optical path integrated over the sample thickness.
A sensitivity of the order of several nanometers of thickness has been detected suc-
cessfully [26]. It goes without saying that this approach ignores the phenomena of
refraction and diffraction inside the object, and is therefore limited to low refractive
index contrasts. Though this provides more than just 2D information about the
object but we still do not have access to the 3D object information or the material
properties of the object.

Geometric approach to retrieve object information

The most direct method is to extend the previous phase microscopy approach to
different angles of illumination through the object. For each angle, the measured
phase is analyzed with the Eq.( 1.7). From each such data set, an algorithm known
as ”filtered back projection”, based on a Radon transform allows to decorrelate the
refractive index of the object from the thickness of the object [27]. The principle is
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the same as in X-ray tomography, where the intensity corresponds to the integration
of the absorption coefficient of the object along straight rays. However, this method
retains limitations as to not take into account either the refraction or diffraction
generated by the object. It is therefore limited to very low contrast (as for certain
biological samples) and the resolution being of several wavelengths [28–30].

1.4.2 How to get a 3D quantitative image of an object?

In 1969, E. Wolf published a paper to reconstruct 3D semi-transparent object from
the hologram data [4]. Though the phase microscopy yields only 2D images, the
hologram recorded will hold the information of the 3D object under observation.
These holograms has to be processed computationally to retrieve the 3D object
information or 3D refractive index map. E. Wolf described the determination of the
complex refractive index in two steps as:

1. Calculation of the amplitude and the phase of the scattered field of the object
from the holograms recorded in transmission.

2. Computational reconstruction of complex refractive index distribution of the
3D object.

Solution to first step, determination of phase and amplitude from the interference
hologram data is presented in section ( 1.6.1). Here, solution to second step is to
illuminate the object under observation with different directions of illuminations
successively and record several holograms for each illumination direction. Recover
the amplitude and phase corresponding to each of the illumination direction from the
holograms. From this information 3D sample permittivity can be reconstructed [31,
32]. So, the idea of Tomographic Diffractive Microscopy (TDM) was born. The next
section presents the detailed theory for obtaining the 3D permittivity map inside
the sample using TDM.

1.5 Tomography: multiple-illumination angle ap-

proach

In digital holography a sample is illuminated by a collimated coherent plane wave,
a hologram of the sample is recorded. From the hologram, the phase and ampli-
tude information is recovered. Tomography is an extension of digital holography
approach. In tomography several angles of illumination with different angles are
used and the complex field is recovered from each hologram. Then the 3D permit-
tivity of sample is reconstructed. This section will present the relation between the
relative 3D permittivity of sample and the field diffracted by the 3D sample using
electromagnetic theory of light. Later, approximations to the diffraction processes
yielding approximate quantitative information about the sample is presented.
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1.5.1 Tomographic diffractive microscope

As we understood earlier, to reconstruct the sample’s 3D permittivity map, it is
required to measure the amplitude and phase of the scattered field of the object [4].
The scattered fields are uniquely related to the structure of the object, which will
be demonstrated theoretically later in this section.

q

e(kd, kinc)
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Incident 
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Reconstruction of 
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Figure 1.5 : Principle of Tomographic Diffractive Microscopy (TDM): illumi-
nating the sample with varied illumination angles, light emerges out of sample for
each varied angle of incidence. Interferometric optical imaging system magnifies
the light for varied illumination angles and holograms are recorded. Phase and
amplitude information are retrieved for reconstruction of the 3D refractive index
map corresponding to varied illumination angles

Progressing towards the reconstruction of the 3D permittivity map of the sam-
ple, Tomographic Diffractive Microscopy (Fig. 1.5) has emerged as a solution. TDM
consists of illuminating coherently with collimated light the sample with varied il-
lumination angles from the condenser lens. Later, objective lens helps in collecting
and magnifying the complex scattered field from the sample for each illuminated
angle. It can be noted in Fig. 1.5, the measurement is performed in Fourier do-
main compared to the wide-field microscopy (Fig. 1.1) where the measurement is
performed in the image space. The image space and Fourier space are linked by
a simple 2D Fourier transform. To detect the phase and amplitude information
(complex scattered field), usually an interferometric technique is employed, such as
off-axis interferometry [33].

It has to be noted that once the complex scattered field data is recorded for
varied illumination angles, several imaging techniques such as dark field imaging,
bright field imaging, phase imaging, confocal imaging etc., can be realized. This is
possible due to the availability of scattered field’s amplitude and phase for several
illumination angles, which describes the scattered field completely in the electromag-
netic domain. Numerically the available information can be processed to obtain the
different imaging techniques. The means to realize the above mentioned methods
are presented in the next chapter in detail.
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1.5.2 Electromagnetic diffraction

To understand the link between the recorded holograms (amplitude and phase in-
formation) and the 3D reconstruction of the sample (3D permittivity map) we need
scattering and the electromagnetic theory of light. So far in the wide-field and
in the phase microscopy the link was trivial, but to establish a 3D link takinging
into account diffraction and scattering we need to understand the electromagnetic
diffraction process. Let us consider a sample as show in in Fig. 1.6. The object
has a finite volume V and relative permittivity ε(r), i.e. the square of the refractive
index of the sample; for r ∈ V; outside the object i.e. r /∈ V, ε(r) = 1. The goal is
to reconstruct the ε(r) (relative permittivity) inside the object of volume V.

Now, let us illuminate the sample with electromagnetic plane wave with electric
field Einc(r). This incident field interacts with the sample. It is well known that the
electromagnetic wave satisfies the Maxwell equations. We consider the illumination
is a plane wave and sample is non magnetic (µr = 1).

x

z

y

kinc
kd

Permittivity: ε (r)

Volume: V 

Figure 1.6 : The sample of volume V is illuminated with plane wave Einc of
direction kinc. The diffracted field Ed for all the possible directions of kd is mea-
sured. The goal is to reconstruct the ε(r) (relative permittivity) inside the object
of volume V.

In the absence of the sample, and in the isotropic linear media, in free space
(n=1), it can be shown that by combining the Maxwell equations one can obtain
the following propagation equation for the incident field [19],

∇×∇×E0(r)− k2
0E0(r) = iωµ0J(r). (1.8)

The Eq. 1.8 represents the field that would be present in the absence of the object
called the reference field E0(r) (not to be confused with the reference beam ER).
With, k0 = ω

c
= 2π

λ
is the wave number, ω being the frequency, c light velocity in

vacuum and λ is the wavelength of the illuminated light in vacuum. J(r) is the
potential electric current density.
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It has to be noted that Einc(r) 6= E0(r)
i because it would depend on the

medium of illumination and the configuration (whether transmission or reflection).
In case of reflection, sample is usually positioned on a substrate. In this case, E0(r)
is the field present with the substrate and the absence of the sample on top of it.

Similarly, the total field E(r) which is the field in the presence of the object and
illuminated by Einc(r) is given by,

∇×∇×E(r)− k2
0E(r) = iωµ0J(r) + k2

0[ε(r)− 1]E(r) (1.9)

Such that we can define the diffracted field by the sample with volume V as,
Ed(r) = E(r) − E0(r). Which is the difference between Eq.1.9 and Eq.1.8 given
by,

∇×∇×Ed(r)− k2
0Ed(r) = k2

0[ε(r)− 1]E(r) (1.10)

The Eq. 1.10 is inhomogeneous differential equation with constant coefficients.
As the Eq. 1.10 is linear in nature it can be solved using Green’s function.

If we place an infinitely small dipole emitter p at r, then the field created at
a distance r′ is given by Ḡ(r, r′)p, where Ḡ(r, r′) is the Green’s tensor. The
Ḡ(r, r′)p being the solution of the following equation,

∇×∇× Ḡ(r, r′)p− k2
0Ḡ(r, r′)p = δ(r − r′)p. (1.11)

The solution of Eq. 1.10 can be shown as,

Ed(r) = k2
0

∫

V

Ḡ(r, r′)[ε(r′)− 1]E(r′)dr′,

or

= k2
0

∫

V

Ḡ(r, r′)χ(r′)E(r′)dr′,

(1.12)

with χ(r′) = [ε(r′) − 1]. Where, χ(r) is the linear susceptibility of the object or
the permittivity contrast as [ε(r)− 1]. The Eqn. 1.12 represents the diffracted field
in the far field. This equation can be solved by using outgoing solution to Green’s
function in far field [19] and obtain the following equation,

Ed(k) = k0k ×
[
k × χ̃(k)Ẽ(k)

]
. (1.13)

where χ̃ and Ẽ stands for the Fourier transform of χ and E respectively.
The above equation can be expressed in Fourier transform as,

Ed(k) = k0k ×
[
k ×

∫

V

exp(−ik · r)χ(r)E(r)dr

]
(1.14)

which is product χE, linear susceptibility and total field inside the sample.
The calculations performed in this section were performed without approxima-

tions, Eq.(1.14) can be solved numerically, but the calculations are time and re-
sources consuming.

iEinc(r) 6= E0(r)
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Retrieval of susceptibility in diffraction microscopy

The diffracted field contains the information about the object. By measuring the
diffracted field for a particular illumination, we have access to the Fourier transform
of χE. The measurements are performed on a 2D detector surface for a 3D volume
object. But the 3D diffracted field information of the object is encoded in 2D. For
a given illumination angle (kinc) the diffracted field measured in the far-field with
a microscope objective will only be the accessible field spatial frequencies, being
k‖ ≤ k0NA. The spatial frequencies beyond k0NA cannot be recorded for a given
microscope objective with given NA.

Though I claim that spatial frequencies beyond k0NA cannot be recorded, it
will be shown later that the accessible spatial frequencies are not limited by the
condition k‖ ≤ k0NA because of the frequency mixing between the χ and E.

The Eq.(1.14) helps us in determining the quantitative linear susceptibility, which
provides the relative permittivity of the object ε(r) in three-dimensions. For this the
measured diffracted field has to be computed in the Eq.(1.14) taking in to account
the polarization, and the vectorial nature of the field. The rigorous computation to
reconstruct the permittivity map of the sample is explained in detail in next chapter.

1.5.3 Born approximation

A common approximation that is most prevalent in the tomographic diffractive
microscopy (TDM) is the Born approximation [19, 34]. To understand the Born
approximation it is important to understand the optical transfer function (OTF).

Optical transfer function

The optical transfer function (OTF) can be well explained with the understanding
of the point-spread-function (PSF) of a microscope. As shown in Fig. 1.3, consider a
tiny point object as sample which is much smaller than the diffraction limit specified
by the Rayleigh criterion. The object will be visible on the microscope but it would
appear larger than the real size of the object under observation. This is due to the
diffraction as described in the previous section. Thus PSF can be defined as a 3D
image of the point like object. Usually, 3D PSF is sharper in x and y plane compared
to the z plane. In general, optical microscopes have better lateral resolution than
the axial resolution. The PSF is dependent on the wavelength of light used for
observation in microscope and the objective used. The degree to which the PSF
spreads defines the quality of the microscope.

If there exists a linear relationship between object O and the image formed by
the microscope it is quantified by the optical transfer function. This provides a
quantitative criterion to describe quality of a microscope. The image G formed on
the microscope can be defined as:

Image = Object ∗ PSF,

G = O ∗ h, (1.15)

which is a convolution of object O with PSF h.
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Optical transfer function is the Fourier transform of PSF which is h̃. The Fourier
transform of Equation (1.15) yields,

G̃ = Õh̃. (1.16)

As explained earlier, not all the light emerging out of sample is collected by the
microscope, only plane waves with

∥∥k‖

∥∥ < k0 NA are detected. The h̃ defines
the accessible frequencies corresponding to a particular objective in the Fourier
transform domain. The h̃ is a low pass filter, frequencies above a certain cut-off
frequency cannot be detected for a particular NA. The size of the cut-off frequency
defines the NA in Fourier domain. Later, the link between the OTF and to obtain
the permittivity of the object is discussed. The accessible frequencies of OTF are
different for transmission and reflection configuration optical microscope. These
configurations and their corresponding OTF’s are discussed in detail later in this
chapter.

Linear link between diffracted field and 3D relative permittivity

Born approximation utilizes the diffracted field’s amplitude and phase, and considers
diffraction as a phenomenon of simple diffusion, neglecting contribution due to the
multiple scattering. That is in the single scattering regime, when the samples are
well separated there will be no electromagnetic coupling. This leads us to only
interference between the fields scattered by different scatterers in the sample and
diffraction [35].

Born approximation is valid if the field diffracted by the object Ed is very small
compared to the reference field E0, which is the field observed without the presence
of the object. This is typical when the object is of low contrast, for typical values
of lower refractive index contrasts implying weaker scattering. For weak-scattering
the convergence of the Born series and sets the validity of the Born approximation,
is known in the literature [36–42] as

ka∆n ≪ 1 (1.17)

where, ∆n is the refractive index contrast and a being the radius of the sphere or the
radius of an infinite cylinder shape. This theoretical common bound of the validity
of the Born approximation provides insights into the objects that can be imaged
under born approximation case.

From the previous section it can be seen that, total field (E(r)) can be expressed
as,

E(r) = E0(r) +Ed(r) (1.18)

Under the Born approximation the Eq.(1.18) can be considered asE(r) ≈ E0(r),
with the field inside the object is approximately equal to the reference field.

In practice, this approximation is used in TDM with two additional simplifi-
cations [5, 7, 43–55]. Firstly, any polarization effect is neglected and the field is
considered as scalar quantity. Secondly, the object is considered to be in a homoge-
neous medium, i.e. E0 becomes equal to the illumination field Einc (incident field),
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namely a plane wave. So, the Eq.(1.12) becomes,

Ed(r) = k2
0

∫

Ω

Ḡ(r, r′)χ(r′)Einc(r
′)dr′. (1.19)

To solve the above equation we have to calculate the corresponding Green’s
function. Since the Eq.(1.19) is scalar in nature, for a position r, which is sufficiently
far away from the object i.e. in the far-field for a given wave vector of direction k,
the scalar Green’s function can be approximated as,

Ḡ(r, r′) =
eik0r

4πr
e−ik·r′

, (1.20)

with k = k0
r
r
and r = |r|. Using Eq.(1.20) in Eq.(1.19), we obtain:

Ed(r) = k2
0

eik0r

4πr

∫

Ω

χ(r′)e−i(k−kinc)·r
′

dr′. (1.21)

The above equation can be rewritten with Fourier transform as follows:

Ed(k,kinc) ∝ χ̃(k − kinc)

∝ FT3D [χ(k − kinc)]
(1.22)

Thus, in the far field, the diffracted field with a wave vector k for a wave vector
of illumination kinc is linearly related to 3D relative permittivity contrast of the
object [19].

The object is illuminated with varying angles of incidence (kinc), the amplitude
and phase of diffracted field corresponding to varying angle of incidence is retrieved.
The object is then reconstructed by a numerical inversion process, using a simple
3D inverse Fourier transform of the spatial frequency map obtained by synthetic
aperture (explained in the next section). With this approach, experimental 3D
reconstructions along transverse resolution are almost two times better than the
Rayleigh criterion predictions [5, 7, 52].

1.5.4 TDM: synthetic numerical aperture

From the holograms, 2D complex diffracted field is extracted. The diffracted field’s
spatial frequencies will be confined to a radius of k‖ ≤ k0NA in the Fourier domain.
This data can be projected on to a sphere of radius k0 as shown in Fig. 1.7 to
form a cap of sphere. As we vary the kinc, the angle of incidence of the incident
field (Einc), we measure complex diffracted field (Ed) for each such incidence. Each
of the measured 2D diffracted field (Ed) will be projected on a sphere to form a
individual cap of sphere. This provides 3D Fourier components of the diffracted
field for a particular incidence in the form of a cap of sphere.

Each such individual cap of sphere can be placed in a single Ewald’s sphere
called synthetic aperture satisfying the condition k − kinc. The formation of the
synthetic aperture in transmission and reflection cases are explained in detail later
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Figure 1.7 : Projection of 2D diffracted field of radius k0NA on to a sphere of
radius k0 to form a cap of sphere.

in this section. From the Born approximation we understood that this 3D Fourier
components are related to the 3D object properties and its reconstruction through
Eqn. 1.22.

It was noted in the previous section that due to the frequency mixing between
the χ and E in the diffracted field Eq. 1.14, the accessible spatial frequencies of
χ would depend on the spatial frequencies of E. This means that it is possible to
find the diffracted field beyond the k0NA. As already stated in the TDM, sample is
illuminated with varying angle of incidence (Einc,kinc), the field inside the sample
changes with each illumination, each diffracted field measurement (Ed,kd) yields
different accessible spatial frequencies. These several different spatial frequencies
(χ) corresponding to varying (Einc) incident field are combined together to form a
synthetic aperture which has a radius of 2k0NA[56].

It has to be noted that to perform the tomography, either sample can be ro-
tated [28, 57] or illumination can be varied [5, 30, 58–60]. S. Kou and C. Sheppard
showed that when high NA apertures are used for TDM measurements [61, 62] there
is no significant difference between these two methods. For practical reasons, change
of angle is preferred coupled with high NA objectives.

Using the data collected by either rotating the sample or rotating the illumination
3D synthetic aperture is formed. In this thesis, the illumination is rotated [33]. This
3D synthetic aperture in the Fourier space is called the optical transfer function as
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defined in the section. 1.5.3. The OTF is approximated to one at the points that
are detectable under a given microscope and zero elsewhere.

The general Eq.(1.21) can be written as,

Ed(k,kinc) ∝ χ̃(k − kinc)

∝ χ̃(K)
(1.23)

where, K = k − kinc is the object spatial frequency.
Then the reconstruction of the permittivity map can be written as,

χ̃rec(r) =

∫
χ̃(K)×OTF (K)eiK·rdk

= χ(r) ∗ FT−1 [OTF ]

= χ(r) ∗ PSF (r)

(1.24)

where, ∗ is the convolution operator, PSF is the synthetic point spread function.
One can determine the PSF by inverse Fourier transforming the optical transfer
function (OTF). Depending on the illumination and detection schema implemented
in TDM, the accessible spatial frequencies and the position of access in the OTF
varies. The formation of synthetic aperture OTF is explained with an example
schema of transmission as follows.

Transmission TDM configuration

For the transmission configuration of TDM, let us assume that both the condenser
used for illumination and objective used for detection have the same numerical
aperture (NA). As shown in Fig. 1.10, a sample is illuminated and the light transmits
through the sample and the detection is performed on the opposite side of the
illumination.

Let us build the synthetic numerical aperture for transmission configuration of
TDM step by step. Consider the sample is illuminated with normal incidence (NI)
as shown in Fig. 1.10.A. The Fourier frequency components corresponding to illu-
mination are detected in 2D and they are transformed to form a cap of sphere. This
cap of sphere has to be positioned in the Fourier domain depending on the kinc and
k for each detection point on the detector. The position of each detection point is
calculated from k − kinc. In the case of normal incidence the illumination angle is
equal to zero. The diffracted field is detected on the pixels inside NA in Fourier
space which form an angle with the optical axis. Each pixel is shifted to match its
spatial frequency component which is determined from k− kinc, which was already
in the form of cap of sphere and to be positioned. Now, the final step is to position
the cap of sphere in a global synthetic sphere satisfying the condition K = k− kinc

for each pixel. It has to be noted that red spot show in Fig. 1.10.A is the specular
transmission component, which corresponds to the illumination field. The specular
transmission component for the transmission configuration hides the zero spatial
frequency component.

Consider a second case, the sample is illuminated with an angle close to the
numerical aperture from −r‖ direction as shown in Fig. 1.10.B. The corresponding
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Figure 1.8 : Center cut along the 3D synthetic aperture (optical transfer func-
tion) for transmission configuration, which is a torus located at the center of the
synthetic sphere in 3D. The white region represents the detectable spatial frequency
region of the OTF for a given numerical aperture of NA=0.95.

A B

Figure 1.9 : The real part of 3D PSF (3D Fourier transform of optical transfer
function) for transmission configuration. Fig.A: Center cut (for x-z at y=0).
Fig.B: Center cut (for x-y at z=0).
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Figure 1.10 : Synthetic numerical aperture formation in transmission configuration of TDM. In Fig.A, object is illuminated
in normal incidence, the diffracted field is shown in Fourier domain with red dot being the specular focus of the incident field.
The diffracted field is projected to form a cap of sphere and positioned on the synthetic Ewald’s sphere satisfying the condition
K = k − kinc. Similarly for Fig.B, object is illuminated with extreme angle along positive r‖ direction and cap of sphere is
positioned according to K = k−kinc. It can be noted that the specular focus of incident field is located at the center of the Ewald’s
sphere or synthetic 3D aperture. For Fig.C, object is illuminated with extreme angle along negative r‖ direction and the cap of
sphere is positioned.
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2D spatial frequency components and the transformation into a 3D cap of sphere is
performed. The positioning of this 3D cap of sphere in the synthetic 3D sphere again
performed using the condition K = k − kinc. This 3D cap of sphere is positioned
along with the normal incidence cap of sphere which was already positioned, the
overlapping pixels are averaged out.

Consider a third case, the sample is illuminated with an angle close to the nu-
merical aperture from r‖ direction as shown in Fig. 1.10.C, the direction is exact
opposite to the direction used in the second case. Similar process as stated in the
second case is employed and the 3D cap of sphere is positioned in the synthetic 3D
aperture and the overlapping pixels are averaged. Because we position cap of sphere
inside Ewald’s sphere, cap of spheres does not overlap through out. Particularly at
the edges of the sphere there is no overlap. Nevertheless, at the location of overlap
it will have an effect on the noise reduction but not over the whole 3D OTF [46, 62].

One can continue with many such illumination angles, collecting the diffracted
field and the positioning of the each cap of sphere in the 3D synthetic aperture. If
all the possible illumination angles were used and detected, the resulting synthetic
aperture sphere is a torus positioned in the center [62]. A cut along the center of
such a 3D synthetic aperture is shown in Fig. 1.8. It has to be noted that the radius
of the synthetic aperture is 2k0NA compared to the radius of the diffracted field
data for one illumination which is k0NA.

It is important to note the extension of the PSF along the z direction as shown in
Fig. 1.9.A in comparison to x or y direction shown in Fig. 1.9.B. The PSF is longer
in z direction. This is due to the range of frequencies that are accessible along the z
direction of the transmission OTF being smaller compared to the transverse direction
x or y seen in Fig. 1.8. As matter of fact, the axial resolution in transmission
configuration is three time worse than the transverse resolution.

Reflection TDM configuration

In the reflection configuration of the TDM the kinc is reversed compared to the
transmission configuration. This means that the illumination and the detection are
performed with the same objective from the same side. Construction of 3D synthetic
aperture for reflection configuration is similar to transmission configuration. It is
explained in steps as follows.

Firstly, the sample is illuminated as shown in Fig. 1.11 with an incident field
Einc with incident wave vector kinc. The detection of the reflected diffracted field
Ed having wave vector k. Consider the normal incidence case, the corresponding
diffracted field and the projection to obtain the 3D cap of sphere were obtained. This
cap of sphere is positioned in the synthetic aperture sphere satisfying the condition
K = k− kinc as shown in Fig. 1.11.A. Due to the illumination and detection being
performed on the same side, the cap of sphere is positioned at one of the polar edge
of the synthetic aperture.

Let us illuminate the sample with an angle close to the numerical aperture from
−r‖ direction as shown in Fig. 1.11.B. The corresponding cap of sphere is positioned
at location satisfyingK = k−kinc and averaged out. Similarly, if we illuminate with
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Figure 1.11 : Synthetic numerical aperture formation in reflection configuration of TDM. In Fig.A, object is illuminated in
normal incidence and detected in the same direction, the diffracted field is shown in Fourier domain with red dot being the
reflected specular focus of the incident field. The diffracted field is projected to form a cap of sphere and positioned on the
synthetic Ewald’s sphere satisfying the condition K = k − kinc. Similarly for Fig.B, object is illuminated with extreme angle
along positive r‖ direction and cap of sphere is positioned according to K = k − kinc. It can be noted that the specular focus of
incident field is located along the kz axis of the Ewald’s sphere or synthetic 3D aperture. For Fig.C, object is illuminated with
extreme angle along negative r‖ direction and the cap of sphere is positioned.
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Figure 1.12 : Center cut along the 3D synthetic aperture (optical transfer func-
tion) for reflection configuration with NA=0.95, which is a spherical solid incom-
plete sphere located at the polar end of the synthetic sphere in 3D. The white region
represents the detectable spatial frequency region of the OTF for a given numerical
aperture.

A B

Figure 1.13 : The 3D PSF (Fourier transform of 3D optical transfer function) of
reflection configuration. It is complex in nature. Fig.A: Center cut (x-z at y=0)
of real part of 3D PSF . Fig.B: Center cut of imaginary part of the 3D PSF (x-z
at y=0).



1.5 Tomography: multiple-illumination angle approach 27

an angle close to the numerical aperture from r‖ direction as shown in Fig. 1.11.C,
we can position the corresponding cap of sphere in the synthetic aperture sphere.

By continuing with several such illuminations in the reflection configuration, it
is possible to build a synthetic aperture corresponding to reflection TDM as shown
in Fig. 1.12. It can be seen that the OTF in Fig. 1.12 is not symmetrical about zero,
the inverse Fourier transform of such an OTF will yield a complex point spread
function. The real part shown in Fig. 1.13.A shows a PSF with negative rebounds
which will corrupt the reconstruction of the object. Whereas, the imaginary part
is asymmetric. If the object under observation has complex permittivity, then the
complex PSF will mix with the ε′ and ε′′ in the reconstruction.

Complete TDM configuration

This is an ideal case in which the object is illuminated under all possible directions
(4π radians) with Einc and detected under all possible directions (4π radians) the
diffracted field Ed. In such a case we would obtain a perfect solid sphere with
radius 2k0NA as shown in Fig. 1.14. The OTF for such a configuration is also
constructed using the same condition being k−kinc as explained in transmission or
reflection configuration. The corresponding PSF will be like as shown in Fig. 1.9.B,
but isotropic in all directions.

Kx

Ky

Kz

Radius = 2k0

Figure 1.14 : Optical transfer function corresponding to a complete configuration
of a TDM provided the illumination and the detection are performed in all possible
directions.

Resolution of synthetic aperture TDM

In summary, the Rayleigh criterion defined the transverse resolution for the classical
wide field microscope, i.e. the smallest distance center to center ∆r between two
point objects that can be resolved:

∆r =
0.61 λ

NA
=

0.61 λ

ni sin θmax

(1.25)
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where NA is the numerical aperture of the objective. Generally the Born approx-
imation synthetic aperture reconstructed using tomographic microscopy achieves an
improved theoretical transverse resolution ∆r [63]:

∆r =
0.61λ

NA+NAinc

, (1.26)

where NAinc is the numerical aperture of the objective used for illumination.
So, synthetic aperture TDM provides twice better transverse resolution as clas-

sical wide-field microscopy, provided the illumination and detection are performed
with same numerical aperture objective. The axial resolution is better in case of
the reflection configuration compared to the classical wide-field microscopy. The
best recipe would be to combine both transmission and reflection spatial frequency
components or to have access to the 4π steradians scattered field data in all possible
directions. In this context, E. Mudry et.al proposed the deposition of a sample on
a mirror and measure the diffracted field in the reflection configuration [3]. On the
other hand the sample can be rotated to detect all the possible frequencies [64].

1.5.5 Rytov approximation

Another linear approximation of the diffracted field to obtain permittivity of object
is the Rytov approximation [27, 65, 66]. We have seen in section. 1.5.3 that the Born
approximation takes into considering that the total field within the object can be
approximated by the incident field, which is usually valid when the index contrast is
low. However, even low contrast can lead to a significant phase difference between
the two fields if the object is large enough. It is usually considered that the Born
approximation may remain valid as long as the phase shift induced by object remains
below π [27]. The Rytov approximation is meanwhile no longer dependent on the
size of the object. It is however sensitive to the gradient of the refractive index.
It has to be noted that this approximation uses the same simplifications as that of
Born approximation, namely a scalar approach and homogeneous space.

Under this approximation, the fields are usually expressed with complex phases,
which leads to the following expressions for the total field E and reference field E0:

E(r) = eφ(r) and E0(r) = eφinc(r). (1.27)

The validity condition for Rytov approximation is given as,

||∇(φ(r)− φinc(r))||2 ≪ k2
0|χ(r)|. (1.28)

We can then show that in far field, the diffracted field Ed(k,kinc), the incident
field E0(k,kinc) and χ are connected by the relation [67]:

E0(k,kinc) ln

[
1 +

Ed(k,kinc)

Einc(k,k0)

]
∝ χ̃(k − kinc). (1.29)

The above equation is valid for objects which are weakly absorbing and diffracting
with low refractive index contrast ∆n, ∇[φ(r)− φinc(r)] ≃ k0∆n(r) and χ ≃ 2∆n.
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The validity condition therefore simplifies ∆n(r) ≪ 1 in this case. In practice,
when ∆n exceeds about 10−2, the approximation deteriorates rapidly, even on small
objects [27]. The approximation of Rytov is not necessarily always better than the
Born approximation, but it is more suited to large low-contrast objects. It is thus
in particular possible to provide 3D reconstructions without distortion of biological
cells near the sizes of 10µm, unlike the Born approximation [67, 68]. One of the
drawbacks is that the phase obtained from the reconstruction has to be unwrapped
to have practical understanding about the object.

1.5.6 Improvements to TDM

Approximations presented above provides a simple means of retrieving the quanti-
tative information about the object under observation. As the goal is to strive for
super-resolution with better quality and precision it is important to consider other
parameters such as polarization of light, measurement environment, wavelength etc..
In reality, the Eq.( 1.14) has to be solved rigorously without approximations. That
would provide a closer estimation to the electromagnetic behavior of light. This
means that electromagnetic fields are treated as vectorial fields. Light polarized in
a single direction (e.g. x-direction) provides well resolved images in that particu-
lar direction. The true link between the scattered field and the object is through
full-vectorial field taking into consideration the polarization. The diffracted field
measured full-vectorial with light polarized in all directions provide isotropic resolu-
tion in all the directions [33]. Later, in the thesis it is explained how to implement a
full-vectorial TDM to obtain isotropic resolution images in the transverse direction.

Approximations does not take into account multiple scattering between the
sample-sample, sample-substrate etc., taking multiple scattering into account is also
expected to improve the imaging overall [69–73].

Our specificity

Object deposited on a opaque substrate presents challenge to obtain the 3D permit-
tivity map. Scanning electron microscope (SEM), Atomic force microscope (AFM)
are surface probing techniques [74]. TDM on the other hand can work in reflection
to obtain the 3D permittivity map for samples of reflecting nature with. By taking
into account the substrate and considering it in the calculations can provide qual-
ity 3D reconstructions (shown later). These calculations require specific algorithms
which are developed in our Team SEMO, Institute Fresnel. The details about the
multiple scattering and algorithms are presented in the third chapter.

Measurements can be performed with multiple wavelengths using TDM as shown
in Fig. 1.15. An object illuminated by, let us say λ = 632.8nm will have a shorter
spatial frequency cut-off compared to λ = 475nm. Provided there is no dispersion,
by combining the shorter and longer wavelength measurements (λ = 632.8nm +
λ = 475nm) in the synthetic aperture sphere or OTF and averaging fills more
spatial frequency points compared to a single wavelength measurement. This would
provide a better PSF compared to single wavelength measurement reconstruction of
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Figure 1.15 : In Fig.A, object is illuminated by λ = 632.8nm, wavelength of
light at normal incidence, the diffracted fields 2D Fourier components are mea-
sured with a NA (i.e. of λ = 632.8nm) and projected to form a cap of sphere.
Similarly, in Fig.B, object is illuminated by λ = 475nm wavelength light at nor-
mal incidence, the diffracted fields 2D Fourier components are measured with a
NA (i.e. of λ = 475nm) and projected to form a cap of sphere. Note that the
radius of 3D synthetic aperture varies from 2k0 to 2k′0 due to wavelength. These
two measurements can be combined in a synthetic aperture provided there is no
dispersion, since they belong to the same object at different wavelengths. Optical
transfer function corresponding to two wavelengths when combined and averaged
at overlapping points fills additional points in the 3D synthetic aperture sphere
compared to a single wavelength configuration. This can performed in all possible
direction and combined together to fill the additional spatial frequency information
about the object compared to single wavelength measurement.
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sample. J. Jung et.al., present the results obtained with different wavelengths on a
sample [75], but we would like to go a step further and combine the multi-wavelength
data to better fill the OTF.

This section presented the diffraction theory to understand the TDM and it was
compared with classical wide field microscope. Some approximations employed to
compute the quantitative image of the object and the possible improvements to
the TDM were briefly presented. The following section will present the experimen-
tal implementation of the TDM which permits us to realize the above mentioned
improvements.

1.6 Experimental Set-up

The tomographic diffractive microscope can be implemented in either transmission
configuration or reflection configuration as explained in previous section. The mea-
surements performed in this thesis employed a reflection configuration TDM due to
its advantages. To summarize the advantages of the reflection configuration: it pro-
vides higher Fourier spatial frequency data along the optical-axis of the microscope
in comparison to the transmission configuration, reflective samples can be imaged,
it requires taking into account the substrate etc. We have recently addressed the
specific features of such a configuration [76], not many research groups are involved
in such research activity addressing the need of reflective samples which cannot be
measured in transmission using TDM. The interest is also to probe the samples that
are reflective in nature or that are deposited on a opaque substrate. Note that most
of the TDM set-ups can only work in transmission configuration. So, the preferred
configuration is reflection configuration for our research group.

Before the experimental implementation of the setup is presented, I present you
the experimental retrieval of the phase information.

1.6.1 Experimental methods for phase imaging

Quantitative phase imaging is obtaining the phase image of an object quantitatively.
The quantitative phase information cannot be recorded directly because phase varies
fast. Present cameras are not fast enough to record phase. The frequency of the
visible light is between 700 THz and 405 THz. Camera at best can record 500 MHz
or little more. But cameras are capable of recording the intensity information of
light. By using the intensity image, the phase information can be obtained in two
steps indirectly.

1. First step is to record the phase variation by recording the intensity informa-
tion. The phase information of the object is encoded in the intensity image by
means of e.g. interference [56], ptychography [77], Shack-Hartmann sensor[78]
etc.

2. From this intensity information the phase is extracted. The second step is to
recover the quantitative phase information from the intensity image digitally
by processing the holograms or the recorded intensity information.
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It has be noted that the phase microscopy detects only the 2D phase for a given
volume object as shown in Fig. 1.4 for a particular plane wave incident on the
object. It does not directly provide the quantitative information about the sample.
Nevertheless, the quantitative information about the sample is coded in the 2D
phase information. In the previous section, the link between the phase information
and the quantitative 3D object is established.

The first step as explained earlier is an experimental method for encoding the
phase in the intensity image. Different experimental methods are presented in this
section. The incident field can be expressed in space domain as follows:

Einc(r) = Ea(r)e
iφ(r) (1.30)

where r is the position vector, E0 is the amplitude, and φ is the field phase. The
image on a detector is recorded as intensity if one observes the Einc(r),

Iinc(r) = |Einc(r)|2 (1.31)

as such the phase information cannot be recovered.
When the Einc(r) is incident on an object, the object scatters the incident field,

this is called scattered field Ed(r). Then the total field is given by E(r) = Einc(r)
+ Ed(r).

If the total field E(r) is interfered with another field called reference field ER

whose phase is known, the field detected Eintf (interference) will be as follows,

Eintf (r) = E(r) + ER(r) (1.32)

Then the resulting intensity from the above equation has the desired phase term
φ(r) as shown below,

Iintf (r) = |E(r)|2 + |ER(r)|2 + 2 |E(r)| · |ER(r)| · cos [∆φ(r)] (1.33)

where, ∆φ(r) represents the phase difference. As the phase of the ER(r) is
known (usually a plane wavefront), it is possible to recover the ∆φ(r) term, which
is of interest.

Equation 1.33 represents the interference method used to recover phase. Several
such methods are presented briefly below that can be used to recover the φ(r).

Off-axis or shear methods for phase imaging

Principle: A reference beam ER(r) is interfered with the total field E(r) from an
off-axis as shown in the fig. 1.16. Mach-Zehnder interferometer is one such off-axis
method used in the optical testing [79]. Mach-Zehnder interferometer consists of two
arms object arm and reference arm. The object whose phase has to reconstructed
is positioned in the object arm. The light passes through the object in transmission
and carries the phase information of the object. Reference beam whose phase is know
(usually a plane wavefront) propagates along the reference beam path. Reference
beam and the object beam are interfered with the help of a beam splitter (BS2
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Figure 1.16 : Mach-Zehnder interferometer: M1, M2, mirrors; BS1, BS2, beam
splitters. The interferometer consists of two arms reference arm and object arm.
The beam passing through the object encodes the information about the object. The
reference beam is interfered with the object beam from off-axis. The interference
pattern is recorded on the CCD.

seen in Fig. 1.16). The beam splitter BS2 helps in creating an off-axis angle on the
reference beam. Both object arm and the reference arm are adjusted to have same
path length from source to the detector. As the object beam and the reference beam
arrive at the detector with an angle with respect to each other an interference pattern
is formed. The intensity pattern which corresponds to the interference is recorded
on the CCD as hologram. Let us consider a simpler interference in one dimension
only, i.e. in x. Then the interference pattern formed is given by the equation,

Iintf = I + IR + e−iαxE + eiαxE∗ (1.34)

where I is the intensity of the total filed or object beam, IR is the intensity of the
reference beam and E is the total field or the object field (incident field + scattered
field) and E∗ is its complex conjugate. The quantitative phase information of interest
is recovered from this single intensity image by digital means.

The 2D Fourier transform of the recorded hologram (Eq. 1.34) is performed,
resulting in,

Ĩintf = Ĩ + ĨR + δ−α ∗ Ẽ + δα ∗ Ẽ∗, (1.35)

where δα is the Dirac function located at the spatial frequency (α, 0). We obtain
Ĩ and ĨR at the center of the spatial frequency origin, these terms will have a cut-
off frequency of two times that of NA. Whereas the factors δ−α ∗ Ẽ and δα ∗ Ẽ∗

are confined to the NA in the Fourier space. Due to the convolution of the Dirac
function with δ−α ∗ Ẽ and δα ∗ Ẽ∗, these two terms are shifted from the center of
the spatial frequency origin in the Fourier space and centered at (α, 0) and (-α, 0).
This shifting will depend on the off-axis angle introduced between the object beam
and the reference beam. If the angle is big enough the terms δ−α ∗ Ẽ and δα ∗ Ẽ∗
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will not overlap with the terms Ĩ and ĨR which are located at the origin. Then, it
is possible to have direct access to the complex total field of the object Ẽ knowing
ẼR.

Off-axis methods require only one single hologram to recover the phase informa-
tion. This drastically decreases the sensitivity to external fluctuations. Temporal
sampling is high in case of off-axis methods since one intensity image is sufficient.
Hence, these methods can be employed in studying real-time changes of a phase
object. On the other hand, the spatial frequency of sampling must be high enough
to recover the fringe period and requirement of a reference wave are some of its
disadvantages.

Digital holographic microscopy [80] and Hilbert phase microscopy [81] are some of
the off-axis methods used in quantitative phase-contrast imaging microscope which
employs the off-axis interferometry technique to recover the phase information.

Other methods for phase imaging

Phase-shifting methods [82, 83] involves shifting of the phase relative to the object
beam in steps and recording of holograms (interference between scattered field and
reference beam) for each phase step. It is possible to calculate the phase from the
three or more such phase steps.

In common-path methods [55, 68, 84], the reference beam and the object beam
share the same propagation path. The principle can be explained with a simple
lateral-shearing interferometer. The incoming beam is amplitude divided in to two
or more beams propagating alongside each other. The interference between the
beams is recorded and the phase of the wavefront is recovered digitally [85].

The white-light methods [86] a broadband white-light is used as a light source.
The low coherence length of broadband sources results in a reduced point-to-point
spatial phase noise. Utilizing monochromatic light sources will increase speckle and
point-to-point spatial phase noise[87].

These are the main methods used to retrieve phase experimentally. The advan-
tages of each method is as follows: off-axis methods provides fast acquisition rate,
phase-shifting methods provide high transverse resolution, common-path methods
provide temporal stability and white-light methods spatial uniformity [87] respec-
tively. The disadvantages of each method is as follows: off-axis method require high
resolution detector to well sample the interference fringes, phase-shifting methods
require more measurements which affects the stability and it is time consuming, re-
covery of phase is not a straight forward step in common-path method, white-light
method require precise adjustment of the object and reference arms. A combination
of above methods can also be employed to retrieve the phase information combining
the advantages and disadvantages.

A Shack-Hartmann wavefront sensor (SHWFS) [78, 88] can be used to estimate
slow phase variations with less pixels on the detector, but microscopy applications
require more pixels. So, a advanced wave front sensor called quadri-wave lateral
shearing interferometry (QWLSI) [25, 26, 89–91] can also be employed to measure
the amplitude and phase.
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1.6.2 Description of the set-up

The tomographic microscope I have developed is presented on Fig. 1.17. The light
source is a low coherence supercontinuum laser (NKT Photonics SuperK Extreme
EXW-12), that can be filtered from 450 nm to 800 nm with a variable spectral width
thanks to a variable bandpass filter (NKT Photonics SuperK Varia). The laser beam
is linearly polarized and then divided into a reference beam and a beam directed
towards the sample called sample beam or object beam. The object beam and the
reference beam are interfered off-axially. Due to the low coherence any parasitic
reflection from the optical components in the object beam path does not interfere
with the measurement.

A fast steering mirror (M, Newport FSM-300) permits to control the deflection
of the sample beam, while a beam expander and diaphragm D generate a wide
collimated beam with near homogeneous power density. This beam illuminates the
sample after transmission through the microscope objective (can be varied to have
different NA) and the associated tube lens (L). It can be locally assimilated to a
plane wave since the dimensions of the object are small compared to the width of the
beam. The center of the mirror is conjugated with the center of the sample through
the beam expander, the tube lens and the microscope objective. Thus, rotating
the mirror varies the illumination angle without shifting laterally the beam on the
object. The polar angle of the illumination can be varied over the whole NA of the
objective. The field scattered by the object is collected by the microscope objective
(Zeiss Epiplan-Apochromat 50×, NA = 0.95 or Nikon Apo TIRF oil 100×, NA =
1.49) and imaged on a sCMOS camera (Andor Zyla) after passing through relay
lenses L2 and L3 to obtain a global magnification of about 300.

The magnified object image is detected in image space as it permits to adjust
the position of the object directly and the signal to noise ratio is more adapted for
small objects in the image space. In case of small objects the diffracted field will be
spread over the NA in Fourier space measurement, in image space measurement it
would focus at the location of the object. Along with that the specular reflection,
the reflection of beam that corresponds to the substrate will have a stronger signal
compared to the diffracted field of the sample, the camera dynamic range is not
adapted to measure such variation in Fourier space measurement configuration. So,
imaging in the image space is preferred compared to Fourier space measurement.
The measurement of the reflection from the substrate is used for normalization of
the TDM data, so it is also important to measure the specular reflection field. The
normalization procedure employed is explained in the next chapter in detail.

After spatial filtering with a pinhole (P) and collimation, the reference beam
is coherently superimposed on the image field with an off-axis arrangement thanks
to beam splitter BS3. Off-axis holography can then be performed to retrieve the
amplitude and the phase of the image field. Retrieval of phase from the recorded
holograms is described in section. 1.6.1.

The half-wave plates (HW1 and HW2) are used for full-vectorial field measure-
ment. The use of them is explained as follows.
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1.6.2.1 Measurement of the full vectorial diffracted field

As pointed out in the previous section it is important to measure the full vectorial
field and solve the equation,

Ed(k) = k0k ×
[
k ×

∫

Ω

exp(−ik · r)χ(r)E(r)dr

]
. (1.36)

The above equation for TDM at the image plane can be written as [92],

Ed(r‖) =

∫

k‖<k0NA

1√
k2
0 − k2

‖

(esŝ+ epp̂) exp(ik‖ · r‖) dk‖. (1.37)

where, k0 = 2π
λ
, ŝ = ẑ × k̂, p̂ = ŝ × k̂, k = k‖ + [1/

√
k2
0 − k2

‖]ẑ, and (es, ep)

are the diffracted fields complex amplitudes propagating along k belonging to the
polarizations ŝ and p̂.

x̂  or H

D2

ŷ or V 

D1

α α 

Figure 1.18 : Measurement of full vectorial field is performed along two bases.
The illumination polarization is either along x̂ or ŷ. The detection polarization is
either along D̂1 or D̂2. This illumination and detection schema form a orthogonal
bases. With α = 45◦.

To carry out vectorial measurements of the diffracted field under full polarization,
two half wave plates have been placed in the illumination and reference arms (HW1

and HW2). They are used to generate two polarization basis : horizontal and
vertical directions, x̂ and ŷ (shown in Fig. 1.18), for the illumination arm, and
along the two diagonal directions, D̂1 = (x̂ + ŷ)/

√
2 and D̂2 = (x̂ − ŷ)/

√
2, for

the reference arm. These four directions are all orthogonal to ẑ, which is the unit
vector along the optical axis of the microscope. For an illumination polarized along
x̂, detecting successively the scattered field polarized along D̂1 and D̂2 permits to
retrieve the vectorial scattered field. Indeed, thanks to the microscope magnification,
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the propagation angles of the Fourier components of the scattered field (or diffracted
field) are so small in front of the camera (well below 1◦), that any polarization
component along ẑ can be neglected. Repeating this procedure for an illumination
polarized along ŷ, it is then possible to generate the vectorial scattered field for any
linear polarization in the (x̂, ŷ) plane for the illumination.

The total field from object E = Ed+Einc is interfered with ER beam (not to be
confused with reference field which is called E0!) experimentally. The usual proce-
dure to obtain the full vectorial field is (see Fig. 1.18) by changing the polarization
along the sample arm E and reference beam ER and recovering phase from the holo-
grams as: Illuminate V or ŷ polarized light along sample arm and reference beam
with light polarized along D̂1, which form the illumination and detection schema
as ŷD̂1. Similarly, ŷD̂2, x̂D̂1 and x̂D̂2 are performed. From these data sets it is
possible to compute the full-vectorial complex diffracted field data.

In a classical TDM set-up, the illumination and reference beams have the same
polarization, and only a projection of the scattered field on this direction is measured.
With our full-polarized set-up, getting the vectorial scattered field for any linear
polarization of the illumination requires four times more data. The measurement
procedure is therefore basically four times longer, but could be only twice longer
using at once two orthogonally polarized reference beams [93].

In this thesis, I investigate samples deposited on a substrate. To improve the
sensitivity of the reconstructions, I perform a reference measurement on the bare
substrate. It permits to measure the specular reflected field for each illumination
angle. By subtracting it to the field measured in the presence of the sample, only
the diffracted field part remains, and the speckle noise generated by the illumination
and the specular reflection is diminished.

1.6.3 Developments to the set-up

The Tomographic Diffractive Microscopy (TDM) setup has been upgraded with sev-
eral new components, this section presents the developments. Before I started my
thesis work, the setup had He-Ne (λ = 632.8nm) laser with very high coherence
length. This would contribute to the noise because of the reflection from the sev-
eral optical components mixing with the diffracted field. It was desired to have low
coherence length source and also to have a source which can be tuned to a desired
wavelength. The camera used was CCD camera (Kappa PS4-1020) which had low
sensitivity. The speed, sensitivity and the electronic noise can be reduced signif-
icantly by adapting a better camera. The rotating mirror to change the angle of
illumination was driven by two stepper motors (Newport NSA12), which was slow
and contributing to the time consumption in the measurement. As the setup op-
erated at single wavelength until I started my thesis, the reference arm had fixed
components, which cannot be tuned to change the path length of the reference
beam. The half-wave plates positioned in the object and reference beams has to be
tuned manually for each measurement. To recall, for a complete measurement four
such adjustments (ŷD̂1, ŷD̂2, x̂D̂1 and x̂D̂2, refer Sec. 1.6.2.1) of the half-wave
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plates have to be performed to obtain full vectorial field. These were addressed and
upgraded during my thesis for the betterment of the setup.

One of the significant improvement is the supercontinuum laser. This allows to
tune the wavelength of interest from 450nm to 800nm and also a favorable bandwidth
ranging from 4nm to several nanometers can be chosen. Due to its low coherence
length (about 100 µm) there was a significant improvement in the reduction of the
light reflecting from the optical components in the setup does not interfere, which
significantly improved the measured data. But on the other hand the reference
beam has to be tuned carefully to match the path length of the object arm path.
Since it has a low coherence length of 100µm, it was challenging initially. After the
introduction of delay line it is now familiar to tune the reference path length and
get good contrasted fringes when object arm field and reference beam are interfered.

A sCMOS camera (Andor Zyla) was installed which is externally cooled with a
coolant. This camera offers high speed, high sensitivity imaging performance with
frame rates. Rolling and Global Shutter modes provide flexibility to adopt the
imaging technique being performed. In Rolling shutter, different lines of the camera
pixels array are exposed at different times. The read out of the camera reads those
exposed pixels. In Global shutter, all the pixels are exposed simultaneously and
captured at same instance. Because of cooling, read out noise decreased compared to
a previous CCD camera. Also due to the interface of the camera with computer the
acquisition is faster. It has to be noted that the sensor is protected by a transparent
glass slide, the experiments performed on the camera showed there was no effect of
this on the measured data due to the low coherence length of the supercontinuum
laser (NKT Photonics SuperK Extreme EXW-12).

The setup was optimized to have a one-click acquisition schema. To realize this,
two half-wave plates (HW1 and HW2 shown in fig. 1.17) were mounted on a rotating
actuator. The camera, rotating mirror, and half-wave plates were controlled by the
computer and can be programmed. The whole measurement process once the object
to observe is fixed and the setup is tuned, the measurement can be performed with
one-click on the computer. This takes into account the measurement procedure
listed in the above section of changing polarization in both reference beam and
sample beam arms.

1.7 Conclusion

This chapter explained the principles of tomographic Diffractive Microscopy (TDM)
through wide-field microscope and phase microscope. The general principle is illu-
minating the sample with several varying incidence plane waves and detecting their
complex diffracted field. Whereas in the classical wide-field microscope the Köhler
illumination is used. Retrieval of phase is performed using the off-axis holography
configuration in the context of phase microscopy. Phase microscopy is the first step
towards understanding the link between the axial direction of the sample and the
light propagating through it. Which is based on optical path difference measurement,
though it is sensitive along optical axis does not provide 3D information or material
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properties of the object. On the other hand, TDM depends on the measurement
of diffracted field’s amplitude and phase (complex field) of the sample for several
incident angles. Measuring the complex diffracted field provides a link to retrieve
linear susceptibility χ. The Born and Rytov approximations provide quicker access
to the sample permittivity considering approximations to the vectorial diffracted
field, they establish a linear link between the sample permittivity contrast and the
measured complex diffracted field. In general, the link between object and scattered
field is non-linear. Approximative approaches provide rough estimate of the sam-
ple. So, non-linear reconstruction schema is needed to reconstruct the non-linearly
linked diffracted field data. This non-linear inversion schema is presented in the
third chapter.

The TDM provides better spatial frequency coverage and better sensitivity to
high spatial frequencies compared to classical microscope due to the varying illumi-
nation angle and coherent detection schema. Various TDM configurations such as
transmission, reflection and complete configurations provide access to various parts
of the Optical Transfer Function (OTF) of the Ewald’s sphere (synthetic 3D aper-
ture). We noted that the resolution in transmission configuration along the axial
direction is worse than the transverse direction due to the inaccessibility of high
frequency components along the axial direction. It was stated that having access
to both transmission and reflection would provide better resolution in combination
with full-vectorial measurement. In the last chapter, I show how to obtain isotropic
resolution combining the advantages from transmission and reflection configurations
using a mirror.

Finally, the experimental setup utilized in this thesis work is presented in detail
along with the significant upgrades in camera, wavelength tunable supercontinuum
source, faster rotating mirror and the rotatable half-wave plates. The measurement
setup is developed such that the measurement can be performed with one-click and
faster compared to its state at the beginning of this thesis.



Chapter 2

Imaging with tomographic
diffractive microscopy holograms

under scalar approximations

“Your eyes can deceive you. Don’t trust them.”
-Obi-Wan Kenobi, Star Wars

2.1 Introduction

In this chapter, we explore the different possibilities to utilize the tomographic
diffractive microscope (TDM) complex field (amplitude and phase) data. In the
TDM measurement, we illuminate the sample with different successive illumina-
tions and the detection of diffracted field is performed (see Sec. 1.5). The TDM
measurement is performed only once but the complex field data provides access to
several imaging techniques by means of post numerical treatment. This is due to
the fact that TDM measurement data provides complete complex scattered field in-
formation of the sample for varying illumination angles. This is a new approach, to
numerically realize several imaging techniques from one single measurement. This
chapter will focus on imaging under scalar approximations, neglecting the vectorial
nature of the light; providing access to the reconstructed image rapidly.

Usually, the optical microscopes are built to perform specific imaging method
such as bright-field microscopy, dark-field microscopy, phase-contrast microscopy
or confocal microscopy. These microscopes provide images directly and require no
post treatment. To realize other methods from the specific method the microscope
is built for, the microscope system need changes in the optical components. For
example, to perform dark-field imaging on a bright-field imaging microscope system
the illumination and the detection schema has to be changed. However TDM has
a fixed experimental setup and measurement is performed only once. Any of the
imaging methods described in this chapter can be reconstructed later with post
numerical treatment at our will. Along with the microscope methods specified above,
TDM techniques such as two-dimensional synthetic aperture and three-dimensional
synthetic aperture imaging can also be realized with TDM data.

It is known that combining two or more imaging techniques bring comprehen-
sive information to better understand the sample [94]. For example, bright field
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image and dark-field microscope image would provide information to determine the
boundary of the substrate or the background and the sample. The combination of
several imaging methods through numerical treatment is called multimodal numer-
ical imaging. This is one of the advantage of TDM: one set of measurement can
provide different comprehensive images of the sample and we expect these different
imaging techniques provide better understanding about the sample in comparison
to single imaging technique.

This chapter focused on TDM scalar imaging will present how TDM data set can
be post processed numerically to obtain bright-field, dark-field, phase-contrast, con-
focal, two-dimensional synthetic aperture, and three-dimensional synthetic aperture
microscopy. I performed the TDM measurement to obtain the measurement data.
The algorithms used to realize the techniques described above with experimental
data was developed by me during this thesis work. I will also present what are the
additional advantages provided by the numerical modalities here.

Before we start with understanding numerical realization, let us understand the
data set we have access to at the end of a TDM measurement.

2.2 TDM data set

To perform the scalar approximations based numerical imaging techniques, it is
essential to understand the TDM measurement data set. This section will present
the sample used throughout the chapter to perform different numerical imaging
techniques, illumination strategy and the detected diffracted field.

300 nm

Figure 2.1 : Scanning Electron Microscopy image of the fabricated sample used
for demonstration of different numerical simulated imaging techniques in this
chapter.

Dr. Anne Talneau, Laboratoire de Photonique et de Nanostructures (LPN),
Marcoussis, France fabricated a test sample as shown in Fig. 2.1. The sample was
made up of resin rods (relative permittivity of 2) of width = 100nm, length = 300nm
and height = 140nm deposited on the Si substrate. Twelve resin cylinders were
placed radially at the summit of a dodecagon, let us call this reference star sample.
Such a schema of sample is fabricated because it allows us to test the resolution. As
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we observe from the outer edges to the inner edge the distance between the resin
rods decreases, provides ideal configuration to test the resolution. I will reconstruct
this sample numerically in this chapter using different imaging techniques.

The sample shown in Fig. 2.1 was placed in the TDM setup (shown in Fig. 1.17) to
perform TDM measurement. The wavelength used for measurement is λ = 475nm.
The objective used for illumination and detection has a NA=0.95. The sample was
illuminated by eight directions of incidence, defined by a fixed polar angle of 60◦ and
for every 45◦ of azimuthal angle inside the NA of objective. The sample used in this
chapter is thinner in nature, for such a sample to improve the transverse resolution,
high angles of incidence are important. High angles of incidences give rise to high
spatial frequency components. Depending on the sample complexity the number
of illumination angles required vary, for this sample we realized that 8 angles were
sufficient. The diffracted field from the sample is interfered with a reference beam
off-axially as explained in the previous chapter (Sec. 1.6). This results in obtaining
8 holograms corresponding to 8 angles of incidences. From these holograms the
amplitude and the phase information are retrieved.

A full-vectorial measurement is performed, this means we illuminate and de-
tect with known polarization as explained in section Sec. 1.6.2.1. To have the full-
vectorial data set, I illuminate and detect as x̂D̂1, x̂D̂2, ŷD̂1 and ŷD̂2 (where first
letter represent the illumination polarization and the other letter represents the de-
tection polarization), see Fig. 1.18. That would result in 4 data sets. This chapter
deals with non-polarized reconstruction (scalar approximation). To perform non-
polarized imaging, I sum the intensity images obtained from x̂D̂1, x̂D̂2, ŷD̂1 and
ŷD̂2. For illumination case, by summing we create a non-polarized illumination.
Because the illumination was either in x̂ or ŷ along orthogonal basis, a summation
of intensities would yield non-polarized illumination. Also true for orthogonal de-
tection basis D̂1 and D̂2 to obtain non-polarized detection data. So, non-polarized
measurement = x̂D̂1 + ŷD̂1 + x̂D̂2 + ŷD̂2, sum of intensities of individual data
set.

Now, I will show you the numerical reconstruction of different non-polarized
imaging techniques from this data set. The experimental principle of each individual
technique is explained. The numerical realization of the imaging technique with the
TDM data will be presented. The difference between the experimental realization
and the numerical realization with TDM data, its advantages are discussed.

2.3 Bright-field microscopy

Bright-field microscopy is the simplest of the microscopy techniques. This method
was the first employed imaging technique to observe micro scaled objects. This
technique is interesting because of simple experimental setup requirement and for
imaging in real-time. It is based on the use of the intensity variation recorded on
the camera to image the sample. The illumination light can either be white-light or
monochromatic in nature.
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The imaging can be performed in either transmission or reflection configuration.
In both cases the illuminated light interacts with the sample. After interaction the
light carries the information about the sample. Variation is caused in the intensity of
light due to the absorbance of the sample variation and scattering. The absorbance
and scattering varies at different locations of the sample due to the material prop-
erties (refractive index) and the thickness (geometrical) variations. Parts of the
illuminated light does not undergo any variation. The interference between the un-
varied illumination light and the scattered light produces the intensity variation.
The reflected light from the substrate (in case of reflection) or illuminated light (in
case of transmission) forms a bright background to provide contrast to the image.
So, this technique is called bright-field imaging [9, 95]. The bright-field image as
intensity variation is recorded on the camera. As noted in the previous chapter,
cameras are capable of detecting only the intensity. This makes it possible to record
the intensity in real time and observe the characteristics of the sample directly on
the camera.

A simple representation of the bright-field imaging microscope is shown in Fig.1.1.
The sample is illuminated with a single wide-field light source. As discussed in the
previous chapter, the wide-field illumination can be decomposed into a set of plane
waves propagating in different directions (discussed in last chapter, section.1.2). The
condenser lens is used to illuminate the sample. The light propagates away after
interacting with the sample, it is collected on the detector, thanks to the objective
and the tube lens.

Numerical TDM bright-field imaging

To numerically generate the TDM bright-field imaging, I use the sample described
in this chapter and the illumination and detection schema is explained in the section
Sec. 2.2. I have access to the complex diffracted field corresponding to each illumi-
nation. The amplitude information is sufficient for this method. How do we obtain
the bright field image from this TDM data set?

The amplitude of the total field (E(r) = E0(r)+Ed(r)) is a sum of the amplitude
of the scattered field Ed(r) and the reference field E0(r) (field that would exist in
the absence of a sample). We have access to 8 illumination angles amplitude data
in this case. The bright field image is obtained by summing the intensities detected
for each illumination angle,

|Ebright−field(r)|2 =
∑

q=1→n

|Eq(r)|2 , (2.1)

where q represents the varying angle of incidence of the incident field and the corre-
sponding total field. The TDM bright-field image for the sample shown in Fig. 2.1
is numerically obtained as shown in Fig. 2.2. It has to be noted that as I sum the
intensities of 8 different angles of incidence, there is no interference between them.
The contrast in the bright-field image is purely due to the interference between the
scattered and the illuminated light.
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300 nm

Figure 2.2 : The TDM bright-field image of the sample at λ = 475nm. Scale bar
represents the intensity.

The Fig. 2.2 represents a non polarized TDM bright-field image. The previous
section explained the method to obtain non-polarized data from the TDM data
set. The Fig. 2.2 shows that we have resolution to separate the resin rods at the
outer edge of the cylinders. But the resolution and contrast is not satisfactory to
distinguish each individual rods towards the center of the sample.

Advantages and disadvantages:

The advantage of bright-field imaging technique is, it is easy to implement. It does
not requires any extra optical components in a microscopy setup. The image is
visualized in real-time. The limitations include low optical resolution, inability to
observe low absorbance or weakly scattering objects, inability to image very low
refractive index contrast or transparent samples. In biology, the sample is usually
transparent in nature. So, they are stained to have good contrasted bright-field
images, but staining might introduce some artifacts into the bright-field image [9, 74].
Bright-field imaging technique can be used as a technique which can provide initial
insights into the sample. Later, a better imaging microscopy technique could be
used to image a particular location or certain characteristics of the sample in detail.

The TDM bright-field method in comparison to the bright-field microscopy just
requires numerical reconstruction and shares the same advantages as discussed above.

As the contrast is not sufficient enough to resolve individual resin rods in the
sample, I explore other methods to image with improved contrast. One such method
is dark-field imaging technique.

2.4 Dark-field imaging

Dark-field microscopy was conceived to increase the image contrast compared to the
bright-field imaging technique. The general principle of the dark-field imaging is to
collect only the diffracted light from the sample and block the illuminating light. The



46 2.4 Dark-field imaging

Objective

Condenser

Annular aperture

Incident light

Non-diffracted light

Diffracted 

light
Object

Figure 2.3 : Dark field microscopy principle

illuminating light (transmission case) or the light reflected from substrate (reflection
case) form intense background signal and generally decreases the sample contrast
in imaging. Sample in microscope is illuminated with a condenser lens, in wide-
field microscope it forms a cone. To accomplish dark-field microscopy, instead of
illuminating the sample with a full cone of wide-field light, it is illuminated with
a hollow cone of wide-field light from a condenser lens. This hollow cone of light
is formed by passing the illuminated light through a annular aperture before the
condenser lens as shown in Fig. 2.3. The annular aperture blocks the center of the
beam of the illuminated light. The hollow cone of light interacts with the sample.

In the absence of a sample the non-diffracted light does not enter the objective
(see Fig. 2.3). So, the background appears dark in the absence of the object. In the
presence of an object, the scattered light from the object enters the objective lens
and is collected on the detector with help of tube lens. Scattered light enters the
objective because of the change in the direction of propagation due to the refractive
index change introduced by the sample and its geometrical thickness. The image
formed on the detector appears bright (or contrasted) with dark background. Thus,
it is called dark-field imaging [96].

It is possible to numerically realize the dark-field image from the TDM measure-
ment data, the method is described as follows.

Numerical TDM dark-field imaging

The principle of dark-field TDM is shown in Fig. 2.4, it represents the dark-field
imaging for a single normal incidence illumination case.The idea is to stop the non-
diffracted light from being detected as I stated in the principle of dark-field imaging.
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Figure 2.4 : Dark field microscopy using TDM, only normal incidence illumina-
tion case is demonstrated here.

For this purpose, a dark-field mask (blocker) is employed. This dark field mask is
positioned in the back-focal plane of the objective in the Fourier domain. Ideally, the
non-diffracted field or illuminated field in the Fourier domain forms a specular delta
peak (generally broadened specular delta peak is observed in the case of experimental
data). It is located at the center of the NA in the Fourier space for a perfect
plane wave and normal incidence case (shown in Fig. 2.5). The location of the
specular delta peak corresponding to the non-diffracted or illuminated field varies
with varying angle of incidence inside the NA in the Fourier space. The dark-field
mask blocks the non-diffracted field, shown in Fig. 2.5.B the black area of the Fourier
domain. This is implemented numerically by multiplying data in Fourier space with
a mask.

The sample, illumination schema and the detection schema utilized to collect
the TDM data set is described in the section Sec. 2.2. From this, we already have
access to the total field amplitude (E(r) = E0(r) + Ed(r)), which is a sum of the
illuminated field amplitude and the diffracted field amplitude from the sample. To
recall, the sample was illuminated with 8 varying angles of incidence. This varying
angles of incidences produces specular delta peak of illumination at varying positions
in the total field data. So to implement the TDM dark-field imaging principle stated
before, we require a dynamic dark-field mask depending on the illumination angle.

It is important to note that as the measurement was performed in the image space
to collect complex diffracted field, we can go to the Fourier space by performing
Fourier transform. Once in the Fourier space, the location of the specular delta
peaks are detected numerically in the Fourier domain for each illumination data
set. For example, in Fig. 2.5.A, the specular delta peak is at the center of the
NA in the Fourier domain data. For each angle of incidence, the specular delta
peak is substituted by zeros. Fig. 2.5.B shows the example for the normal incidence
illumination case. The diffracted field amplitude (Ed(r)) is unaffected except in
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BA

Figure 2.5 : Suppression of the specular reflection in the Fourier space on
the scattered field data. Fig.A: Total field in log10 scale inside the NA in the
Fourier domain for normal incidence case. The bright spot corresponds to the
non-diffracted field. Fig.B: The non-diffracted field is substituted by zeros numer-
ically (black region), giving only the diffracted field (Ed(r)).

the specular region, where we consider it does not carry useful information. This
operation can be performed for field detected for every individual incidence angle.
This means that we have access to only the diffracted field amplitude (Ed(r)) of the
sample for varying angles of incidence. From this data, the dark-field image can be
obtained. The above operation can be represented as,

|Edark−field(r)|2 ≈
∑

q=1→n

∣∣Edq(r)
∣∣2 , (2.2)

where q represents the varying angle of incidence. The diffracted field intensity from
all the incidence angles are summed up to obtain the TDM dark-field image.

300 nm

Figure 2.6 : Dark field image of the sample Fig. 2.1 at λ = 475nm

The TDM dark field image of the sample seen in Fig. 2.1 is shown in Fig. 2.6.
The image is also non-polarized in nature, similar to the case discussed in bright-
field imaging section. Compared to the bright field image Fig. 2.2, the dark-field
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image Fig. 2.6 is well contrasted with background being dark in nature. It has to
be noted that the signal level in the dark field image is also lower compared to the
bright-field image. The rods are not resolved towards the inner edge of the rods too.

Advantages and disadvantages:

Dark field microscope imaging is preferred for viewing objects that are transparent
and absorb very low light with low refractive index contrast. Because of the low
refractive index contrast it is hard to identify the sample, this technique is useful for
such cases. Dark-field imaging technique can provide an excellent tool to identify the
boundaries and the location of the sample with sharp contrast with dark background.
Presence of dust or other artifacts around the sample can also scatter light. Such
scattered light can interfere with the detected field of the sample, this diminishes
the accuracy of the dark-field image. So to avoid this, the sample has to be artifact
or dust free, stressing the importance of sample preparation for dark-field imaging.

The position of condenser stop in classical dark-field microscope can produce
artifacts and aberrations in imaging. Whereas, this disadvantage is overcome by
means of numerical dark-field mask in numerical dark-field TDM. The size of the
mask can also be varied depending on the spreading of the specular delta peak in the
Fourier domain. In the classical dark-field imaging, the illumination is with wide-
field hollow cone light with fixed dark-field mask. Whereas in the TDM dark-field
imaging the sample is illuminated with varying coherent illumination angles, so the
dark-field mask is dynamic and numerical. As the TDM dark-field mask is numerical
in nature, it can be numerically constructed and applied to any illumination angle
data. So, compared to the classical dark-field microscope where the illumination is
limited within a cone, numerical dark-filed TDM can be applied to all illumination
angles inside NA. Thanks to the numerical mask, it is very advantageous to vary its
size depending on the requirements on the sample to be imaged.

On the other hand, low signal level in the dark-field imaging is a disadvantage.
This can be overcome by operating on the illuminated field instead of suppressing
it, with such as phase contrast microscopy.

2.5 Phase contrast microscopy

Phase contrast microscopy (PCM) provides contrast to the low contrasted samples
and conserves the signal intensity. This is performed by transforming phase differ-
ences of light caused by refractive index variations at various locations of sample
into differences in the intensity of light. As light propagates through the different
regions of the sample with different optical path (refractive index and geometry of
the sample) lengths the phase of the illuminated light is changed depending on the
interaction location of the sample. But the intensity variation would be very small.
As discussed in the previous chapter, the detectors and eye are insensitive to phase
differences. If the change in the phase difference can be visualized as amplitude
or intensity variation, that would provide a better contrasted image than just the
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intensity variation image. Zernike understood this process and invented the phase
contrast microscopy [11, 97].
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Figure 2.7 : Phase contrast microscopy principle.

To understand the principle of PCM, let us consider that we illuminate a sample
with a plane wavefront light Einc(r). The plane wavefront after interacting with the
sample will consist of diffracted field (Ed(r)) and the non-diffracted fieldE0(r). The
detected light can be given by (E(r) = E0(r)+Ed(r)). The intensity of the detected
light is known by I = |E0 +Ed|2. This is interference between the diffracted and
the non-diffracted field. The object will be poorly contrasted if Ed ≪ E0. In this
case, the phase shift betweenEd andE0 is equal to π/2, ie., Ed is in quadrature with
E0. This results in poor interference between the diffracted and the non-diffracted
field. This would lead to poorly contrasted image. On the other hand, if the phase
difference betweenEd andE0 is π, then we will have destructive interference, leading
to highly contrasted image.

The phase difference of Ed(r) and E0(r) is due to the optical path differences
caused by refractive index and geometry of the sample at various locations of the
sample. If the sample is of low refractive index compared to the surrounding then
the optical path difference won’t be sufficient enough to cause interference needed
to contrast the sample. But the phase difference between Ed(r) and E0(r) can be
introduced artificially in the microscope to improve the contrast. This is the basic
principle behind PCM.

The general implementation of phase contrast microscope (shown in Fig. 2.7)
includes a condenser annulus and a phase plate in addition to the optical components
of a wide-field microscope. The condenser annulus is placed in the front focal plane
of the condenser lens, this lets hollow cone of light to pass through and blocking the
light passing through the center of it. This hollow cone of light passes through the
sample thanks to condenser lens. After passing through the sample the light has the
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total field information, both the diffracted field and the non-diffracted field. The
phase plate lying in the back focal plane of the objective consists of a phase ring
which changes the phase of light passing through it by ±π/2. Notice the geometry
of the phase plate, only the light passing through the ring part of the phase plate
undergo a phase shift compared to the center and periphery.

The illumination was with a hollow cone of light. So, the non-diffracted light (or
illuminated light) passes through the ring of the phase plate undergoing additional
±π/2 phase shift with respect to the diffracted field. Between the diffracted and
non-diffracted light there is a phase difference around π or 0 introduced artificially
to form either constructive interference or destructive interference. Along with the
artificially introduced phase shift the diffracted filed can also posses phase shift from
the refractive index variation and thickness. The intensity of the light is reduced or
increased depending on the interference between the diffracted and non-diffracted
light. So, the phase shift of the sample is transformed into intensity variation due
to the interference.

The method can either be positive phase contrast or negative phase contrast de-
pending on the ±π/2 phase ring used in the setup. In positive phase contrast (+π/2
phase ring), the sample is contrasted against a bright background. On the other
hand in negative phase contrast (−π/2 phase ring), the sample appears brighter
against a dark background. This can be numerically realized with the TDM data as
follows.

Numerical phase contrast TDM
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Figure 2.8 : Phase contrast microscopy with TDM

The phase contrast microscopy can be realized with the TDM data set by numer-
ically generating a phase contrast TDM. The principle behind the numerical phase
contrast TDM is shown in Fig. 2.8 for the normal incidence illumination case, in
transmission TDM. The architecture and principle of the phase contrast TDM is
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similar to the TDM dark-field imaging, except instead of a blocker in the back focal
plane of the objective a phase plate is used. This phase plate introduce ±π/2 phase
shift to the non-diffracted light (specular broadened delta peak) or illuminated light
with respect to Ed.

The TDM complex total field (E(r) = E0(r) + Ed(r)) data was acquired as
explained in the section Sec. 2.2. The location of the specular peak is determined in
the Fourier domain for each illumination angle. A numerical phase plate is generated
by introducing a ±π/2 values at the location of the non-diffracted field data or the
specular broadened peak region. The intensities of all the detected fields are summed
up to obtain the phase contrast TDM image. The mathematical representation is
given by

|EPCM(r)|2 ≈
∑

q=1→n

|Eq(r) ∗ exp(i SPM)|2 , (2.3)

where, E is the total field, SPM is the specular phase mask with values zeros ev-
erywhere except ±π/2 at the specular non-diffracted light location and q represents
the varying angle of incidence.

BA

300 nm300 nm

Figure 2.9 : Phase contrast TDM results of sample Fig. 2.2.A: Fig.A: Positive
phase contrast TDM image. Fig.B: Negative phase contrast TDM image.

Phase contrast image of the sample, see Fig. 2.1 is shown in Fig. 2.9. The
Fig. 2.9.A shows the phase contrast microscopy image generated with positive phase
contrast TDM and Fig. 2.9.B represents the negative phase contrast TDM. Fig. 2.9.A
shows destructive interference at the location of the resin rods on the sample, re-
sulting in higher background signal and lower signal at the resin rods giving rise to
positive phase contrast TDM. So, the sample is darker than the background. It is
contrary in the case of negative phase contrast TDM, in this the sample is brighter
than the background.

It is interesting to compare the signal level of the images obtained with methods
already discussed in this chapter and the phase contrast TDM images. The bright
field TDM image shown in Fig. 2.2 and the phase-contrast images seen in Fig. 2.9
have similar background signal. The background is brighter in bright-field TDM
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and positive phase-contrast TDM image, except the phase contrast TDM is better
contrasted because of the signal difference between the background and the resin
rods being higher. The dark-field TDM image shown in Fig. 2.6 compared to the
negative phase contrast TDM image seen in Fig. 2.9.B seem to be better contrasted.
Phase-contrast does not seem to improve a lot the contrast here compared to dark-
field, probably because the resin is partly absorbent. But, the total signal level of
negative phase contrast TDM image is significantly higher than the dark-field TDM
image. But the signal difference between the background and the resin rods are
comparable.

Advantages and disadvantages:

The main advantage is to obtain very high contrast images of the sample with out
staining or introducing artifacts into the sample with high signal level. It is ideal for
studying and analyzing very thin samples and low refractive index materials [97].
Phase contrast works if the phase delay induced by the sample is weak. In general
phase contrast microscopy the phase plate limits the NA of the objective to an
extent. Phase halo effect is a ring like artifact that surrounds the perimeter of the
sample and the inner features, degrading the quality of PCM image. Shading off
effect occurs when the sample’s contrast reduces steadily as we move from the center
of the sample towards its edges in PCM.

The limitations mentioned above can be overcome significantly by means of nu-
merical phase contrast TDM. With numerical phase contrast TDM it is possible
to use same NA for illumination and detection. This is possible thanks to the nu-
merical phase of ±π/2 being applied on measured data for each illumination angle
individually and numerically compared to experimental PCM phase mask reducing
the size of the NA. Phase halo effect and the shading effects are avoided because
of the use of numerical phase plate in the numerical phase contrast TDM. During
the TDM experiment there is no phase plate to induce these effects. As numerical
phase contrast TDM is a post experimental treatment, we have the possibility to
apply either ±π/2 or other phase value differences to the non-diffracted field.

Numerical phase contrast TDM improved the signal intensity level and the con-
trast, but the resolution is still a concern. We explore the possibility to improve the
resolution by performing numerical confocal microscopy on TDM data in the next
section.

2.6 Confocal microscopy

Confocal microscopy is utilized to increase the image contrast of thick samples and
also to improve resolution. Confocal microscopy is based on detecting the intensity
variations. The principle is to restrict the light originating from overlying or nearby
scattering objects located in the sample from being detected on the detector. To
perform this, the light is detected from each point individually by observing a single
diffraction limited spot along the transverse or the axial direction [98–100]. The
light is restricted with help of a pinhole positioned in front of the detector. This
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Figure 2.10 : Confocal microscopy principle.

pinhole blocks the out-of-focus scattered light and preserves the light at the point
of focus, so the confocal images are free of defocus-blur and look sharper.

The principle of confocal microscopy is explained in the Fig. 2.10. The light is
focused on the sample with help of a condenser lens, the in-focus diffracted field
from the focus point propagates and reaches the detector (usually a photomultiplier
tube). The out-of-focus diffracted light originating from the regions where light is
not focused are cut-off by a pinhole positioned in front of the detector.

The pinhole positioned in front of the detector depends on the NA on the objec-
tive used, magnification of the optical system and wavelength used for the measure-
ment. The diameter of the pinhole is usually optimized to fit the diameter of the
Airy disk formed for a given microscope. The formation of Airy disc was explained
in the section Sec. 1.2.2. Additional to the NA of the objective, wavelength used
for measurement, the pinhole diameter determines the resolution of a confocal mi-
croscope. If the pinhole is larger than the airy disc, the out-focus light is collected
and transverse resolution can be decreased. If a pinhole thinner than a Airy disc is
used, the detected signal is weaker. A pinhole of size 1 airy unit (AU) gives the best
signal to noise ratio.

The light is collected from a single focus point on a single point detector. To
acquire a complete image, a scan has to be performed. The confocal scanning can be
performed in 3D. In this section, I will concentrate only on the transverse resolution.
The improvement in the axial resolution is discussed in detail elsewhere in this thesis.

The numerical means of producing better resolved confocal TDM image is de-
scribed below.

Confocal TDM

The complex diffracted field is obtained by illuminating the sample with 8 angles
of incidences. Detailed description of the sample used, illumination schema and the
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detection schema is described in the section Sec. 2.2. The sample is illuminated
with 8 know wave vectors kinc and it diffracts in all possible directions. We collects
certain components limited by the NA of the objective, the wave vector of the
collected diffracted field is given by kd. Then, the accessible data set from the
section Sec. 2.2 can be represented as Et(kd,kinc) = Ed(kd,kinc) + Einc(kd,kinc),
which is sum of diffracted and incident field) in the Fourier domain. The confocal
image has to be obtained from this total field data.

To perform confocal scanning we have to focus light and collect the light from
individual point numerically with a numerical pinhole. If 8 angles of incidence are
sent together coherently it will create a focus point on the sample. The diffracted
field from the focused spot has to be collected. This process is continued spot by
spot (scan) over the whole sample to have the image.

The numerical realization of confocal TDM is presented here. We have the total
field data from 8 angles of incidence. I sum the 8 total fields (Et(kd,kinc)). This
results in getting total field from a focused spot,

∑

inc

Et = Et

[
∑

inc

Einc

]
, (2.4)

where the term
∑
inc

Einc corresponds to the confocal illumination spot. The above

step is experimental equivalent of illuminating the sample with a confocal spot, it is
done numerically. This is possible because diffraction is a linear process. As stated
earlier, the confocal scanning will be performed in the transverse direction x and y.
Let us focus on performing TDM confocal detection on a single point on the sample
(x0, y0) step by step.

First step is to detect the light from the sample at a desired position (x0, y0). To
perform this, a phase factor has to be applied to each illumination total field data
(of 8) to change the position of constructive interference (confocal spot detection).
By this, the focus is shifted to the position (x0, y0) of the sample, which means
we are illuminating at this point. The field obtained from this point in the Fourier
domain is given by summing up all the total fields as,

Edd(kdx,kdy) =
∑

kq

Ete
−ikqx·x0−ikqy ·y0 , (2.5)

where q represents the illumination angle. The Edd represents the sum of all the
total field originating from the focused spot (x0, y0). With kqx and kqy being the
wave vectors components of the incident field in the x and y coordinates respectively.
The kdx and kdy are the corresponding wave vectors components in detection.

Second step is to go to image space. The inverse Fourier transform of Edd would
yield the image originating from the focused spot at illumination (x0, y0) on the
sample.

Third step is to filter the image from the position (x0, y0) using a pinhole to
perform confocal detection. For this purpose a numerical pinhole is constructed. The
pinhole F (x0, y0) has ones at the location of the pinhole and zeros elsewhere. The
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size of the pinhole can be one pixel or 2×2 or 3×3 or of user choice. For simplicity,
let us consider only 1 pixel. The numerical multiplication of the numerical pinhole
F (x0, y0) with the image from second step would provide the confocally detected
information corresponding to the position (x0, y0) on the sample.But we so far has
obtained information from only position (x0, y0) on the sample. To obtain the whole
image of the sample, we have to perform a scan.

The final step is to perform the scan over the sample, the position (x0, y0) is
changed over the sample. The above stated steps are repeated until the full scan of
the sample is performed to obtain the full confocal image of the sample.

As stated in the section Sec. 2.2, we are under scalar approximations. The results
from each polarization data sets are added together to obtain a non-polarized nu-
merical confocal TDM image, for more details refer the final part of section Sec. 2.2.

x0

y0

Figure 2.11 : For a focused point (x0, y0) on the sample, the detected intensity
on a camera in the image space without a pinhole.

The above stated method is applied on the sample shown in Fig. 2.1 with 8 angles
of incidences along the perimeter of the NA separated by 45 deg each. The detailed
description of the data set used for confocal detection is explained in the section
Sec. 2.2. The light is focused on the sample, point by point numerically, consider
a point (x0, y0). For (x0, y0), the intensity detected on the detector by summing
the 8 incidences and transforming to the image space will appear as a focus point
at (x0, y0) (distorted Bessel beam) shown in Fig. 2.11 (i.e. after the second step
explained in the numerical TDM confocal procedure above). The size of the central
spot is about 400nm in diameter. The image Fig. 2.11 is without a pinhole detection.
A numerical pinhole can be chosen to obtain the numerical confocal intensity of the
point (x0, y0), which would provide intensity for a single pixel.

To obtain the final full confocal image of the sample, the focus has to be scanned
and detected with a pinhole all over the sample. The focus step size for illumination
and the pinhole size for detection are critical for resolution and noise. They both
can be chosen numerically. The numerical TDM confocal image obtained is shown
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Figure 2.12 : The confocal TDM image of the sample Fig. 2.1 generated numer-
ically by utilizing the TDM hologram data and scanning digitally. Fig.A: The size
of the confocal pinhole is 25nm. Fig.B: Size of the confocal pinhole is 425 nm,
the size of central spot.

in Fig. 2.12. Step size used for scan was 25nm, the size of the focusing beam would
be a Airy disk limited by diffraction (for λ = 475nm and NA=0.95), similar to
Fig. 2.11. This Airy beam is used to illuminate the sample with a step size of 25nm.

For detection, a single pixel detection would result in a confocal image as shown
in Fig. 2.12.A. The size of the pixel used for detection is 25nm. Numerical confocal
TDM provides this ideal opportunity. Such a pinhole is difficult to implement in
experimental confocal microscopy. If implemented one would obtain very low signal
and impossible to detect the sample. As stated before, the size of the diameter of
the Bessel beam is about 400nm. It is possible to increase the pinhole size to 425nm,
the numerical TDM image obtained from such a pinhole is shown in Fig. 2.12.B. In
this case, the intensity obtained from this 425nm pinhole is summed up and assigned
to a single pixel on the confocal image.

A smaller pinhole provides better resolution as see in Fig. 2.12.A, but is sensitive
to noise. As the pinhole size is increased Fig. 2.12.B, the resolution is not good
enough to resolve the inner edges of the resin rods of the sample. The result obtained
is better than the wide-field, dark-field or phase contrast microscopy image in terms
of the resolution. The resin rods are better resolved in Fig. 2.12.A.

The numerical confocal TDM has several advantages compared to the generic
confocal experimental setup, they are discussed below.

Advantages and disadvantages:

The resolution is better than the generic wide-field methods because of the pinhole
detection.

Many of the short comings of experimental confocal setup such as scanning rate,
and dynamic pinhole with respect to the NA of the objective and wavelength used
can be easily overcome by confocal TDM. Scanning is performed numerically, the
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area of interest on the sample can be chosen with the confocal TDM, reducing time.
The pinhole size can be varied numerically, importantly after the measurement and
not during the measurement as in the case of generic confocal experimental setup.
It is possible to extend this method to 3D. For 3D we would need more illumination
angles, but a 3D position scan still be obtained from a 2D angular scan.

To further increase the resolution of the test sample and obtain a quantitative
link between the object and detected field, we can then perform synthetic aperture
techniques.

2.7 2D synthetic aperture microscopy

Two-dimensional synthetic aperture microscopy reconstructs the sample in 2D from
the measured complex scattered field data of the TDM. In TDM, we illuminate the
sample with various illumination angles and detect the scattered field data. Each
illumination angle provides access to the detection of different regions of the spatial
frequencies in Fourier domain. The amplitude and the phase information of the spa-
tial frequencies are know. The principle of the 2D synthetic aperture is to recombine
these different 2D complex spatial frequencies in the Fourier space to form single
synthetic numerical aperture (NA). The diameter of such synthetic numerical aper-
ture is twice larger than the diameter of the numerical aperture used for detection
of single incidence in TDM. Inverse Fourier transform of the 2D synthetic aperture
numerical aperture would yield the two-dimensional synthetic aperture reconstruc-
tion of the sample. The formation of 2D synthetic aperture is explained in detail
below.

The formation of the synthetic 2D aperture is shown in Fig. 2.13. The object
to be imaged is illuminated with coherent light, it diffracts the light in all possible
directions. Objective lens collects the scattered light with a given NA. For normal
incidence angle of illumination case, the scattered field detected in Fourier domain
is shown in the Fig. 2.13 with red dotted circle. The red dotted circle specifies the
limit of detected frequencies for a given NA of objective, given by radius k0NA.

Now, let us consider that the object is illuminated with a coherent beam having
wave vector kinc1 as shown in Fig. 2.13.A. This would lead to the sample scattering
different spatial frequencies compared to the normal incidence case, but the size of
the numerical aperture used for detection remains k0NA radius. The location of
the detected spatial frequencies corresponding to kinc1 illumination would depend
on the kd − kinc in the Fourier domain, with kd being the detected diffracted field
wave vector. Knowing this, the measured spatial frequencies can be positioned in
the 2D synthetic aperture satisfying the condition kd−kinc as shown in Fig. 2.13.A.

Similarly, the angle of incidence is varied to kinc2 (Fig. 2.13.B), kinc3 (Fig. 2.13.C),
kinc4 (Fig. 2.13.D), etc., They provide access to different spatial frequencies in the
Fourier domain. They are positioned in the synthetic numerical aperture satisfying
the condition kd − kinc for each incidence and the diffracted field wave vector. The
common spatial frequencies between different illumination angles when they are
repositioned in the synthetic numerical aperture are averaged. The repositioning of
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Figure 2.13 : Formation of 2D synthetic aperture in TDM.
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Figure 2.14 : Final 2D synthetic aperture in TDM if all the possible angles of
illumination are used compared to only 4 angles shown in Fig. 2.13.D.

the diffracted field data provides a 2D synthetic aperture whose numerical aperture
is twice larger than the NA of the objective used for detection. The radius of the
synthetic numerical aperture is 2k0NA. Combining many such illumination angles
it is possible to fill the whole 2D synthetic aperture as shown in Fig. 2.14.

With 2D synthetic aperture microscopy we have increased the accessible spatial
frequencies, which would mean increase in the resolution along the transverse di-
rection. As the positioning of the spatial frequencies were performed in 2D space
along transverse directions, the sample’s 3D geometrical information cannot be re-
constructed. But in the next section, the 2D spatial frequencies are positioned in
3D space to obtain the 3D geometry of the sample.

The reconstruction of the sample Fig. 2.1 can be demonstrated with the 2D
synthetic aperture TDM. The measured data set used for 2D synthetic aperture
reconstruction is explained in detail in the section Sec. 2.2 of this chapter. The
measured complex scattered field data for each illumination angle were positioned
in the Fourier domain as explained in this section above. This forms a nice 2D
synthetic aperture as shown in Fig. 2.15.A. Notice that only 8 angles of incidence
were used for this data set, we already have a good filling of the 2D synthetic
aperture.

The Born approximation explained in the section Sec. 1.5.3 establishes a sim-
ple relationship between the measured scattered field and the sample. The Fourier
transform of this 2D synthetic aperture complex data (Fig. 2.15.A) would yield the
2D reconstruction of the sample in the image space (Fig. 2.15.B) or equivalent re-
flectance of the sample [59]. We obtain a complex (amplitude and phase information)
image. The image shown in Fig. 2.15.B represents the modulus of the reconstruction.

The reconstruction Fig. 2.15.B is a non-polarized reconstruction of the sample.
But, the data set explained in the section Sec. 2.2 was performed with four po-
larization combinations (x̂D̂1, ŷD̂1, x̂D̂2 and ŷD̂2). To obtain the non-polarized
reconstruction we sum the results obtained from all the above polarization combi-
nations, resulting in Fig. 2.15.B.
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Figure 2.15 : Fig.A: The modulus of 2D synthetic aperture in the Fourier domain
shown in log scale for eight directions of incidences. The 8 incidences were defined
by a fixed polar angle of 60◦ and an azimuthal angle regularly spaced within 2π.
Specular region (illumination modulus) is masked. Fig.B: 2D synthetic aperture
reconstruction of sample (see Fig. 2.1 for the sample). Fourier transform of A
would yield B. The Fig.B here displays the modulus of the complex reconstruction.

The Fig. 2.15.B shows better reconstruction compared to the bright field, dark
field, and phase contrast microscopy discussed in this chapter. The resolution is
better than those techniques and slightly better than the confocal technique, observe
the separation of the resin rods in Fig. 2.15.B. As we observe towards the interior
of the rods, we fail to resolve the rods.

The 2D synthetic aperture TDM method provides only the 2D reconstruction
of the sample. It fails to provide a link with the sample characteristics such as the
relative permittivity or the 3D geometry of the object. Those information would
help in understanding the sample further. On the other hand, this method is simple
to implement, computationally less demanding and can be performed quickly.

The interest is to reconstruct the sample in 3D and calculate the permittivity
map. So far we were able to perform only 2D reconstructions. Next step will be to
use the measured complex field information to reconstruct the sample in 3D.

2.8 3D synthetic aperture microscopy

The real life samples are 3D in nature. The three-dimensional synthetic aperture
microscopy provides the opportunity to reconstruct them in 3D. In the 3D synthetic
aperture case, the image is related to the distribution of the permittivity inside the
object and retrieves the geometrical information also. The 3D synthetic aperture
microscopy is performed under Born approximation to reconstruct the 3D sample as
explained in the previous chapter, section (Sec. 1.5.3). Under Born approximation,
we know that there is a linear link between the complex scattered filed data and the
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relative permittivity of the object, Ed(kd,kinc) ∝ 3D FT [χ(kd − kinc)]. Where, χ
is the relative permittivity contrast, Ed(kd,kinc) is the diffracted field data.

Under the Born approximation the diffracted field data can be positioned in the
Ewald’s sphere as explained in the last chapter (Sec. 1.5.4). This establishes a link
between the 3D sample and the 2D measured diffracted field data. The 2D diffracted
field data is transformed into a cap of sphere and positioned in the 3D Ewald’s sphere
(see Fig. 1.8 for transmission configuration and Fig. 1.11 for reflection configuration).
This 3D synthetic aperture (Ewald’s sphere) can be inverse Fourier transformed in
3D to obtain the 3D reconstruction of the sample and the permittivity contrast
distribution of the sample.
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Figure 2.16 : Fig.A: Modulus of 3D synthetic aperture reconstruction of sample
Fig. 2.2.A in xy plane, a cut along z=0 plane. Fig.B: Modulus of reconstruction
along the xz plane, a cut along the y=0 plane. Same scale in x, y and z.

To demonstrate this method, we again use the data set used through this chapter,
explained in section Sec. 2.2. To recall, the sample was illuminated with 8 angles
of incidence. The diffracted field data corresponding to the 8 illumination angles
were positioned in the Ewald’s sphere and 3D inverse Fourier transformed to obtain
the 3D result as shown in Fig. 2.16. The Fig. 2.16.A shows a transverse cut. The
Fig. 2.16.B is to demonstrate the 3D capability, it shows a axial cut along y-axis
(y=0).

The reconstruction obtained with 3D synthetic aperture in transverse direction
(xy, Fig. 2.16.A) is comparable to the reconstruction in the 2D synthetic aperture
microscopy (Fig. 2.15.B). It has to be noted that one require lesser illumination angle
of incidences for 2D synthetic aperture compared to the 3D synthetic aperture case.
Because in 3D synthetic aperture 3D volume is filled with cap of spheres, whereas
in 2D synthetic aperture case, we fill a circular area with 2D data. The axial
direction reconstruction is therefore elongated, this also proves the point that the
reconstruction in the axial direction in microscopes are worse than in the transverse
direction.
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Most of the groups researching on the TDM are oriented towards using this 3D
synthetic aperture microscopy in the transmission configuration. Here we demon-
strated with a sample deposited on a reflecting substrate and with very few angles
of illumination to obtain initial 3D reconstruction of the sample. To recall the
disadvantages of the Born approximation or 3D synthetic aperture microscopy, po-
larization effects are neglected, the medium is considered to be homogeneous, the
sample is of low permittivity contrast etc., so it is not adapted here. But we have
the initial 3D geometry of the sample reconstructed here.

The reconstruction obtained here has to be compared with the reconstruction
that will be obtained using the accurate methods for inversion presented in the
next chapter. Nevertheless, 3D synthetic aperture is a simple and rapid means of
obtaining the 3D geometry of the sample. The sample that we imaged in this chapter
had scatterers that are closer as we observed towards the inner edge of the sample.
This implies that multiple scattering has to be taken into account [35]. The next
chapter will utilize the same data set as here but will obtain better reconstruction
in 3D with improved resolution and quantitative 3D permittivity map of the sample
thanks to rigorous iterative inversion algorithm.

2.9 Conclusion

Tomographic diffractive microscope is seen by researchers as a new technique, dif-
ferent from other conventional microscope techniques. In this chapter, it is demon-
strated to reproduce the conventional intensity based microscope techniques such
as bright-field imaging, dark-field imaging, phase-contrast microscopy and confocal
microscopy using the TDM measurement data. These techniques are numerically
realized by utilizing the TDM measured data set. The advantage being the TDM
measurement was performed only once on the sample. This is due to the fact that,
TDM provides complete complex measured field data and includes all the stated
methods for numerical reproduction later.

The conventional TDM reconstruction techniques results such as 2D and 3D
synthetic aperture microscopy used by majority of the research groups in the world
were also presented but adapted here with reflective substrate. But, the interest
would be to reconstruct the sample with better resolution and 3D quantitative per-
mittivity map than the methods discussed in this chapter. That would provide the
best possible resolution and quantitative information about the sample. In the next
chapter, we look for accurate methods to reconstruct the sample from the TDM
data and compare the reconstructions obtained in this chapter.





Chapter 3

Imaging with tomographic
diffractive microscopy holograms

using accurate models

“Fast is fine, but accuracy is everything.”
-Xenophon of Athens, Historian

3.1 Introduction

In this chapter, I numerically reconstruct objects using accurate modeling of the light
(electromagnetic and polarization) matter (3D objects) interaction. In the previous
chapter, I have presented the scalar approximation based reconstructions resulting
in limited resolution and poor quality of reconstruction. The accurate modeling
of light can improve the resolution and the quality of reconstruction compared to
the scalar approximation techniques. The methods that will be explained in this
chapter, go beyond the scalar techniques in utilization of the full-polarized nature
of the incident light and measured complex diffracted field. For the reconstruction,
no approximations are assumed. The link between the sample’s vectorial diffracted
field and the material properties (permittivity contrast) are solved non-linearly by
numerical means. This resulting in the 3D reconstruction of the sample permittiv-
ity map. We also developed a technique to handle the noisy optical tomography
diffraction microscopy (TDM) measured data and reconstruct the sample from such
a data set. Coupling of TDM data with accurate reconstruction techniques were
tested on the samples with different orientations to test its viability.

Non-linear inversion approach is one of the specialization of our research group
(SEMO, Institute Fresnel) compared to the other research groups working on optical
tomography diffraction microscopy (TDM). Usual approach among the researchers
working on TDM around the world is to reconstruct the sample under scalar ap-
proximations (Born or Rytov or other methods) with compromised resolution and
the quality of the reconstruction[30, 52, 67]. We also specialize in reconstructing the
samples deposited on a reflecting substrate and high permittivity contrast samples.
The non-linear inversion algorithms were developed by the group, I adopted it to
image the samples and achieve super-resolution images presented in this chapter.

65
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I will present the full vectorial complex field TDM accurate reconstructions tech-
niques to reconstruct the 3D permittivity of the probed sample with better resolution
and quality compared to approximation approaches [93, 101]. Before the accurate
non-linear inversion of the data, the data has to be processed.

3.2 Normalization of TDM data

The measurement of TDM data involves illumination of the sample with varying
angles of incidence and collecting the complex diffracted field data from it. Due to
varying incidence angles and the duration of measurement there can be fluctuations
in the laser power or environmental perturbations etc. These fluctuations are com-
pensated with the help of normalization. To have the same amplitude and phase for
all illumination angles at a particular position on the sample, one has to normalize
the TDM data. So, the normalization is performed on the amplitude and phase
information of the data extracted from the TDM holograms.

3.2.1 Normalization procedure

The normalization procedure aims at setting the data set in agreement with the
following assumptions. First, the sample is illuminated by plane waves with unity
amplitudes. Second, the phase origin for the illuminating field and for the scattered
field is placed on the surface of the substrate. The presence of the substrate is indeed
taken into account. Because for varying angles of incidence, the Fresnel reflection
coefficients changes and it is accounted for during the normalization procedure.

The phase origin is not known during the measurement. It is nevertheless possible
to correct the phase of the data set to become in agreement with the assumption
that phase origin is located on the substrate. We have developed two methods to
correct this phase origin mismatch, which are detailed in Ref. [76]. Two important
points then remain in the procedure. First, normalize the modulus of the scattered
field to compensate the possible laser power fluctuations from one illumination angle
to another. Second, normalize the phase of this field, to correct the different phase
delays introduced on the illuminating beam from one illumination angle to another.
These two steps use as reference signal the specular reflection on the substrate. This
approach is valid if in the specular direction the scattered field is negligible compared
to the specular reflection coming from the sample, which is true for small objects
that are studied in this thesis.

In the full polarized measurements, the polarization of the illuminating beam
can be initially along x̂ or ŷ (see Fig. 1.17 and Fig. 1.18). In the general case, once
the beam has been deflected by the fast steering mirror to an arbitrary direction,
the polarization of the incident field Einc on the object can be decomposed into its
S (TE) and P (TM) components :

Einc = − cos(φi)Eincŝ+ sin(φi)Eincp̂, (3.1)
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where Einc is the complex amplitude of Einc and φi is the azimuthal angle of the
illumination. The specularly reflected field Er then becomes :

Er = − cos(φi)rSEincŝ+ sin(φi)rPEincp̂, (3.2)

with rS and rP the Fresnel reflection coefficients for S and P polarizations.

3.2.2 Normalization factor

The fieldEim imaged on the camera is measured along the two polarization directions
D̂1 and D̂2 (shown in Sec. 1.6.2.1). Eim is the sum of the field scattered by the
object and the field Er reflected by the substrate. For any illumination angle, it
is possible to calculate theoretically the value Eth

r · D̂p (p = 1 or 2) for the case
|Ei| = 1, as supposed in the inversion procedure. Note that in the image space of
the camera, thanks to the high magnification, ŝ and p̂ can be considered in the
(x̂, ŷ) plane.

To normalize both the modulus and the phase of the data set Eim,l · D̂p, it has
to be multiplied for each illumination l by the factor Ml :

Ml =
|γl|S Eth

r,l · D̂p e−jϕl

2π〈|Eim,l · D̂p|〉S
, (3.3)

where γl is the projection of kl on the optical axis of the microscope, and S the
surface of the field of view that can be imaged on the camera. ϕl is the phase
that is measured in the specular reflection direction. 〈|Eim,l · D̂p|〉S is the mean
modulus, averaged over the field of view, of the signal detected on the camera for
the l−th illumination. As the object is small on the image, it can be considered as
the experimental value of 〈|Er,l · D̂p|〉S.

The multiplication by Ml ensures that the maximal value of |Eim,l · D̂p| in far
field, which corresponds to the specular reflection, is equal to that scattered by
a portion of substrate of surface S when illuminated by a plane wave with unity
amplitude. This is the amplitude normalization part.

The phase normalization must guarantee that all the illuminating plane waves
have a common phase origin placed on the substrate, as in the inversion algorithm.
To fulfill experimentally this condition, the phase of the detected field Eim,l ·D̂p has
to be shifted by a constant, so that the phase in the specular reflection direction
matches the argument of the theoretical Fresnel reflection coefficient. This is exactly
what is performed through the multiplication by Ml.

Once this normalization has been carried out for each polarization combination in
the data set (x̂D̂1, ŷD̂1, x̂D̂2 and ŷD̂2), it is possible to combine them to generate
the vectorial scattered field f l, for any linear polarization of the illumination in the
(x̂, ŷ) plane.

Such normalized data can further be used to perform accurate reconstruction of
the sample.
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3.3 Non linear inversion method

In classical TDM, the inversion consists in applying a 3D inverse Fourier transform
to the data set. This simplified approach is valid only if the following conditions
are met. First, the single scattering approximation is verified. Second, the scalar
approximation is valid, ignoring the polarized nature of light. Third, the sample
is illuminated by a plane wave and surrounded by a homogeneous medium. We
have developed an inversion algorithm that breaks all these limitations by taking
into account the full-vectorial (polarization) nature of the scattered field and the
non-linear link between the sample and the measured field.

First, we will understand the role of polarization and the requirement to perform
four measurements to obtain the full-vectorial data set.

3.3.1 Polarization and transverse isotropic resolution

In this section, I will present the importance of the polarization for illumination and
detection with respect to the resolution. In the section Sec. 1.6.2.1, we demonstrated
the measurement of the full-vectorial field for both illumination and the detection.
To recall, the polarization of illumination and the detection are controlled by means
of the half-wave plates positioned in the experimental setup. It is controlled in
both illumination path and the detection path. Four data sets with either vertical
or horizontal polarization along the illumination directions and D̂1 or D̂2 (±45deg
with respect to vertical direction, see Fig. 1.18) along the reference beam direction
are measured. From these four data sets, it is possible to obtain a full-polarized
data set for any polarization using Jones operator. To be precise, the four data
sets measured during the measurements are x̂D̂1, x̂D̂2, ŷD̂1, and ŷD̂2; with the
first letter indicating the illumination polarization and the other letter indicating
the detection polarization.

To demonstrate the requirement of full-polarized measurement and its influence,
we consider the four individual data sets measured during the measurement using
TDM. We use the same reference sample we used in the previous chapter with 12
resin rods placed radially at the summit of a dodecagon Fig. 2.1. The illumination
angles and the detection are also conserved. Let us consider the case of x̂D̂1,
we observe the dark-field image obtained for only this polarization combination.
The dark-field image corresponding to x̂D̂1 is shown in Fig. 3.1.A, obtained with
the method described in the section Sec. 2.4. The Fig. 3.1.A shows incomplete
information about the object. Instead of 12 resin rods, we image only 10 spots in
the dark-field image at the location of the resin rods. This is due to the incident
and detection polarization combination being x̂D̂1.

Yet the different polarization combinations x̂D̂2 (Fig. 3.1.B), ŷD̂1 (Fig. 3.1.C),
and ŷD̂2 (Fig. 3.1.D) yield complementary information about the sample. Each case
illuminates and detects with different polarization, so we obtain the complimentary
information. This emphasizes the importance of the full-polarized measurements in
the TDM for achieving isotropic super-resolution along the transverse direction. It
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Figure 3.1 : Dark field images corresponding to, Fig.A: x̂D̂1, Fig.B: x̂D̂2,

Fig.C: ŷD̂1, and Fig.D: ŷD̂2.

has to be noted that relying on single polarization or scalar measurements would
fail to provide isotropic transverse resolution.

300 nm

Figure 3.2 : Unpolarized dark-field image of the sample at λ = 475nm, resulting
from the summation of Figs. 3.1.A, B, C, and D, in the transverse direction (xy).

The unpolarized dark-field image of the sample is displayed in Fig. 3.2, it shows
a transverse cut along the xy direction. The image is obtained by summing the
four x̂D̂1, x̂D̂2, ŷD̂1, and ŷD̂2 different polarization (Figs. 3.1.A, B, C, and D)
dark-field images and averaging. The image Fig. 3.2 shows all the 12 branches of the
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imaged sample, highlighting the importance of taking into account all polarization
cases.

We understood that for isotropic resolution all the polarization cases have to be
taken into account or unpolarized light has to be used. However unpolarized light
produces limited resolution images as shown on Fig. 3.2 or in the previous chapter.
So, we perform 4 different measurements (x̂D̂1, x̂D̂2, ŷD̂1, and ŷD̂2) and combine
them to obtain full-vectorial field, this will permit to improve the resolution. To
seek better resolution and 3D reconstruction we progress towards the utilization of
full-vectorial field without approximations for TDM imaging starting from now in
this thesis.

Before we understand our inversion approach on the measured data, it is im-
portant to understand the forward scattering problem. This helps in understanding
the way we estimate the sample, the forward estimation is used in the inversion
procedure.

3.3.2 Forward problem

Forward scattering problem is modeling the interaction of the electromagnetic fields
with an object of interest. In simple terms, we know size, shape and constituent ma-
terial of an object along with it’s surrounding medium. We illuminate the know elec-
tromagnetic field (Einc) and we calculate the unknown scattered field (Ed) from the
object (shown in Fig. 3.3). Generally, the forward scattering problem is solved by nu-
merical means. Analytical solution exists only for simple objects (e.g. homogeneous
spheres, cylindrical objects etc.) [102]. Though there exists many methods to per-
form forward scattering problem, we use the coupled dipole method (CDM) or dis-
crete dipole method [92, 103, 104] to compute the forward problem. The CDM has
the advantage of restricting the computational domain to the size the object, the
calculation precision can be optimized by the size of the discretization units (seen
in Fig. 3.3 as cubes).

z

x

y

Einc Ed

Sample: ε(r)

Volume: V

N units

Figure 3.3 : The coupled dipole method discretization of arbitrary 3D object into
N cubical units. The Einc is the incident field and Ed scattered field.
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Purcell and Pennypacker [103] introduced the CDM method in 1973 to study the
scattering of light. From the chapter 1 we recall the relation we derived between the
scattered field and incident field,

Ed(k,kl) =

∫

V

g(k, r′)χ(r′)E(r′,kl)dr
′, (3.4)

E(r,kl) = E0(r,kl) +

∫

V

G(r, r′)χ(r′)E(r′,kl)dr
′. (3.5)

kl is the wave vector of the lth illuminating plane wave, and k is the wave vector
along which the scattered field is detected in far field. The object is represented
by its permittivity contrast χ = ε − εb, where ε is the relative permittivity of the
object and εb that of the surrounding medium, equal to 1 for the samples placed in
the air and equal to 1.515 for the samples in oil environment. E0 is the reference
field, the one existing in the absence of the object. E is the total field, the sum of
E0 and Ed. g and G are respectively the near field and the far field Green tensors.
g(k, r′)p is the near field emitted in the k direction by a dipole p placed at r′ in
the reference medium. G(r, r′)p is the electric field at r emitted by a dipole placed
at r′ in the reference medium. V is the volume of the sample. Note that when all
approximations used in classical TDM are met, Eq. 3.5 becomes a simple 3D Fourier
transform of χ (discussed in chapter 1 under Born and Rytov approximations).

Now, let us calculate the scattered field that we would obtain on a measurement
surface by illuminating a known sample. The distance between the measurement
surface and the sample decides whether calculations are near-field or far-field. As
TDM is far-field measurement technique, we stick to the far-field calculation of
the forward problem with CDM in this thesis. To calculate the sample’s forward
scattered field the sample is discretized in a bounded cube shaped box with N units
as shown in Fig. 3.3. Using cubic discretization the Eqn. 3.5 can be written as,

E(r,kl) = E0(r,kl) +
N∑

j=1

∫

Vj

G(r, r′)χ(r′)E(r′,kl)dr
′. (3.6)

with Vj the volume of the j-th cube used for discretization. We use the hypothesis
that the field and the permittivity are uniform inside each sub cubic discretization.
Then,

E(r,kl) = E0(r,kl) +
N∑

j=1

[∫

Vj

G(r, r′)dr′

]
χ(r′)E(r′,kl). (3.7)
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The above equation can be transformed into a system of linear equations to perform
volume integration numerically as,

E(rm,kl) =E0(rm,kl) +
N∑

j=1,j 6=m

[∫

Vj

G(rm, r′)dr′

]
χ(rj)E(rj ,kl)

+

[∫

Vm

G(rm, r′)dr′

]
χ(rm)E(rm,kl).

(3.8)

with m=1,...,N.
We make an approximation that the Green’s function is constant over any cubic

cell when m 6= j. For a particular case when m = j, the Green’s function presents
a singularity as G(rm, r′) goes to infinity, |rm − r′| → 0. In literature there are
various approaches to solve this, we use a approach that Vm approaches zero, i.e. as
Vm shrinks down around the point rm [105].

lim
Vm→0

∫

Wm

G(ri, r
′)dr′ = L, (3.9)

where L depends on the shape of Vm [105]. For a spherical or cubic shape we can
write [105]

L = −I

3
, (3.10)

with I being the identity matrix.
Then the Eq. (3.8) can be expressed as

E(rm) = E0(rm) +
N∑

j=1,j 6=m

G(rm, rj)χ(rj)E(rj)Vj −
χ(rm)

3
E(rm). (3.11)

When we have large number of discretization cells, the linear system is solved
iteratively [106]. We usually begin with an initial estimate, at the end of the iterative
procedure one obtains the exact result [92]. If one solves the above equation, we
would obtain the total field inside the object. The accuracy of the field can be
varied by changing the discretization size of the cubic unit. From the total field it
is possible to calculate the scattered field, in the far-field it can be expressed as,

Ed(r) =
N∑

j=1

G(r, rj)χ(rj)E(rj)Vj −
χ(rm)

3
E(rm). (3.12)

Which means that the scattered field can be calculated for any arbitrary posi-
tion r from the above equation. So, for a known object with known illumination
electromagnetic field the diffracted field in the far-field can be calculated.

The forward problem is useful to compare it with the measured scattered field
and make sure that the measurement was performed under best possible means.
But the interest is to calculate the sample permittivity from the measured diffracted
field. The forward problem helps to estimate the sample in the inversion procedure,
described in the following section.
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3.3.3 Inverse problem

z

x

y

?

Einc Emes

Ω 

ᴦ

Figure 3.4 : Geometry of the inverse problem: the investigation domain in inver-
sion procedure Ω. Γ is the measurement data. The unknown object is reconstructed
from the measured data within an inversion box discretized by cubic units of desired
size.

The inverse problem is to reconstruct the shape, constitutive material (namely
the spatial permittivity distribution) and the position of the object from the mea-
sured full-vectorial complex scattered field (Fig. 3.4). We know the illuminated
electromagnetic field, and the measurement of the scattered field is performed ex-
perimentally. We calculate the unknown object in this section. For TDM data
most methods in the literature solve the 3D inverse problems under Born or Rytov
approximations[46, 50] under scalar considerations. These methods do not take into
account the polarization and the vectorial nature of the electromagnetic field. In our
group we developed an inversion algorithm to take those into consideration during
the reconstruction. This is important because the samples are 3D in nature and the
light interacts electromagnetically. The importance of polarization was emphasized
in section Sec. 3.3.1.

Our inversion method is an iterative inversion procedure. It is based on combi-
nation of linearized methods [107–110] and modified gradient method [111, 112] to
determine the permittivity of an unknown object inside an investigating domain Ω.
The inversion method retrieves simultaneously the sample permittivity contrast χ
and the total field El in a bounded investigation domain Ω (outside Ω, χ is assumed
to be null) from the set of scattered far field measured data f l, for l = 1, · · · , L illu-
mination angles. The method has been already successfully applied to reconstruct
and retrieve the permittivity of several 3D objects[25, 113–115].
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We illuminate by plane waves on an object and collect the scattered light from
it on a camera. We know the angles used for illumination and we calculate the
angles of the scattered field for each pixel. The calculation is possible thanks to
the known NA of the objective, wavelength of light used for measurement, pixel
size of the camera and the overall magnification of the TDM experimental setup.
Thus, the illumination angles, normalized measured diffracted field data with their
corresponding collected angles, wavelength used for measurement and the substrate
on which samples are deposited (recall, samples used in this thesis are reflective in
nature and deposited on a substrate) are known. With these parameters the process
of reconstruction of the object begins by numerical means. The volume integrals of
Eqs. 3.4 and 3.5 are performed over Ω and numerically solved by discretization Ω
into N subunits on a cubic lattice with period much smaller than the wavelength of
illumination. Similar to the discretization performed in the forward problem. For
the sake of simplicity, symbolic notations are used for Eqs. 3.4 and 3.5, which are
restated as :

Ed,l = BχEl, (3.13)

El = Eref,l + AχEl, (3.14)

where B and A are the operators for the far field and near field Green tensors,

respectively i.
Starting from an initial guess provided by the back-propagation of the data

set [116], χ andEl are gradually estimated as shown in forward problem and adjusted
at each iteration so as to minimize a cost functional involving the measured data.
The basic idea underlying the Hybride inversion method is to build up two sequences
related to the permittivity contrast and the total field within the scattering domain
according to

El,n = El,n−1 + κl,n;νν l,n + κl,n;ωωl,n, (3.15)

χn = χn−1 + βndn, (3.16)

where the ν l,n, ωl,n and dn are updating direction in the research domain for the
total field El,n and the contrast χn, respectively. The κl,n, βn are scalar coefficients.
For more details about the updating and detailed description of the variables, please
refer to thesis of Ting Zhang [92]. So, for iteration number n, the cost functional
reads :

Fn(χn,El,n) = WΓ

L∑

l=1

‖h(1)
l,n‖2Γ +WΩ

L∑

l=1

‖h(2)
l,n‖2Ω, (3.17)

where WΓ weighting coefficient and WΩ is normalization coefficients respectively,
defined by

WΓ =
1

N∑
l=1

‖fmes
l ‖2Γ

. (3.18)

iThe presence of the substrate is taken into through these tensors
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WΩ =
1

N∑
l=1

‖Einc
l ‖2Ω

. (3.19)

The h
(1)
l,n and h

(2)
l,n are residual errors computed from Eqs. (3.13) and (3.14),

respectively :

h
(1)
l,n = f l −BχnEl,n, (3.20)

h
(2)
l,n = Eref,l −El,n + AχnEl,n. (3.21)

The minimization is performed with the hybrid gradient procedure described in
Ref. [113].

By providing the illumination angles used to illuminate the unknown object and
the measured scattered field data to the inversion algorithm, it computes the 3D
object permittivity map. This algorithm has been widely used during this PhD
thesis to reconstruct various objects. The next section will present one such result
obtained from the measurement performed on the sample shown in Fig. 2.1.

3.3.4 Experimental results

a) Test sample

The TDM data used for non-linear inversion in this section is presented in detail
in section Sec. 2.2. To recall, the sample (Fig. 2.1) was illuminated with eight
directions of incidences, defined by a fixed polar angle of 60◦ and an azimuthal
angle regularly spaced with 45◦ and scattered field is measured. The data set is
processed for different polarization combination measurements performed for full-
vectorial measurement (described in Sec. 1.6.2.1). The data is phase and amplitude
normalized as explained in the Sec. 3.2 and Sec. 3.3. The complex diffracted field
data can now be inverted as described in this section above to obtain 3D permittivity
map of the sample.

The results obtained using the measured data on the test sample is shown in
Fig. 3.5. The Fig. 3.5.A shows a transverse image obtained using the dark-field
TDM explained in the previous chapter, Sec. 2.4. The Fig. 3.5.B is obtained by
the application of the 3D synthetic aperture approach on the same measured data
explained in Sec. 2.8, its axial image is shown in Fig. 3.6.A. The 3D-FFT (Fig. 3.5.B)
resolution is slightly better than the dark-field image (Fig. 3.5.A).

As stated above, once the scattered field is measured, it can be projected to have
any vectorial combination for illumination and detection. Using this, we transformed
the data as x̂x̂ (illumination polarization is along x̂ and detection polarization is
also along x̂) and ŷŷ (illumination polarization is along ŷ and detection polarization
is also along ŷ). Such polarization combination data was provided to the inversion
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Figure 3.5 : Reference sample: Fig.A: Full-polarized dark-field image. Fig.B:
Transverse cut along the center of the full-polarized 3D-FFT reconstruction.
Fig.C: Reconstructed permittivity averaged over the sample’s height using x̂x̂+ ŷŷ

TDM. Fig.D: Reconstructed permittivity averaged over the sample’s height using
the full-polarized TDM.

algorithm. The result obtained with such an inversion data set is shown in Fig. 3.5.C.
From the inversion procedure we also obtain 3D reconstruction of the sample, the
axial cut corresponding to Fig. 3.5.C is shown in Fig. 3.6.B. This reconstruction is
better than both 3D-FFT and dark-field image. But the inner edges of the rods along
the diagonal directions of the sample are not well resolved because the polarization
being x̂x̂ and ŷŷ. This further emphasizes the importance of full-polarized TDM
and non-linear inversion.

So, we perform the full-vectorial inversion. The result obtained with full-polarized
TDM and non-linear inversion explained in the above section is shown in Fig. 3.5.D,
it shows a transverse cut along the xy direction. The corresponding axial cut is
shown in Fig. 3.6.C. This provides the best transverse isotropic resolution.

The results of Fig. 3.5 and Fig. 3.6 shows that the vectorial inversion provides
a significantly better transverse resolution, axial sensitivity, and overall 3D permit-
tivity map than the other methods discussed in the previous chapter. In particular,
it resolves the inter distance between the branches at its smallest (100 nm) which
is not the case for the 3D synthetic aperture microscopy, dark-field images, phase-
contrast microscopy and confocal microscopy. Polarization of the illumination and
the scattered field is taken into account. The individual rods are well separated and
the resolution is beyond the Rayleigh criterion limit discussed in the Sec. 1.2.2.

The time required to perform a non-linear inversion depends on the size of the
object being reconstructed, number of illumination angles used during the measure-
ment, the discretization size of the scattered field data in Fourier space, the dis-
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Figure 3.6 : Reference sample. Fig.A: Axial cut along the center of the full-
polarized 3D-FFT reconstruction. Fig.B: Reconstructed permittivity along the
center of yz-plane using x̂x̂ + ŷŷ TDM. Fig.C: Reconstructed permittivity along
the center yz-plane using the full-polarized TDM at λ = 475nm.

cretization size used for the numerical reconstruction (size of the pixel), the speed
of the computer used for the inversion, the model used for inversion (Born [110]
or Hybride method [111] or Conjugate gradient method [117]) and the algorithm
optimization. The above stated parameters can be fine tuned to achieve results de-
pending on the requirements. For the result presented for the above sample, shown
in Fig. 3.5.C in 3D, it took about 8 hours to perform non-linear inversion.

On the other hand the inversion procedure is computationally demanding and
time-consuming compared to the other methods, but efforts are being made in our
group to decrease the inversion time significantly. The inversion time and computa-
tional speed of course depends on the amount of illumination incident angles used,
the resolution and the accuracy that one would like to reconstruct etc. In the world,
not many research groups have coupled the TDM to an inversion algorithm that
takes into account multiple scattering and the polarization effects and provides such
a super-resolution image. Also, working in reflection configuration with TDM is
challenging. These were some of the specializations of our group (SEMO, Institute
Fresnel, Marseille).

To demonstrate further the robustness of coupling the TDM with non-linear
inversion algorithm we tested further complicated samples than the one presented
in this section.

b) Sample with one missing branch

To demonstrate the efficacy of our method and in-dependency of the symmetric na-
ture of samples, we fabricated a sample with a resin branch missing [Fig. 3.7]. The
dark-field image [Fig.3.8.A], 3D-FFT [Fig.3.8.B], x̂x̂+ŷŷ polarized TDM [Fig.3.8.C]
and full-polarized TDM [Fig.3.8.D] results corresponding to the sample are pre-
sented.

The missing branch is very evident from all the techniques from the above images.
The resolution and discussions for the reference star sample are also applicable to
this particular sample. The inability of x̂x̂+ ŷŷ TDM to resolve diagonal branches
is clearly seen in this sample by comparing Fig. 3.8.C and 3.8.D. Though the sample
is asymmetric the reconstruction algorithms provide similar permittivity estimate
and resolution.
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Figure 3.7 : SEM image of sample with one missing branch compared to the
sample shown in Fig. 3.6.

300 nm

A C

300 nm

D

Figure 3.8 : Results of star sample with one missing branch. Fig.A: Full-
polarized dark-field image. Fig.B: Transverse cut along the center of the full-
polarized 3D-FFT reconstruction. Fig.C: Reconstructed permittivity averaged over
the sample’s height using x̂x̂+ ŷŷ TDM. Fig.D: Reconstructed permittivity aver-
aged over the sample’s height using the full-polarized TDM at λ = 475nm.

c) Sample with misaligned branches

To further demonstrate the efficiency of our technique in retrieving the alignment
of sample branches we fabricated a sample as shown in Fig.3.9, two of the sample
branches were misaligned in comparison to the reference sample.

Again, the full-polarized TDM provides best results with better resolution com-
pared to other methods. The misaligned branch at the bottom is not very well
resolved with x̂x̂+ ŷŷ TDM, whereas full-polarized TDM resolves better. The other
methods; 3D-FFT and dark-field image fail to provide conclusive evidence on the
misaligned branches.

The resolution we obtained with the non-linear inversion method is one of the
best considering marker-free nature of the sample. We explored the possibilities to
extend the resolution beyond what is obtained in this section, but experimental noise
was one of the issue preventing the inversion procedure from converging. It would
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Figure 3.9 : (SEM image of sample with one branch misaligned compared to
sample Fig. 3.6.
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Figure 3.10 : Results of star sample with misaligned branches. Fig.A: Full-
polarized dark-field image. Fig.B: Transverse cut along the center of the full-
polarized 3D-FFT reconstruction. Fig.C: Reconstructed permittivity averaged over
the sample’s height using x̂x̂+ ŷŷ TDM. Fig.D: Reconstructed permittivity aver-
aged over the sample’s height using the full-polarized TDM at λ = 475nm.

be advantageous to have a procedure to handle noisy TDM experimental data. I will
now explain such a method to locate and reconstruct the samples when the TDM
data is corrupted by experimental noise.

3.4 TDM imaging in noisy environment

In this section, we study the detection and the localization of objects in a noisy
environment. It is a major issue because all the imaging applications have some
level of noise or we are interested in a particular features of a sample in a very
noisy data. Usually, the features of a sample maybe buried in the heterogeneous
noise due to experimental noise, heterogeneities of the host medium etc. It is also
of interest to localize a particular area of the sample and reconstruct, this would
mean smaller area of reconstruction. The above discussed topics has been widely
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researched in acoustics and electromagnetic domains and lead to development of
several numerical treatments to obtain meaningful image from noisy data[118–120].
The time reversal technique or its monochromatic counterpart, DORT procedure
(for the French acronym décomposition de l’opérateur de retournement temporel,
Time Reversal Operator Decomposition) has emerged has the powerful technique to
identify the sample features from noisy environment.

3.4.1 Principle of DORT

Let us understand the time reversal concept first. It is based on the idea that the
wave propagation does not vary in a lossless non-magnetic media. We will take the
help of wave equation to understand this, given by

∇
2E(r, t)− µ0ε(r)

∂2

∂t2
E(r, t) = 0. (3.22)

The solution to the above equation is E(r, t), the vectorial electric field in the 3D.
With µ0 and ε(r) are the magnetic permeability and electric permittivity of the
medium, respectively. In the above equation we have a second order time-derivative
operator which depends on time t. For any scattered field E(r, t), there is E(r,−t),
which is also a solution to the Eqn. 3.22. This is called time reversal invariance. The
solution E(r,−t) means we have a wave which converges coherently to the emitting
sources. So far we were in the time domain.

We will now understand the building of the scattering matrix in Fourier space.
Let us assume, we have several scatterers in a sample. We illuminate the scatterers
successively by electromagnetic excitation l=1,...,Ns. For each illumination l, we
measure the scattered field at the detector pixels called receivers, m=1,...,Nr. From
this we build a complex scattering matrixKlm, with l being the illumination field and
m being the detection pixel. Observe the similarities between the TDM illumination
and detection schema with the construction of scattering matrix K.

In case of lossless medium, the time reversal and the complex conjugation are
equivalent operations. So, the illumination becomes detection pixel and detection
becomes illumination pixel Klm = Kml. The conjugate transpose matrix of K is
described by K†. The time reversal operator (TRO) can then be described by L =
K†K. L is a Hermitian operator with eigenvalues being positive real valued and its
eignevectors are orthogonal in nature [121].

The DORT is time reversal’s counterpart in frequency domain. DORT consists in
analyzing the eigenvalues and eigenvectors of the Time Reversal Operator (TRO),
in order to synthesize incident fields that focus selectively on targets of interest.
We have two important properties of L. First, the number of dominant eigenvalues
depends on the number of scatters present in the sample. The eigenvector associated
with the eigen value permits us to localize and focus selectively. This procedure
requires to record the complex field (amplitude and phase) scattered by the sample
for various illuminations in order to build the scattering matrix K of the target (K
relates the incoming field to the outgoing one).
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Relation between DORT and SVD

As explained above time reversal operator can be represented by L = K†K. It can
be shown that (K†K)† = (K†K). Which means that L† = L. The eigenvalues and
the eigenvectors of the matrix L can be calculated. Which can be represented as
L=vΛv†, with Λ being singular values and u & v representing unitary matrices.

Now, the Singular Value Decomposition (SVD) can be performed on the scatter-
ing matrix K directly. Which would yield, K=vΛu†. It can be shown that K†K =
vΛv†.

This means that DORT utilizes the intensity of the field and SVD utilizes the
complex field itself. Using SVD, it can be shown that for point-like scatterers in the
single scattering regime, a few singular vectors of K (or equivalently, the eigenvectors
of the time reversal operator K†K where † denotes the conjugate transpose), here-
after called the DORT vectors, correspond to incident fields that focus selectively
on the targets [122, 123]. This method has been recently applied in optical domain
to perform focusing on gold nanoparticles placed under an aberrating layer [124].

DORT inversion

The DORT or time reversal technique permits to identify and localize the scatters
located in the sample. This is done by generating agile incident fields that focus
on targets embedded in a randomly inhomogeneous medium. But this method does
not provide images of the sample that we would like to reconstruct [124]. To ob-
tain quantitative information about the samples (geometrical size and permittivity)
additional data processing and inversion is required[120, 125].

DORT has to be combined with an inversion procedure to obtain quantitative
information. The inversion procedure can be the procedure explained in the section
Sec. 3.3.3. Recently, it was proposed to apply an inversion procedure on data ob-
tained with DORT illuminations [124, 126]. It was shown on simulated data that
this combined DORT-inversion approach was significantly better than standard in-
version techniques for estimating targets buried in an inhomogeneous soil. The
DORT illuminations dimmed the influence of the clutter and allowed the restriction
of the investigation domain to small regions surrounding the targets [126]. We lo-
calize and we construct only around a small region around the target that we are
willing to reconstruct. In this section, we adapt this procedure to optical microscopy
and show experimentally its interest for imaging objects of various sizes in a noisy
background [121].

Since we have access to the complex scattered field data from the TDM measure-
ment, we can perform the DORT to localize and SVD to reconstruct the sample. We
demonstrate the powerfulness of this method by demonstrating it on experimental
TDM data set in this section to reconstruct the samples.

3.4.2 Application of DORT to TDM

We have seen that the full-polarized TDM enables to reconstruct the sample 3D
permittivity map with a resolution about one-fourth of the wavelength whatever the
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direction in the transverse plane. In this section, we apply the DORT and inversion
procedures to reconstruct the samples on TDM data corrupted with experimental
noise.

With the classical TDM inversion procedure, the sample is reconstructed with
a domain larger than sample. If we have a sample with small interesting features,
reconstructing the whole sample is time consuming. To avoid this we can perform
selective reconstruction by knowing the location of the targets beforehand inside the
sample. DORT can help in localization of the targets. We can take a small domain
for reconstruction around the target and reconstruct the target quantitatively.

To apply DORT inversion to the TDM data, we will process it and construct a
scattering matrix as follows.

In TDM, the sample is illuminated with a collimated beam under various inci-
dent angles and polarization states and its scattered field (phase and amplitude) is
recorded for a large number of observation directions within the Numerical Aperture
(NA) of the microscope objective. We have seen the reconstruction of the sample
in scalar approximations in the previous chapter and the non-linear inversion tech-
niques in this chapter. The interest of TDM is that it provides directly the scattering
matrix of the sample and it is thus perfectly adapted to the implementation of the
DORT-inversion procedure.

A full-polarized measurement has to be performed to obtain the scattering matrix
K. The illumination and the detection schema for the full-polarized measurement
was discussed in section Sec. 1.6.2.1. To recall, the illumination and detection is per-
formed as x̂D̂1, ŷD̂1, x̂D̂2 and ŷD̂2, with first letter representing the illumination
polarization and the other representing the detection polarization.

There are three steps involved in applying DORT-inversion. First is to build
suitable scattering matrix from measured TDM data. Second step is to perform
eigenvalue decomposition of the time reversal operator. The final step to perform
inversion.

For first step, let us say, I illuminate the sample with incidences m=1,2,...,M. To
build a scattering matrix suitable for DORT-inversion, I need to project the incident
field x̂ and ŷ to obtain ŝ and p̂ respectively. Where, ŝ is polarization P or TM and
p̂ is polarization S or TE.

(
p̂
ŝ

)
=

(
cos φinc sin φinc

−sin φinc cos φinc

)(
x̂

ŷ

)
, (3.23)

By this way, we obtain the scattered field corresponding to different incident
angles l and two incident polarization states S and P, for N observation directions.
Here, N is the number of pixels on the camera used for detection. Similarly, the
measured scattered field (D̂1 and D̂2) can be decomposed in to S and P polarizations
respectively. So, for each incident angle m, at the detection pixel on the camera n,
four different groups of data can be observed, as Kpp

mn, K
ps
mn, K

sp
mn and Kss

mn. The
first letter of the superscript indicates the polarization state of the illumination (TM
or TE), and the second letter indicates the projection of the vectorial scattered field
on the polarization state TM or TE. Then we can construct a scattering matrix K
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of dimension 2M × 2N .

K =




Kpp
11 Kpp

12 . . . Kpp
1N Kps

11 Kps
12 . . . Kps

1N

Kpp
21 Kpp

22 . . . Kpp
2N Kps

21 Kps
22 . . . Kps

2N
...

...
. . .

...
...

...
. . .

...
Kpp

N1 Kpp
N2 . . . Kpp

NN Kps
N1 Kps

N2 . . . Kps
NN

Ksp
11 Ksp

12 . . . Ksp
1N Kss

11 Kss
12 . . . Kss

1N

Ksp
21 Ksp

22 . . . Ksp
2N Kss

21 Kss
22 . . . Kss

2N
...

...
. . .

...
...

...
. . .

...
Ksp

M1 Ksp
M2 . . . Ksp

MN Kss
M1 Kss

M2 . . . Kss
MN




. (3.24)

In theory, the scattering matrix K is strictly symmetrical (due to the reciprocity
theorem), see the thesis of T.Zhang [92]. In the experimental configuration, we illu-
minate with few angles compared to the number of detection points on the detector.
The non-symmetrical behavior can be corrected by replacing each element Kmn, by
1
2
(Kmn +Knm) [127]. But the singular value decomposition (SVD) can be directly

performed on the matrix K, without symmetrizing the scattering matrix [128].
The second step is to calculate the singular value decomposition and observe

them being focused on the scatters. We calculate the SVD of the scattering matrix
K, K =

∑2M
j=1 vjσju

†
j, where σj is the singular value of K, which is real and non-

negative. In this expression, the 2N vector vj gives the vectorial field diffracted by
the sample when the illumination is a sum of plane waves with directions km = 1...M
with p̂ and ŝ amplitudes fixed by the 2M vector uj. Due to the reciprocity theorem,
the 2M vector uj can also be interpreted as the vectorial field diffracted along the
−km = 1...M direction when the illumination is a sum of plane waves with directions
kN=1...N and p̂ and ŝ amplitudes fixed by the 2M vector vj. For forming the DORT
agile illuminations, it is preferable to consider the reciprocal configuration as the
beam given by vj contains many more plane wave directions than that given by uj.

To get an insight on the focusing property of vj=1,...,2M beams, its field ESV
j (r)

in the sample domain is generated by propagating each plane wave component in a
simplified medium made of a bare air-silicon interface. One gets,

ESV
j (r) =

N∑

q=1

v
p
j(n)E

p(r,−km) + vs
j(n)E

s(r,−km), (3.25)

whereEp,s(r,−km) is the field at r obtained when the silicon interface is illuminated
by a s or p polarized plane wave with direction −km and v

p
j(n) or v

s
j(n) is the p or

s polarized component of vj for the n-th direction.
For each single point-like scatterer, there exists one significant singular value

in case of a scalar illumination and detection [92]. Since we are illuminating and
detecting with two polarizations (s and p), we will have two dominant singular values
for each scatterer. However it has to be noted that the number of singular values
corresponding to a scatterer will depend on the background medium, size of the
scatterer, illumination polarization etc..
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The third step is the improvement of the sample characterization using an itera-
tive inversion method explained in Sec. 3.3.3 on a area or a feature of the sample of
interest. This takes advantage of the DORT focusing properties to identify the area
or the feature of interest. Instead of running the inversion procedure on the 2M ×
2N scattered field of the scattering matrix K that are obtained for the 2M plane
wave illuminations, we consider the 2M × 2M scattered field given by uj=1,...,2M
obtained for the 2M agile illuminations vj=1,...,2M. This means selecting only a
small region of interest inside the full focused field. Note that, as long as all the
singular vectors are kept in the reconstruction procedure, the DORT preprocess-
ing corresponds to a simple rearrangement of the data and not to a data reduction
technique. The diminished size of the data and the smaller area of reconstruction
helps in obtaining the 3D result faster, resulting in gain in the non-linear inversion
time. The diminution of the scattered field data is entirely compensated by the
information carried out by the complex illumination patterns.

The above stated DORT or SVD inversion can be applied to TDM experimental
data for reconstruction.

3.4.2.1 Experimental result

(-1600 nm, 1500 nm)

R=250nm

a

(1400 nm, 400 nm)

R=100nm

d

(-1100 nm, -400 nm)

R=150nm
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(900 nm, -1500 nm)

R=200nm

b

y

x

Figure 3.11 : Sample geometry in the transverse cut plane. It is composed of four
resin cylinders with permittivity 2, height 170 nm and different radii deposited on
a silicon substrate with permittivity 15.07+0.148i at the illumination wavelength
632.8 nm.

The experimental setup of the TDM is discussed in detail in chapter Chap. 1 and
section Sec. 1.6. For the DORT-inversion, I illuminate a sample with λ = 632.8nm
light and an air objective with NA=0.95 (Zeiss Epiplan-Apochromat ×50). The
sample used for the demonstration is shown in Fig. 3.11. The sample under study
is made of four resin cylinders with permittivity 2, height 170 nm and radii 250 nm,
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200 nm, 150 nm and 100 nm, deposited on a reflective silicon substrate, as shown
in Fig. 3.11. For estimating such a thin sample with global transverse width about
7 wavelengths, M = 5 × 5 directions of illumination and N = 60 × 60 directions of
observation regularly spaced within the NA of the objective have been taken. The
number of observation points ensures that the scattered field is correctly sampled
while the number of illuminations ensures an appropriate data over unknown ratio
in the reconstruction process as will be shown below. The experiment is conducted
with 25 illuminations, with θmax

inc = 61◦, and φinc is evenly distributed between 0
and 360◦. To retrieve the components of K which are close to the specular region,
we conducted two measurements, one with the sample and one without the sample
(sole the silicon substrate). By subtracting these two fields we were able to partially
recover the scattered field in the specular region.

First, the experiment was performed on the sample (Fig. 3.11) without any noisy
medium. The bright field image of the sample is obtained by summing up all the
total field intensities as discussed in detail in the previous chapter, section Sec. 2.3.
It is shown in Fig. 3.12.A. The four cylinders are clearly visible with varying width.

Now, we test the focusing property of the SVD. Fig. 3.12.B displays the sum
of the intensities of singular vectors back propagated following Eqn. 3.25 at z=
100nm above the substrate. The four bright patterns that are visible over a null
background demonstrate the focusing properties of these agile illuminations. Yet,
the three-dimensional intensity distribution remains significantly different from that
of simple focusing beams, see Fig. 3.12.G as it reflects the complexity of the DORT
vectors behavior when the scatterers size is comparable to the wavelength and the
imaging configuration is not free-space. In particular, the rather small axial width
of the focused fields is due to the interference between the incident plane waves and
their reflection by the silicon substrate [129].

The DORT processing permits, thanks to its focusing properties, Fig. 3.12.B,
the restriction of the investigation domain Ω to the most illuminated regions. As
a result, the computation time required by the inversion is drastically reduced and
the reconstruction is more accurate. The sample is reconstructed by running the
inversion process on a 2 × 2 × 0.25µm3 investigation box centered about each
cylinder successively. Note that when the targets exhibit very different scattering
power, a successive selective inversion is more efficient than a global reconstruction.

Fig. 3.12.C-F display the transverse cut of the permittivity map of each cylinder
and an axial cut of the permittivity of the biggest cylinder is seen in Fig. 3.12.H. We
observe that the quantitative inversion improves significantly the characterization of
the targets as compared to the DORT image especially in the axial plane, compare
Fig. 3.12.G and Fig. 3.12.H. The reconstructions are in satisfactory agreement with
the actual permittivity profile and the expected resolution of about λ/4 [6, 130].
The permittivity underestimation (especially for the smallest cylinder) is linked to
the overestimation of the transverse footprint due to the limited resolution.

We now consider the much more difficult configuration in which the sample is
placed behind an aberrating layer. To realize this, a piece of transparent plastic
foil is placed through the illumination and collection paths in the experiment, see
Fig. 1.17. The plastic foil is placed between the tube lens L1 and beam splitter
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Figure 3.12 : Noise free configuration. Fig.A−B: Qualitative images of the
sample in the (x, y) plane. Fig.A: Bright field conventional microscope image
generated by summing the experimental intensity recorded at the image plane of
the TDM for the 2 L = 50 illuminations. Fig.B: DORT image obtained by sum-
ming the intensities of the fields generated by all the singular vectors vj=1,...,2L
of the scattering matrix at z =100 nm above the substrate. Fig.C−F: Selective
quantitative reconstructions of the four cylinders. The quantitative inversion pro-
cedure is run on the scattered fields uj=1....2L obtained for the agile illuminations
vj=1...2L. The investigation domain is restricted to a 2 × 2 × 0.25µm3 box sur-
rounding one scatterer at a time. The reconstructed permittivity map is displayed
in the (x, y) plane at z = 100 nm. Figs.G-H: Image of the sample in the (x,
z) plane along the line passing through the middle of the largest cylinder indi-
cated in subplot Fig.B. Fig.G: qualitative DORT image [as in subplot Fig.B]. The
bright tore observed above the cylinder reflects the complexity of the DORT fo-
cusing behavior when the scatterer size is comparable to the wavelength. Fig.H:
Selective quantitative reconstruction of the largest cylinder. The scatterer shape
is significantly improved compared to Fig.G.

BS2, so it perturbates the incident and scattered fields. In this noisy configuration,
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Figure 3.13 : Same as Fig. 3.12 but in the noisy configuration.

the conventional bright field microscopy image of the sample is so deteriorated that
only the largest cylinder is visible, see Fig. 3.13.A. On the other hand, the DORT
focusing image obtained by summing all the vj=1,...,2M field intensities in the sam-
ple domain calculated with Eq. (1) (thus neglecting the influence of the aberrating
layer) permits to distinguish the four cylinders, see Fig. 3.13 [121]. The relative
size of the targets can even be roughly guessed and the axial width of the focused
beams is similar to that obtained in the noiseless configuration about one half of
the wavelength Fig. 3.13.G. Note that the multiple scattering between the cylinders
and the aberrating layer is negligible in this experiment. Hence, the image of the
smallest scatterer in this linear regime gives a good approximation of the resolution
one can expect with this noise level.

The selective inversion procedure improves further the characterization of the
cylinders by retrieving their round shape and axial dimensions, see Figs. 3.13.C-F,
Fig. 3.13.H, albeit with a significant underestimation of the permittivity. Note that,
in this noisy configuration, the inversion procedure applied to the data without the
DORT preprocessing failed in retrieving the two smallest cylinders.
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3.4.3 SVD in image space

The treatment performed above was done in the Fourier domain. The single value
decomposition (SVD) can also be performed in the image space on a constructed
imaging matrix T . To construct the imaging matrix T, we use the four measure-
ment data sets (x̂D̂1, ŷD̂1, x̂D̂2 and ŷD̂2) explained in the previous section. To
recall, the measurement was obtained by illumination the sample (Fig. 3.11) with 25
illuminations and collecting the complex field data for different polarization cases.
For image space SVD, I used dark-field data, i.e. the specular reflection substituted
with zeros in the Fourier space (like dark-field imaging explained in Sec. 2.4). Now,
the four data sets with respect to each illumination and detection can be placed in
a imaging matrix T as shown below:

T =




T x̂
11D̂1 T x̂D̂1

12 . . . T x̂D̂1

1N T x̂D̂2

11 T x̂D̂2

12 . . . T x̂D̂2

1N

T x̂D̂1

21 T x̂D̂1

22 . . . T x̂D̂1

2N T x̂D̂2

21 T x̂D̂2

22 . . . T x̂D̂2

2N
...

...
. . .

...
...

...
. . .

...

T x̂D̂1

M1 T x̂D̂1

M2 . . . T x̂D̂1

MN T x̂s
M1 T x̂D̂2

M2 . . . T x̂D̂2

MN

T ŷ
11D̂1 T ŷD̂1

12 . . . T ŷD̂1

1N T ŷD̂2

11 T ŷD̂2

12 . . . T ŷD̂2

1N

T ŷD̂1

21 T ŷD̂1

22 . . . T ŷD̂1

2N T ŷD̂2

21 T ŷD̂2

22 . . . T ŷD̂2

2N
...

...
. . .

...
...

...
. . .

...

T ŷD̂1

M1 T ŷD̂1

M2 . . . T ŷD̂1

MN T ŷs
M1 T ŷD̂2

M2 . . . T ŷD̂2

MN




. (3.26)

The first block in the imaging matrix Tmn corresponds to the polarization x̂D̂1,
with m being the incident angle going from 1 to M and n being the detection pixels
ranging from 1 to N. Similarly, the blocks ŷD̂1, x̂D̂2 and ŷD̂2 are positioned in the
imaging matrix.

A B

Figure 3.14 : DORT inversion in the image space. A. The dark-field image of
the noisy data with cylinders being distorted. B. The SVD focusing property at
the location of the cylinders, obtained by summing the singular vectors.
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The singular value decomposition (SVD) can be performed directly on the T

matrix using Matlab inbuilt function. We would obtain the corresponding singular
values and the singular vectors. From here, the approach remains the same as
explained for scattering matrixK in the section Sec. 3.4.2. Using equation Eqn. 3.25,
it is possible to compute the focusing of the agile illuminations on the scattering
objects (cylinders of different size).

The SVD was performed on the data set described before (same data set used
in Fourier space K) but in the image space for the noisy data set with the specular
reflection being suppressed during the processing. The Fig. 3.14.A represents the
dark-field image, where it is difficult to identify the scatterers or the cylinders. By
summing agile illuminations obtained by SVD we were able to focus and detect the
scatterers. The result of this operation is shown in Fig. 3.14.B, in the image space.
The four cylinders are seen without any clutter and reveling their location. Now,
each individual cylinder can be selected and corresponding data can be extracted
in the image space. This data can be further processed with non-linear algorithm
described previously in this chapter to obtain the 3D reconstruction with better
resolution.

The interest of performing SVD in image space is its simplicity. The SVD is
performed directly in the image space and direct extraction of the location of the
cylinders is performed. In case of the Fourier space SVD, the treatment is performed
in the Fourier space and its focusing property is observed in the image space. The
cylinder of interest is selected for the reconstruction in the image space and inverse
Fourier transformed back to perform selective non-linear inversion. Comparing the
result in the Fourier space SVD shown in Fig. 3.13.B and the image space SVD
shown in Fig. 3.14.B, they both reveal the location of the cylinders, with later
providing better focusing without distortion of cylinders. This is mainly due to
the fact that Fourier space SVD was performed with usual data treatment and
image space SVD with dark-field data. To recall, the usual data treatment being
performing two measurements, one with sample on the substrate called total field
measurement and other without the sample (on bare substrate) called reference field
measurement. After normalization, I subtract reference measurement from the total
field measurement I suppress the specular reflection to obtain scattered field from
sample only. But the specular reflection is not completely suppressed. Whereas
the image space SVD was performed with the specular reflection substituted with
zeros (like dark-field imaging explained in Sec. 2.4) along with the data treatment
performed on Fourier space SVD. The smallest cylinder in the image space SVD is
faintly visible compared to the Fourier space SVD. Both methods provide equivalent
results, any of these methods can be adapted to locate the scatterers in noisy data
set.

I have demonstrated the usefulness of SVD in dealing with noisy TDM data.
In the previous section (Sec. 3.3), I have shown that a transverse resolution of
100nm can be achieved with non-linear inversion procedure. Now, we would like to
combine these two procedures (non-linear inversion + SVD treatment) in addition
with an approximate knowledge about the sample to further improve the transverse
resolution, presented in next section.
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3.5 Bounded inversion method for λ/10 resolution

In this section, we present a sophisticated inversion technique which takes advantage
of the imposition of binary behavior to the permittivity distribution in the non-
linear inversion procedure and noise reduction procedure using SVD explained in
the previous section for the improvement of the data. With those we obtain an
unprecedented λ/10 resolution on complex objects, experimentally.

Thanks to the non-linear inversion algorithm, it gives us the possibility to add a
priori information about the object under reconstruction. Usually we poses minimal
information about the objects that we would like to reconstruct. This minimal
information can be introduced in the non-linear inversion program, helping it to
converge faster and better. The minimal information that we will introduce in this
section is the permittivity bound. We don’t specify the exact permittivity value of
the object that we are trying to reconstruct in 3D, but minimum and maximum
bound of the permittivity value is provided to the algorithm.

Along with a priori information, we also calculate the singular vectors and Eigen
values corresponding to the data. Summing of the singular explained in Sec. 3.4.2
provides focusing on the sample and helps the inversion procedure to better converge
iteratively. In other words, the DORT or SVD procedure bring the noise reduction
in the data.

Both the above steps helps in achieving λ/10 resolution, demonstrated here ex-
perimentally. This development should find general applications each time the target
is made of a known material, particularly in the nanotechnology or solid-state do-
mains.

The permittivity distribution ε(r) within a bounded investigation domain Ω was
reconstructed from the scattered far-field data using non-linear inversion reconstruc-
tion algorithm, hereafter called Bounded Inversion Method (BIM). This took advan-
tage of the knowledge of the object and background permittivity values, εref and
εbackground respectively. Several techniques can be used for implementing this a priori
information in inversion schemes. Some of them impose strictly two values to the
permittivity distribution [131, 132], others are less constraining and use an auxiliary
function to bound ε(r) between εref and εbackground [132]. We have implemented the
latter option as it can be readily implemented in a standard gradient minimization
method. More precisely, the permittivity contrast χ(r) = ε(r) - εbackground in Ω was
estimated iteratively by minimizing a cost functional F (χ) [126] representing the
distance between the experimental data fmes

l,m (χ) and the field f sim
l,m (χ) that would

be scattered by the permittivity estimate:

F(χ) = =

∑L

l=1

∑M

m=1

∥∥fmes
l,m − f sim

l,m

∥∥2

∑L

l=1

∑M

m=1

∥∥fmes
l,m

∥∥2 , (3.27)

The f sim
l,m was simulated rigorously, thus accounting for multiple scattering if any,

by solving Maxwell equations (see the previous two sections for a description of the
forward and inverse problems). To constrain the permittivity, the contrast χ was
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written in the form,

χ = (εref − εbackground)
[
1− exp(−ξ2)

]
(3.28)

where ξ became the novel parameter of the inversion algorithm. Using this formu-
lation, least ξ corresponds to the background medium and maximum ξ corresponds
to the object. At each iteration, ξ was modified along a descent direction which
depended on the gradient of the cost function with respect to χ times the derivative
ofχ with respect to ξ. By construction, the descent direction tends towards 0 for
small and large ξ and thus promotes the extreme values ξbackground or ξref for the
estimated permittivity.

Experimental result

We now try to demonstrate the feasibility of this method on several samples from
the experimental data. We considered a sample made of 12 resin rods ( εref=
2), of length 520nm, width about 97nm and height 140nm touching each other at
the center of the star, see Fig. 3.15.A. Note that the spacing between the rods is
always inferior to the Rayleigh limit, even at the external border where it reaches
320nm. The sample was illuminated with 44 incidence angles with a NA=0.95 and
the scattered field data is measured for four different polarization combination with
λ = 475nm. The full-vectorial data set is built and normalized and non-linear
inversion can now be performed on this data.

Despite a moderate contrast and small 140nm height, we observed with rigorous
simulations that the sample (Fig. 3.15.A) supports multiple scattering and that the
noise on the experimental data is about 55%. The noise was estimated by replacing
f sim
l,m (χ) in Eqn. 3.27 with the f sim

l,m (χtrue), with the later being the field calculated
using the forward problem for the sample shown in Fig. 3.15.A. Such a numerical
forward calculation provides the scattered field one would obtain from the sample
without noise.

We first examined the sample using classical microscopy. As expected, the dark-
field microscope image, Fig. 3.15.B, obtained by summing the diffracted intensities
recorded at the image plane for all the illuminations, retrieved a doughnut without
any hint about the rods. The standard tomographic reconstruction (using a Fourier
transform technique for processing the data ), did not show any improvement either
(not shown in figure). In contrast, the rods were visible up to mid-length on the
non-linear reconstruction Fig. 3.15.C and were spectacularly retrieved on the BIM
reconstruction Fig. 3.15.D. The axial-cut along the axial z direction versus the curvi-
linear abscissa of the reconstructed rods are shown in Fig. 3.15.E, it shows the rods
separately with accurate estimation of height of the rods. More precisely, the air
wedge between the resin branches could be retrieved by non-linear inversion down
to 150nm 3.15.C and by BIM down to 50nm 3.15.D [133].

To push further the investigation on the limits of our imaging technique, we
considered in a second example a star-sample made of rods of width 76 nm, length
about 490 nm and height 140 nm Fig. 3.16.A. With this smaller and less scattering
sample, the experimental noise was estimated to 85%. Unsurprisingly, classical
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microscopy and standard tomography failed to image the sample, see Fig. 3.16.B. On
the other hand, the rods started to be visible in the HM reconstruction Fig. 3.16.C
and were retrieved up to their contact point by BIM, Fig. 3.16.D. More precisely, in

A

C D

300 nm

B

E

Figure 3.15 : Images of a resin star-sample of 97 nm wide rods of length 520
nm on a Si substrate. Fig.A: Scanning electronic microscope image. Fig.B: Dark
field microscopy with NA=0.95. Fig.C: Reconstruction obtained with non-linear
inversion method from Tomographic Diffraction Microscopy data with NA=0.95.
Fig.D: Permittivity reconstruction obtained with BIM using the knowledge of the
resin permittivity from the same data as Fig.C. Fig.E: Permittivity distribution in
the axial z direction versus the curvilinear abscissa of the dashed circle in Fig.D.
The mesh size taken for all the reconstructions is 20 nm. BIM is able to distinguish
the rods down to an inter spacing about 50 nm. The width of the rods is estimated
to 117 nm in average (between 5 and 6 pixels). The color code indicates the level
of relative permittivity in Figs.C and D at λ = 632.8nm.
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this noisier experiment, the air wedge between the branches could be retrieved by
non-linear inversion down to 200 nm and by BIM down to 50 nm.

Most impressively, BIM was able to tell the difference between rods of width
97 nm and rods of width 76 nm, compare Fig. 3.15.D and Fig. 3.16.D. The average
values of the reconstructed rods width, measured at mid-length over all the branches,
was 117 nm for the first sample and 87 nm for the second one. This result is in
agreement with the air wedge retrieval and suggests that, on these examples, the
resolution of BIM was about 50 nm if not better.

In case of non-linear inversion the reconstruction was better than the Rayleigh
limit of 330 nm. In addition, introducing a priori information on the target, as

A

C D

300 nm

B

E

Figure 3.16 : Same as Fig. 3.15, but the rods width is 76 nm and their length
is 490 nm. Similarly to Fig. 3.15, BIM is able to distinguish the rods down to
an inter spacing about 50 nm. The rods width is estimated to 87 nm in average
(between 4 and 5 pixels) at λ = 632.8nm.
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in BIM, had a strong effect on the accurate recovery of the object high spatial
frequencies. The resolution of the BIM images reached about 50 nm. To point out
the interest of the binary constraint on the permittivity retrieval, we compared the
BIM reconstructions to that given by an iterative inversion algorithm presented in
the previous section, that assumes only the positivity of the sought permittivity.

We have demonstrated the best transverse resolution with the TDM and in
marker-free microscopy of about 50nm at λ = 632.8nm.

3.6 Conclusion

Tomographic diffractive microscope (TDM) images reconstructed by the most of
the research teams around the world are performed under Born approximation for
low permittivity contrast objects. Though this approach limits the resolution, it is
twice better than the Rayleigh criterion resolution. On the other hand, the TDM
had not been applied to samples deposited on a substrate and for samples with high
permittivity contrast. In this chapter, it was demonstrated by applying accurate
inversion techniques the possibility to achieve even better transverse resolution and
3D geometrical quantitative reconstruction of sample with the permittivity map.
This was possible due to the accurate modeling of the scattering of light and taking
into account the polarization of the light. The polarization is important to achieve
isotropic transverse resolution. Using non-linear inversion algorithms on complex
measured TDM data a transverse resolution of 100 nm was achieved at λ = 475nm.

The application of singular value decomposition (SVD) or Decomposition of Time
Reversal Operator (DORT) to identify scattering objects in noisy TDM data was
demonstrated experimentally. This will help in identifying individual objects and
reconstructing them better in noisy TDM measurements. Combination of SVD
noise reduction technique and if the permittivity bound of the sample is known, the
transverse resolution can further be improved to 50 nm (λ/10) at λ = 632.8nm, best
ever transverse resolution achieved in the marker-free optical microscopes.

The TDM reconstruction techniques under Born approximation in chapter 2
provided quick reconstruction of sample with reduced transverse resolution. This
chapter demonstrated the need and the power of accurate techniques to improve
transverse resolution and obtain 3D quantitative material properties map. The
axial-resolution still remains a problem with the best possible axial-resolution being
about λ. We will try to improve the axial resolution of optical microscopes in the
next chapter.



Chapter 4

Mirror-assisted tomography: axial
resolution improvement

“There are two ways of spreading light: to be the candle or the mirror that reflects
it.”

-Edith Wharton, Writer

4.1 Introduction

The axial resolution of optical microscopy and optical diffractive tomography mi-
croscopy is several times worse than the transverse resolution in transmission con-
figuration. This is due to the inability to illuminate and detect the light from all
possible directions on an object under observation. The illumination and observa-
tion is usually performed in one side of the object. If an object is illuminated from
all possible directions, the object scatters the light in 4π steradians, but we usu-
ally detect with an objective with a fixed NA. The scattered field within the reach
of the NA of the objective is only collected, the remaining field goes undetected.
The remaining scattered field is important for the isotropic resolution. Similarly to
collecting the scattered filed in all directions it is also crucial to illuminate in all
possible directions. The illumination and detection both are essential for isotropic
resolution.

In this context, several ideas had been proposed to overcome the asymmetry and
to improve the angular coverage of a microscope. One of the widely explored idea
is to illuminate and detect with 2 objectives which are positioned at opposite di-
rections to each other with object between them, called 4Pi microscope [134]. This
needs precise positioning of the two objectives. In the similar context of two objec-
tives, theta microscope has also been proposed [135]. In this, one of the objective
for collection is positioned at an angle to the illumination axis. This objective helps
to collect the scattered field that is not collected with single objective setup. On the
other hand, the idea of sample rotation is being explored as an alternative too. The
principle is to rotate the sample, which facilitates to illuminate and detect along
a particular axis of rotation [28, 61, 136], this was further extended by performing
tomography on the rotating sample to have better angular coverage for illumination
and detection [137]. The idea has been successful but are limited to certain objects
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that are rotatable. The rotation can be performed with optical tweezers while ob-
serving with TDM as well [138]. But rotating a sample needs precise maintenance of
the center of rotation. In spite of these methods, the image resolution remains below
the resolution one would obtain with an isotropic configuration, when the sample is
illuminated and detected in all possible directions.

To overcome these challenges, we explore the idea to illuminate and detect in all
possible directions, the idea of mirror-assisted tomography was proposed by Mudry
et al. [3] to address this problem. This method involves deposition of sample on top
of a mirror and perform tomography. A mirror-assisted tomographic microscope
includes the advantages of both transmission microscope and reflection microscope
configurations. Thanks to the reflection of the mirror, the sample is illuminated and
observed in both directions. The sample then has to be numerically reconstructed
by taking in to account the presence of the mirror.

In this chapter, we will understand the need of mirror-assisted tomography, its
advantages, the sample fabrication and the experimental results and challenges in
details. I studied the sample requirements for the experimental demonstration of
the axial-resolution improvement with non-linear inversion program. The fabrication
was performed in LPN, Marcoussis. I took part in optimizing the fabrication steps.
I performed measurements with the samples, treated the data and used non-linear
inversion algorithms to show the first results on mirror-assisted tomography. The
preliminary results show spectacular improvement brought about by the mirror-
assisted tomography for axial-resolution.

4.2 Problem statement

Let us understand the axial resolution problem in optical microscopy. As stated in
the section 1.5.4, if we place ourselves in the context of the Born approximation,
using the angles of illumination and detection in all possible directions, with 4π
steradians, provides a perfectly isotropic resolution to reconstruct the object: it is
called the complete configuration (Fig. 1.14). To achieve such a configuration one
has to illuminate and detect in the all possible directions on a objects as shown in
Fig. 4.1.A. It is however difficult to achieve in practice because of the need to use
several objectives to illuminate and detect in several directions.

With the tomography approach, it is possible to illuminate and detect in sev-
eral directions beyond just one illumination angle. But even the tomography ap-
proach does not provide a complete configuration. Tomographic microscope is either
used in transmission configuration or reflection configuration. Almost all the tomo-
graphic microscopy research groups adopt a configuration in transmission (shown
in Fig. 4.1.B). In this configuration, object is illuminated with one objective and
detected with another objective placed in the opposite side to each other. This
transmission tomography microscopy configuration should enable to do better than
the Rayleigh criterion in transverse resolution, but the axial resolution is signifi-
cantly worse, and that of at least a factor of 3 ([19], p. 491). This is due to the fact
that the field scattered by the object is collected with a limited NA of the objective
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A B

C D

Mirror

Figure 4.1 : Different possible configurations used for imaging in microscopy.
Fig.A: Isotropic or complete configuration (hypothetical configuration). Fig.B:
Transmission configuration. Fig.C: Reflection configuration. Fig.D: Mirror-
assisted configuration

used for detection and only in a single direction. The OTF of the transmission con-
figuration is shown in Fig. 1.8. The PSF corresponding to it is shown in Fig. 1.9.
The PSF is elongated in the axial direction, also explains the poor axial resolution
with transmission configuration.

However, in the reflection configuration (shown in Fig. 4.1.C), the sample is
illuminated and detected with single objective from the same side of the object.
Compared to the transmission configuration, in the reflection configuration we detect
different scattered field components. This can be understood with help of OTF
shown in Fig. 1.12. The detected spatial frequency components are different and
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the range of detected frequencies also vary. To recall, the reflection PSF is complex
in nature (shown in Fig. 1.13).

By putting together the transmission tomography OTF (Fig. 1.8) and reflection
tomography OTF (Fig. 1.13), we fill OTF with more spatial frequencies in the axial
direction for one-half of the OTF as shown in Fig. 4.2.

K
x
 / k

0

-2 -1 0 1 2

K
z / 

k 0

-2

-1

0

1

2

Figure 4.2 : Combination of transmission configuration and reflection configu-
ration OTF, which is Fig. 1.8 + Fig. 1.12 for NA= 0.95. This yields better axial
OTF support.

But the disadvantage is that we have to perform two measurements on the same
sample, once in transmission and once in reflection with same illumination and de-
tection tomography schema just to fill better the one-half of the OTF. It would
be advantageous to perform single tomographic measurement to have both trans-
mission and reflection spatial frequencies and fill better the OTF close to isotropic
configuration. This leads us to the mirror-assisted tomography.

4.3 Solution: Mirror assisted tomography using

non-linear inversion

As transmission and reflection configurations provide different spatial frequency com-
ponents in the OTF, combining both these would be an ideal case to better fill the
OTF and improve the PSF. Assuming a numerical aperture of 0.95, this combined
configuration that can be approximated by breaking it successively in to two trans-
mission measurements and two measurements in reflection, according to the two
possible orientations of the optical axis. We will understand this with help of the
Fig. 4.3. The transmission measurements are represented in Fig. 4.3.A with 1 and
2 from two opposite sides of object for illumination. The respective transmission
components are detected along the directions 4 and 3 in Fig. 4.3.A. Similarly, for
reflection measurement one has to perform two measurements, represented by 1
for illumination with 3 for detection and 2 for illumination with 4 for detection in
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Figure 4.3 : Fig.A: General microscopy configurations, first transmission

measurement: illuminated along 1 and detected along 4, second transmis-

sion measurement: illuminated along 2 and detected along 3, first reflection

measurement: illuminated along 1 and detected along 3 and second reflection

measurement: illuminated along 2 and detected along 4. Fig.B: Mirror-assisted
tomography: this configuration includes two transmission measurements (il-
luminated along 1, mirror with its reflection helps in detecting transmission com-
ponents 4 and illumination along 2 with detection along 3) and two reflection

measurements (illuminated along 1, detection of reflection components along 3
and mirror illuminates the sample 2 with detection along 4). Note that all these
components are mixed.

Fig. 4.3.A. One can be convinced by considering support for spatial frequencies ac-
cessible in Fourier space for combination of the 4 measurements, we better fill the
OTF.

To combine these steps and get as close as possible to the full configuration, the
approach that I have initiated is to place the object to reconstruct on top of a mirror
and use a tomographic reflection configuration [3]. This is shown in Fig. 4.1.D and
Fig. 4.3.B. The mirror is perpendicular to the optical axis of the microscope and the
sample is between the mirror and the objective (see Fig. 4.1.D). The diffracted field
is the coherent superposition of the fields that would be obtained from both sides of
the object in reflection and transmission. The Fig. 4.3.B helps us to understand how
we can obtain the coherent superposition of transmitted and reflected components
in single measurement.

In Fig. 4.1.D the sample on top of mirror is illuminated once but it involves
various configurations as shown in Fig. 4.3.B. The light can be transmitted directly
through the object and reflected from the mirror to the detector surface as shown in
Fig. 4.3.B by 1 and 4. Or it can be reflected from the mirror directly and transmits
though the object shown by 2 and 3 in Fig. 4.3.B. The other possibility is, it can
directly reflect from the object and detected on the detector surface represented by
1and 3 in Fig. 4.3.B. One more reflection possibility is by light reflecting on the
mirror and reflected by the object and reaching the detector, shown by 2 and 4 in
Fig. 4.3.B. So, a single mirror-assisted tomography yielding 4 measurements, but
they are mixed and has to be unmixed into respective components.
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A B

Figure 4.4 : Mirror-assisted tomography OTF and PSF. Fig.A: axial cut
(KxKz) of the 3D synthetic aperture along the center of the Ky axis in the
Fig. 4.5.C. Fig.B: Intensity of the PSF along the axial direction.

The mirror-assisted tomography measurement would contain all the spatial fre-
quency components but they are mixed. These components can be positioned in the
3D synthetic aperture, this is demonstrated with its formation shown in Fig. 4.5.
The final axial cut of OTF obtained by mirror-assisted TDM is shown in Fig. 4.4.A.
It is better filled in comparison to transmission or reflection OTF, though there are
certain void positions still present. The PSF of mirror-assisted TDM is partially
isotropic (in both transverse and axial direction) in nature, shown in Fig.4.4.B.

Even if the Born approximation is valid, it is impossible to reconstruct the ob-
ject by a single inverse Fourier transform from the 3D synthetic aperture because
transmission and reflection components are mixed. Using nonlinear inversion proce-
dure explicitly taking into account the presence of the mirror in the modelling then
overcomes this difficulty.

In this mirror-assisted configuration, it is necessary, not to place the object too
close to the mirror. Because, the intensity resulting from the interference between
the incident wave and specular reflection is low on average close to the mirror over
all angles of illumination, and therefore not conducive to effectively illuminate the
object.

The concept of mirror-assisted tomography has been theoretically validated by
Mudry et.al [3]. I will discuss briefly about that here.

4.4 Validation on synthetic data

The theory of mirror-assisted tomography is presented in detail in the thesis work of
E. Mudry [139]. He discuss the role of polarization, modeling of the electromagnetic
field in the presence of a mirror and the reconstruction of the object. He also
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Figure 4.5 : Synthetic numerical aperture formation in mirror-assisted TDM configuration. In Fig.A, object is illuminated by
normal incidence, the diffracted field is shown in Fourier domain with red dot being the specular focus of the incident field. This
is decomposed into two transmission and two reflection measurements. They are projected to form a cap of spheres and positioned
on the synthetic Ewald’s sphere satisfying the condition K = k − kinc. There are 4 cap of spheres corresponding to transmission
(AT1 & AT2) and reflection (AR3 & AR4) respectively. Similarly for Fig.B, object is illuminated with extreme angle along positive
r‖ direction and cap of spheres is positioned according to K = k−kinc. For Fig.C, object is illuminated with many varying angles
in r‖ direction and diffracted field is collected. Then they are positioned in the 3D synthetic aperture, transmission components
form a torus at the center, and the reflection components form hemispheres at the bottom and top of the 3D synthetic aperture.
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performed numerical experiments to validate the idea of mirror-assisted tomography,
which was published in 2010 [3].
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Figure 4.6 : Numerical Validation of the mirror-assisted tomography on a test
object in transmission and mirror-assisted tomography configurations [3]. Trans-

mission: Fig.A: Sphere (diameter = 2λ) of dielectric permittivity ε = 1.01 con-
taining two absorbent spherical inclusions (diameter = λ/4) of permittivity, ε =
1.01 + 0.02i. The distance between the two absorbent spherical objects was 0.6λ.
Fig.B: Reconstruction of Fig.A, real part. Fig.C: Reconstruction of Fig.A, imagi-
nary part. Mirror-assisted tomography: Fig.D: Same as Fig.A with a mirror
positioned along the x axis. Reconstruction of Fig.D, real part shown in Fig.E,
imaginary part shown in Fig.F [3].
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Inversions performed on numerical data show the interest of mirror-assisted to-
mography (see Fig. 4.1.D). The test object (shown in Fig. 4.6.A) taken was a sphere
(diameter = 2λ) of dielectric permittivity ε = 1.01 containing two absorbent spher-
ical inclusions (diameter = λ/4) of permittivity, ε = 1.01 + 0.02i. The distance
between the two absorbent spherical objects was 0.6λ. The simulated diffracted
field was corrupted with noise signal of 5%. A 0.95 numerical aperture is used,
inside which 64 angles of incidence in 121 detection angles regularly spaced were
used. The nonlinear inversion procedure used to perform this synthetic inversion
was presented in the previous chapter, Sec. 3.3.3.

The results from E. Mudry shows that the transmission configuration fail to
return the two inclusion cylinders due to its low axial resolution power (shown in
Fig. 4.6.B&C). On the other hand, the mirror-aided configuration provides almost
identical to those reconstructions of the full configuration (shown in Fig. 4.6.E&F).

This provided a solid foundation for us to examine mirror-assisted tomography
and demonstrate it experimentally, this can be used to improve axial resolution in
optical microscopy.

4.5 Sample requirements and fabrication

As we had the numerical and theoretical understanding of the method from E.
Mudry [3], we wanted to design and test the samples that are feasible to be imaged
under the TDM before fabrication by synthetic reconstruction. Then the samples
were fabricated. This section explains these two steps in detail.

4.5.1 Sample requirements and synthetic reconstructions

We performed some numerical experiments to understand the material (permittivity)
requirements and the dimensions of the sample of interest to perform mirror-assisted
tomography. I will present the numerical studies here.

For the numerical experiments and experimental results in this chapter a very
high numerical aperture objective was desired, this was understood from the theo-
retical work. The higher NA objective permits to fill the OTF better compared to a
smaller NA objective. For this we choose an objective with NA = 1.49, to be used
with oil.

To better test the axial resolution of mirror-assisted tomography we convinced to
position two cylinders in the axial direction on top of a reflective mirror (eg., shown
in Fig. 4.7). Two TiO2 (refractive index= 2.3922 or relative dielectric permittivity
[ε(r)] = 5.7226) cylinders of 100nm height and 300nm in diameter were placed
on top of a aluminum(Al) mirror. The configuration is shown in Fig. 4.7.A. The
first cylinder is located at a distance “d” from the Al mirror and the two TiO2

cylinders are separated by a distance“s”. The variables“d”and“s”are varied during
the numerical experiment. Though I performed various numerical experiments, for
simplicity, I present results for only one configuration with “d” = 200nm and “s” =
200nm sample, shown in Fig. 4.7.B.
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Figure 4.7 : Test samples. Fig.A: General specifications of the test samples,
with s being the separation distance between the two TiO2 cylinders and d being
the distance between the Al mirror layer and the first TiO2 cylinder. Fig.B: Spec-
ifications of the sample used for the numerical experiment of the mirror-assisted
tomography presented in this section. Fig.C: Top view of TiO2 cylinder, it shows
the diameter of 300 nm.

To test the axial resolution we need this two TiO2 cylinders to be “levitating” on
the top of the mirror. This can be achieved in optics by using the material properties
of the medium in which the cylinders are located. For this we choose SiO2 whose
refractive index is 1.5 (or ε(r) = 2.25) and a resin also with 1.5 refractive index (or
ε(r) = 2.25). The SiO2 occupies between the two TiO2 cylinders to cause the 3D
positioning effect. Later, resin is coated over the cylinders. Oil also has a refractive
index of 1.5 (or ε(r) = 2.25), which will be used along with the objective. Oil, resin
and the SiO2 have a refractive index of 1.5, as we observe the two TiO2 cylinders
from the oil objective, we would have the two cylinders providing levitating feeling
due to uniformity of the refractive index. This provides an ideal way to test the
axial resolution.

So, a configuration as shown in Fig. 4.7.B was numerically simulated. With the
help of the forward problem discussed in the previous chapter (see Sec. 3.3.2). I cal-
culated the field that would be diffracted by the sample and then non-liner inversion
was performed on this numerically calculated field (one would obtain this field in the
experimental case if there is zero experimental or measured noise). The mirror was
taken into account and the sample (Fig. 4.7.B) was numerically illuminated with
coherent plane waves at λ = 632.8nm with NA=1.49 in the presence of oil. The
illumination angles used for the illumination is explained in the Fig. 4.8, 24 angles
of incidence, 12 each along the Kx and Ky directions were used. There was no
noise introduced in the numerical experiment. For each illumination angle forward
problem provides the complex diffracted field data in the Fourier space. The data is
accumulated for all illumination angles and it is numerically inverted with the help
of non-liner inversion algorithm (see Sec. 3.3.3).

I numerically placed the two TiO2 cylinders, so the size and location of the
inversion box (the box with volume Ω shown in Fig. 3.4) required for non-linear
inversion procedure was defined by me. The box is located 100nm from the Al layer
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Kx
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Illuminations

Figure 4.8 : Illumination schema used for mirror-assisted tomography. The NA
of the objective is shown in Fourier space with illumination angles (red dots). The
samples were illuminated with 24 angles of incidence, 12 each along the Kx and
Ky directions within the NA of the objective.

and extended to 1µm in z direction, along x and y it is 500nm. Each voxel in the
inversion box was discretized to be 50nm in size.

BA

Figure 4.9 : Result of numerical experimental reconstruction. Fig.A: Transverse
cut (xy direction) along center of the bottom of the TiO2 shown in Fig.B. Fig.B:
Axial cut (xz direction) along y=0 in (A).

The numerical results obtained from the synthetic inversion is shown in fig. 4.9.
The transverse cut along the axial center of the bottom cylinder provided a good
estimate of the diameter (300nm) of the cylinder (shown in Fig. 4.9.A). The axial
cut along the xz axis along the center of the axis is shown in Fig. 4.9.B. The color
bars represent the permittivity values which are normalized with respect to the
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medium. The medium being SiO2, resin and oil; their permittivity is normalized
to 1. After normalization the permittivity value of TiO2 should have been 2.3922,
but it is overestimated here. This can be optimized in the inversion program. From
the results the two cylinders are well retrieved without any artifacts and are well
separated.

Along with this 200nm separation distance between the two TiO2 cylinders,
various separations distances such as“s”= 100nm, 300nm were tested and numerical
reconstruction was satisfactory. So, we decided to fabricate the samples as shown
in Fig. 4.7 with “s” = 100nm, 200nm and 300nm separation distance between the
TiO2 cylinders and “d” with 200nm and 600nm.

I will now show how the fabrication of such samples is performed in the clean
room of a fabrication facility step by step.

4.5.2 Sample fabrication

The samples required to test the improvement brought by the mirror-assisted tomog-
raphy were fabricated in Laboratoire de Photonique et de Nanostructures (LPN),
Marcoussis, France by Anne Talneau. One of the methods used to fabricate the sam-
ples required for measurement is by means of depositing different layers of materials
on a Silicon (Si) substrate and then etch them to the required shapes by suitable
etching process. Finally, a resin coat is deposited on top of the fabricated cylinders.

Figure 4.10 : SEM image of the layers deposited on the Si substrate of 100µm.
The layers and their thickness shown are Al (112nm), SiO2 (215nm), TiO2

(103nm), SiO2 (321nm) and TiO2 (96nm) respectively.

The first step in this process is to deposit different layers required for the sample.
In our case, as the sample is made up of several layers such as Al, SiO2 and TiO2

we have to deposit them one after another in the order. For this, we start with a
silicon (Si) wafer and deposit Al layer of 100nm thickness, then the SiO2 of 200nm is
deposited with help of electron beam and ion gun deposition technique on top of the
Al layer. Similarly TiO2 (100nm), SiO2 (200nm) and TiO2 (100nm) are deposited
using electron gun and ion gun within the same vacuum chamber respectively. After
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deposition of several layers, the final SEM image of the layers would look as shown
in the Fig. 4.10.

Figure 4.11 : Lift-off procedure: I. Preparation of the substrate (1) with layers
deposited on it. II. Deposition of the PMMA stencil layer (2). III. Patterning the
PMMA layer using e-beam lithography, creating an inverse pattern. IV. Deposition
of the target material, Al (3). V. Washing out the PMMA layer together with the
Al material on its surface VI. Final pattern Layers: (1) substrate with different
layers and (3) Al pattern.

The second step is to deposit a mask on top of the layers to perform etching.
For this depending on the diameter of the cylinders the mask has to be patterned.
This is performed using Al mask by lift-off on PMMA (Poly(methyl methacrylate)).
The steps involved in this procedure are explained in the Fig. 4.11.

The third step is to perform etching. Etching can be performed by reactive-ion
etching (RIE) or inductively coupled plasma (ICP) or by other means. The areas
where the Al resist is present will be unaffected and the other regions are etched
away by the ions or plasma used during the process. Ions react and knock-off the
material to be etched. Since we require well calibrated structures for quantifying the
axial resolution, it is challenging to obtain well etched cylinders with perfect vertical
walls. This is due to the fact that several parameters such as temperature, pressure,
time, and the gasses (SF6, Ar, O2, etc..) are involved in the process of RIE or ICP
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A B

Figure 4.12 : Fabricated sample under SEM. Fig.A: Top view of the cylinder.
Fig.B: The axial view of the cylinder.

etching. These parameters are different for different materials such as TiO2, SiO2,
etc.

The parameters mentioned above have to be fine tuned to obtain vertical cylin-
ders depending on the material composition of the layers. Because, the ions are
vertically delivered from ICP or RIE, the knock-off of material does not occur very
isotropically. There are various layers to be etched requiring different kinetic ener-
gies. If the process is not optimized that would result in anisotropic etch profiles
of the required cylinders. For this, the parameters has to be fine tuned by trial &
error and by characterizing at each step with help of SEM (scanning electron micro-
scope). The parameters and the process were optimized by Anne Talneau at LPN
clean room facilities.

Once the layers are etched, we already have the required structures with the Al
mask on the top. This Al mask can be selectively removed. Then the resin with
refractive index value 1.5 is deposited on the top of the cylinders to have the final
required sample. The SEM image of final fabricated sample is shown in Fig. 4.12.

Several such samples with different variations (parameters “s” and “d” shown in
Fig. 4.7.A are modified) were fabricated with Al layer acting as the mirror. These
samples were used to experimentally test the mirror-assisted tomography for axial-
resolution improvement.

4.6 Experimental results

In a preliminary study, we have validated on synthetic data the ability of our ap-
proach to retrieve accurate reconstructions of the sample along the axial direction [3].
Here, I will present its first experimental validation on calibrated multi-layered nano-
objects requiring isotropic super-resolution which were designed and fabricated in
the previous section. Fig. 4.12.A shows the case of a nano-pillar embedded in resin,
where only the two layers of TiO2 produce the scattering signal. This sample is
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placed in the TDM experimental setup explained in the section Sec. 1.6.2 to per-
form mirror-assisted tomography.

First, I will present the general requirements in performing mirror-assisted to-
mography, then particular samples are discussed in detail. The wavelength used for
the measurements was λ = 632.8nm, NA of the objective is 1.49 (CFI Apo TIRF
100x: Nikon) in the presence of oil with refractive index 1.5. The illuminations were
performed along the Kx and Ky directions as shown in Fig. 4.8. Twelve angles
were used along the Kx and Ky each, totally 24 angles (between 5-51◦ for illumi-
nation) of incidence was used to illuminate the sample with plane coherent beams
of light. The full-vectorial scattered field was measured as explained in the section
Sec. 1.6.2.1.

Before the non-linear inversion is performed on the measured data, I perform
data-preconditioning to improve it.

4.6.1 Data pre-conditioning

The measured data quality has to be enhanced by performing a reference measure-
ment and aberration correction to have better reconstruction results.

a) Reference measurement

To improve the sensitivity of the reconstructions, we perform a reference measure-
ment on the bare substrate (location where there is no sample present). It permits
us to measure the specular reflected field for each illumination angle. By subtract-
ing it from the field measured in the presence of the sample, only the scattered field
part remains, and the speckle noise generated by the illumination and the specular
reflection is suppressed.

b) Aberration correction

The optical components in the optical tomographic diffractive microscopy setup has
to be adjusted precisely to perform a high quality measurement. Even though I
adjust these components, there can be aberrations from the high NA objective used
in the measurements. It is important to quantify such aberration and apply it on
the measured data to improve it. For this purpose, I used a well calibrated sample
to obtain the aberration profile. The calibrated sample used for measurement are
groves extended along y axis. Along the x-axis, there were two groves with dimen-
sions of 1µm and 0.5µm width respectively, they were separated by 0.5µm spacing.
The sample was illuminated with 20 angles of incidence and the scattered field was
measured with the TDM setup. Its corresponding theoretical field was also calcu-
lated (thanks to Gabriel Soriano, SEMO, Institute Fresnel). The aberration profile
profile is computed by subtracting the theoretical phase from the measured phase
of the scattered field. Such a 1D aberration profile is extended to 2D considering
the rotational invariance of the obtained profile within the NA. The final aberration
profile (Eab) obtained is shown in Fig. 4.13.
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Figure 4.13 : Aberration profile of the experimental setup obtained using a cali-
brated sample for NA=1.49, CFI Apo TIRF 100×: Nikon.

This aberration profile has to be subtracted from the phase of the complex scat-
tered field data to obtain the aberration free measurement. Since the TDM measure-
ment provides the complex scattered field, the aberration can be directly subtracted
from it. Now, the non-linear inversion algorithm can perform its task of 3D recon-
struction to show the axial-resolution improvement.

We noticed that the direct Born approximation or the inverse Fourier transform
approach (without separating the transmission and reflection components) fail to
resolve the two TiO2 cylinders that are located 200nm separated from each other.
We expect by taking into account the presence of mirror using non-linear inversion,
we should be able to resolve the two TiO2 cylinders experimentally.

4.6.2 Mirror-assisted tomography using non-linear inversion:
results

The experimental validation of the mirror-assisted tomography is shown in this sec-
tion on the fabricated TiO2 nano cylinders. Ideal case to demonstrate the improve-
ment in the axial resolution would be to fabricate several variations of the nano
cylinders with varying distances and show the experimental results for each varia-
tion. Variations means changing the distance between the first cylinder and the Al
mirror layer (shown by “d” in the Fig. 4.7.A) or changing the distance between the
two TiO2 cylinders (shown by “s” in the Fig. 4.7.A). I will show the results obtained
for several such variations here. It has to be noted that the height of the TiO2 cylin-
ders always remain as 100nm with 300nm diameter. The diameter of 300nm for
cylinders was chosen to obtain significant scattered field from the sample in terms of
signal to noise ratio. The focus here is to show the improvement in axial-resolution,
this justifies the thickness of 100nm compared to 300nm diameter for cylinders.



4.6 Experimental results 111

Sample 1: 100nm side-by-side axial separation

We fabricated a sample as shown in the Fig. 4.14.A. The two TiO2 cylinders that we
would like to resolve are separated by 100nm side-by-side axially using SiO2 layer.
The first TiO2 cylinder is separated from the aluminum mirror by 200nm using a
SiO2 layer as well. The sample is covered with a resin layer of refractive index 1.5.

A fabricated sample as described above is positioned in the TDM experimental
setup (consult section Sec. 1.6.2 for the details of the experimental setup). The
objective used for the measurement is oil objective (NA=1.49, CFI Apo TIRF 100x:
Nikon) with oil of refractive index 1.515. The sample was illuminated with 24
illuminations of wavelength λ = 632.8nm, 12 along the vertical direction and 12
along the horizontal direction at the center of the NA of the objective as explained
earlier and shown in Fig. 4.8. The measurement was performed to obtain the complex
scattered field along with illumination and detection polarization. Of course, off-
axis interferometry was used to obtain the complex scattered field (amplitude and
phase). The measured scattered field is processed by correcting the aberration as
explained earlier. The amplitude and the phase normalization as explained in the
previous chapter (section Sec. 3.2) was also performed to have the same phase for
each illumination. Most importantly, the phase origin is located on the Al mirror.

The scattered field data obtained from the above steps is numerically inverted
with the help of non-linear inversion algorithm explained in the previous chapter
(refer section Sec. 3.3). The presence of the Al mirror below the TiO2 cylinders was
taken into consideration during the inversion procedure. I know the thickness of the
SiO2 layer on top of the Al layer, which is 200nm,. So, the inversion box (the box
with volume Ω shown in Fig. 3.4) starts at 100nm from the Al mirror layer. The
size of the pixels used for the inversion is 25nm, i.e. the length of the sides of the
cube in Fig. 3.4. The result obtained from the inversion procedure is presented in
Fig. 4.14.B&C.

The result (Fig. 4.14.B) shows the ability of the mirror-assisted tomography along
with non-linear inversion to resolve the two TiO2 cylinders located 100nm side-by
side in the axial direction (z). The permittivity value is also retrieved, shown in
the color bar of Fig. 4.14.B. The color bar shows a normalized permittivity value
with the surrounding SiO2 and resin coating taken to be 1. The ideal permittivity
value on the TiO2 cylinders must have been 2.3922 but we obtain about 1.8 in the
Fig. 4.14.B and C, this is due to the experimental noise. The second TiO2 cylinder
is of lower permittivity value, this can be due to a fabrication defect. Or it can also
be due to the illumination pattern formed during the illumination on a mirror, this
issue is discussed in detail later.

The transverse-cut along the xy direction is presented in Fig. 4.14.C. The diam-
eter of 300nm is well reconstructed.

The result presented here is the best result obtained with marker-free microscopy
to my knowledge to resolve axially. The axial resolution at best for optical mi-
croscopy is in the region of λ, in this experimental case it should be about 420nm
(632.8nm/1.5, wavelength used divided by the refractive index of oil). I have ex-
perimentally shown the ability to resolve 200nm center to center separated TiO2
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Figure 4.14 : Mirror-assisted tomography experimental result. Fig.A: Fabrica-
tion schema of the sample, TiO2 (refractive index = 2.32) cylinders of 300nm in
diameter separated by 100nm side-by-side axial distance filled with SiO2 (refrac-
tive index = 1.5). The mirror and the first cylinder are separated by a distance of
200nm with SiO2. The sample is covered by a resin layer(refractive index = 1.5).
Fig.B: The experimental non-linear reconstruction of the sample shown in Fig.A.
TiO2 cylinders are well resolved along the axial direction (z). Fig.C: Transverse
cut (xy) along the center of the first cylinder from the mirror, diameter of 300nm
is well reconstructed at λ = 632.8nm and 1.49 NA objective.

cylinders thanks to mirror-assisted tomography. The axial resolution that I have
shown here is better than λ/2, much better than conventional optical microscopes.

Sample 2: 200nm side-by-side axial separation
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Figure 4.15 : Mirror-assisted tomography experimental result. Fig.A: Fabrica-
tion schema of the sample: similar to Fig. 4.14.A, except the distance between the
two TiO2 cylinders is 200nm. Fig.B: The experimental non-linear reconstruction
of the sample shown in Fig.A. TiO2 cylinders are well resolved along the axial
direction z.
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To further demonstrate the possibility to reconstruct the TiO2 cylinders at differ-
ent locations on top of an Al mirror, we fabricated a sample as shown in Fig. 4.15.A.
The distance between the first TiO2 cylinder and the mirror is 200nm (distance “d”
in the Fig. 4.7.A). The two TiO2 cylinders are separated by 200nm edge-to-edge
axially (distance “s” in the Fig. 4.7.A). The diameter of 300nm and the other prop-
erties are conserved from the previous sample described earlier in this section. The
TDM measurement with the same illumination and detection schema as explained
for the previous sample was performed to obtain the polarization resolved complex
scattered field data. The data was processed to perform the non-linear inversion.

The result of the 200nm side-by side separated TiO2 cylinders is presented in
the Fig. 4.15.B. It shows the axial reconstruction along xz direction. The two TiO2

cylinders are well separated and they share similar permittivity distribution with
noise hindering in reconstructing the correct value. The height of each cylinders is
100nm, they are well reconstructed.

Sample 3: 300nm side-by-side axial separation

As we experimentally reconstructed more challenging samples with 100nm side-
by-side and 200nm side-by-side axially separation (distance “s” in the Fig. 4.7.A)
between TiO2 cylinders, we expected to reconstruct samples with higher separation
distance with ease. To confirm this we fabricated a sample with 300nm side-by-side
axial separation between the TiO2 cylinders and 600nm mirror to the first cylinder.
To note, the mirror to the first cylinder distance is not a decisive parameter until
the sample to be imaged is located below 1µm from the mirror and above 100nm.

For this sample with 300nm side-by-side axial separation, we faced challenges
in experimental reconstruction. The experimental reconstruction had a rebound
located between the 300nm side-by-side separated TiO2 cylinders. The possible
causes and the challenges are described in detail here.

To demonstrate the above described challenge and to show the ability of the
mirror-assisted tomography to non-linearly reconstruct the samples irrespective of
their distance from the Al mirror layer, we fabricated a sample as shown in the
Fig. 4.16.A. The distance between the mirror to the first TiO2 cylinder along the
axial direction is 600nm, the two TiO2 cylinders are separated by 300nm side-by-side
axially.

The TDM measurement was performed with the above described sample. The
wavelength, illumination and other experimental parameters are preserved from the
measurement performed on the previous sample (λ = 632.8nm, 24 illumination an-
gles forming a cross and NA=1.49 with oil of refractive index 1.515). The measured
complex field data is processed by applying aberration correction as usual. The
data is inverted using the non-linear inversion algorithm by taking into account the
presence of mirror to obtain a result as shown in Fig. 4.16.B.

The result in the Fig. 4.16.B reconstructs the two TiO2 cylinders between 600-
700 nm and 1000-1100nm from the mirror. The reconstruction box is positioned at
500nm from the Al mirror layer. In the reconstruction box, along with the two TiO2

cylinders there are two rebounds located. One of the rebound is located between
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Figure 4.16 : Mirror-assisted tomography experimental result. Fig.A: Fabrica-
tion schema of the sample: similar to Fig. 4.14.A, except the distance between
the two TiO2 cylinders is 300nm and Al mirror layer to first cylinder is 600nm.
Fig.B: The experimental non-linear reconstruction of the sample shown in Fig.A
along xz direction.

(800-900nm) the two TiO2 cylinders and the other rebound is at the top (1300-
1400nm) of the second TiO2 cylinder respectively. We will understand the origin of
these rebounds.

To understand the problem of rebounds I performed synthetic inversion (more
details about the synthetic inversion are presented in Sec. 4.5.1 for the sample con-
figuration shown in Fig. 4.16.A. To recall, synthetic inversion numerically calculates
the scattered field data and performs inversion on it. It provided a perfect recon-
struction with the same illumination angles and the NA used for measurement, the
result is shown in Fig. 4.17. But this result is obtained in the absence of noise,
considering perfect measurement conditions, which is not possible to obtain in the
experimental measurement case.

Now I will compare the differences between the synthetic inversion data (Fig. 4.17)
and experimental measurement data (Fig. 4.16.B.) to explain the rebounds. Of
course experimental data has noise originating from several sources (e.g. camera,
optical components, speckle noise etc.). I will quantify the level of noise as well.
As we employ a high NA objective, it introduces aberrations into the measured
data. The quantity of the noise is different for different illumination angles and for
different pixels located at varies positions of the NA in the Fourier space.
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Figure 4.17 : Mirror-assisted tomography inversion result applied on theoretical
data. Fabrication schema of the sample shown in Fig. 4.16.A. The numerical
non-linear reconstruction, the cylinders are well resolved along the axial direction
xz separated by 300nm side-by-side.

To quantify the noise and aberrations, we solved the forward problem (explained
in section Sec. 3.3.2) and numerically calculated the scattered field for the sample
with the illumination angles used during the measurement. For each illumination
angle of incidence, represented by l=1→L, L being the last illumination angle, we
calculated the scattered field with q scattering angles, with q=1→Q. Then I cal-
culated the error (R) between the numerically calculated scattered field data (ET )
and measured scattered field data (EM) using the formula below for the scattered
field measured for each illumination angle of incidence,

Rl =

∑Q

q=1 ‖ET,l −EM,l‖2
∑Q

q=1 ‖ET,l‖2
, (4.1)

We found that the Rl is more than 100% for the scattered field measured with
angles of incidences close to the normal incidence. The angles away from the normal
incidence had noise error of less than 100%. So we discarded the angles which had
higher error, i.e. angles close to normal incidence angles. From the calculations we
realized that phase is more noisy and plays a major role in reconstruction. So we
further investigated phase of ET and EM .

We realized also that the phase at the edge of the NA in Fourier space was more
noisy compared to the data in the center of the NA. But high spatial frequencies are
important for the axial resolution. So, we replaced the phase at the edge of the NA in
Fourier space ofEM (measured scattered field data) withET (numerically calculated
scattered field data) for each illumination angle of incidence. The reconstruction
worked better, which is shown in Fig. 4.18

Though the aberration correction improved the measurement to an extent but
it was not sufficient enough to obtain a satisfactory reconstruction. Due to the
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Figure 4.18 : Reconstruction of sample with configuration shown in Fig. 4.16.A
with the scattered field data corresponding to the angles of incidence close to the
normal incidence suppressed and the phase at the edge of the NA in Fourier re-
placed by numerically calculated phase. This is better than the experimental result
presented in Fig. 4.16.B, this gives insights into the importance of noise and aber-
rations.

noise, the non-linear reconstruction algorithm could not converge. As we perform
cost minimization to perform numerical inversion, the inversion stops at a certain
iteration though the reconstruction is not satisfactory. For better resolution, in
general the high frequency components (components located at the extreme edge
of the NA in Fourier space) are important. But these are corrupted by aberrations
and are not sufficiently improved by the data-conditioning aberration correction
performed in section, Sec. 4.6.1. We corrected to a certain extent, it is not good
enough to provide optimal reconstruction result.

In conclusion, the aberrations and the noise has to be minimized to obtain a
better reconstruction and improvement in axial resolution of the sample presented
in this section.

Important observation is that irrespective of the mirror to the first cylinder dis-
tance, the rebounds were always observed for the the 300nm side-by-side separation
of two TiO2 cylinders case. I observed this when I performed experimental recon-
struction of TiO2 cylinders side-by-side separated by 300nm axially and the first
TiO2 located at 200nm from the Al mirror layer. The experimental result is not pre-
sented here as it looks similar to the result presented in Fig. 4.16.B. But in future,
we would like to examine more and reconstruct this challenging sample, some of the
perspectives for reconstruction are presented later in this chapter.

In this section, so far I demonstrated the axial resolution improvement with two
cylinders deposited on top of a Al mirror. We would like to demonstrate the axial
resolution improvement brought about by the TDM mirror-assisted tomography and
the transverse resolution improvement with usual TDM with a single sample, this
is performed as follows.
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Transverse and axial resolution improvement demonstration with single
sample

A sample as shown in Fig. 4.19 was fabricated. It contains four TiO2 cylinders,
two of them are positioned at 200nm from the Al mirror, separated along the x-
axis by 100nm. Another two more of the TiO2 cylinders are positioned at 500nm
from the mirror also separated by 100nm along the x-axis. The separation distance
between the TiO2 cylinders along the z-axis is 200nm. Such a sample was positioned
for imaging under the TDM microscope to perform mirror-assisted tomography to
demonstrate the transverse and axial resolution improvement along x and z axis
respectively.
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Figure 4.19 : Sample schema to demonstrate both axial and transverse resolution:
the schema is similar to the schema shown in Fig. 4.15.A, additional to that, two
more TiO2 cylinders are positioned along the x-axis separated by 100nm. This
forms four TiO2 cylinders to be resolved in both transverse and axial direction.

The experimental measurement was processed to correct the aberrations and
normalization to perform non-linear inversion. The result of the non-linear inversion
by taking into account the Al mirror is shown in the Fig. 4.20. The transverse
resolution (xy direction) is demonstrated with the cylinder diameters of 300nm and
separation of 100nm side-by-side. The axial resolution (xz or yz direction) of 200nm
side-by-side separation between the two TiO2 cylinders can be seen. The TiO2

cylinder close to the Al mirror seems to be slightly shifted away from its actual
location, we believe this is at the correct location. The shift in the location could
be due to the fabrication of cylinder at slightly shifted location.

There are rebounds located close to the Al mirror and at 800nm. The prob-
lems discussed in the previous section about the rebounds are applicable to this
experimental result too.

Here, I have demonstrated the axial resolution improvement brought about by
the mirror-assisted tomography. The challenges in using mirror-assisted tomography
has also been discussed. The next section will explain the outlook to improve the
mirror-assisted tomography.
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Figure 4.20 : Result to demonstrate both axial and transverse resolution using
mirror-assisted tomography on sample shown in Fig. 4.19. Fig.A: The axial-cut
(xz direction) showing four TiO2 cylinders along with few rebounds. Fig.B: The
transverse-cut (xy direction) along the center of TiO2 cylinders located close to the
mirror, each cylinder is of diameter 300nm. The two cylinders are transversely
separated by 100nm side-by-side. Fig.C: Axial-cut (yz direction) along the center
of x-axis with faint rebound.

4.7 Future perspectives

We have been exploring many ideas to improve the mirror-assisted tomography and
apply it to bigger objects and biological cells in future. Though we obtained axial
resolution of 100nm and 200nm for TiO2 cylinders deposited on the Al Mirror, we
have rebounds in the case of 300nm separation case. We retrieve the cylinders with
rebounds. We understand that the experimental data is noisy at the edge of the
NA and causing the non-linear inversion program problems to converge. Ideal case
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would be to optimize the aberrations or phase of the measured data as much as
possible with the help of well calibrated samples in the future.

Optimization of the illumination is also important in mirror-assisted tomogra-
phy. To understand the problem with illumination, observe the Fig. 4.21.A sample
positioned on the top of mirror is illuminated with a plane wave (see Fig. 4.21.A)
illumination. The light is reflected back from the mirror. The reflected light and
the illuminated light interfere with each other causing the variation in the intensity
with which we illuminate the sample at different locations along the axial direction
(see Fig. 4.21.B). This variation in illumination does not illuminate the sample uni-
formly. This could be one of the reasons for the rebounds. It is more difficult for the
inversion algorithm to deconvolute the field and the object when the field is highly
inhomogeneous. To recall, in the inversion procedure we consider we illuminate the
sample uniformly with coherent plane waves. When this is significantly different, it
causes problem in inverting the experimental data.

We have been trying to optimize the illumination pattern to illuminate the sample
uniformly. As we illuminate with different illumination angles of incidence to perform
mirror-assisted tomography, the interference pattern formed from each of them is
different. These illumination angles has to be selected in such a way that, the
summation of the interference patterns yield a uniform illumination on the sample.

BA

Figure 4.21 : Illumination in mirror-assisted tomography: Fig.A: A sample
positioned on top of a mirror is illuminated with an objective, we observe real object
and the mirror-image. Fig.A: The sum of the illuminations forms a interference
pattern due to the illuminated and the reflected beams.

The TDM was applied to image biological cells with low resolution [140]. The
ideal extension would be to image biological samples and apply mirror-assisted to-
mography on them to increase the isotropic resolution. In this thesis, I demon-
strated the resolution in transverse and axial direction improvement due to the
TDM, mirror-assisted tomography and the non-linear inversion on known samples
which are deposited on the reflective substrate. We performed initial measurements
to image biological samples. The biological cells are bigger in nature (in the range
of few micrometers). This demands higher computer memory to perform non-liner
inversion on such bigger samples to obtain higher resolution images. It is necessary
to obtain more data, so more illumination angles is one of the ways to obtain it.
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Another method to obtain more experimental data is to perform multi-wavelength
measurement. On a sample, we perform mirror-assisted tomography with different
wavelengths. Then the non-linear inversion algorithm can be used on this data to
obtain the result by taking into account the illumination with various wavelengths.
In terms of 3D synthetic aperture inversion, we fill the 3D synthetic aperture with
more data due to the multi-wavelength measurement.

The non-linear inversion algorithm is time consuming, the inversion time depends
on the resolution with which we would like to reconstruct the object and the size
of the object, the model used to perform inversion (Born or rigorous inversion tech-
niques) etc. So ,the non-linear inversion has to be optimized to perform inversions
faster, this is already been looked into by Patrick Chaumet and Kamal Belkebir
from our group SEMO, Institute Fresnel, Marseille. Provided these improvements,
mirror-assisted tomography presents a powerful case to improve axial resolution in
optical microscopes in future.

4.8 Conclusion

The axial resolution of optical microscopes is generally three times worse than the
transverse resolution. The previous chapters detailed the transverse resolution im-
provement due to the TDM and non-linear inversion. The axial resolution is worse
due to the illumination and detection configurations employed to collect the scat-
tered field from the sample in microscopes. To improves this and to combine the
advantages of both transmission and reflection configuration, a mirror-assisted to-
mography was proposed [3] and the experimental results and challenges were pre-
sented in this chapter.

To demonstrate the axial resolution improvement, two TiO2 cylinders with 300nm
diameter, 100nm height and varying axial separation distance were fabricated in
LPN, Marcoussis, France. Axial separation of 100nm and 200nm side-by-side were
experimentally resolved using mirror-assisted tomography. The axial-resolution im-
provement presented in this chapter is best-ever with a marker-free microscopy
achieved using a single objective to our knowledge. A sample to demonstrate both
transverse and axial-resolution of the TDM with single sample was also fabricated
and result was presented. The mirror-assisted tomography has some challenges to
overcome such as rebounds. The challenges were explained with a sample containing
two TiO2 cylinders separated by 300nm.

In the end, high illumination and high scattering angle data was shown to be very
important for axial resolution improvement. To have quality high scattering angle
data we need to perform careful correction of aberrations, this has to be optimized
in the future. To extend mirror-assisted tomography to biological samples, the
perspectives to increase the amount of data collected by means of multi-wavelength
and increase in the speed of the non-linear inversion algorithm were proposed.
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“Because a fact seems strange to you, you conclude that it is not one. ... All
science, however, commences by being strange. Science is successive. It goes from
one wonder to another. It mounts by a ladder. The science of to-day would seem
extravagant to the science of a former time. Ptolemy would believe Newton mad.”

-Victor Hugo, Writer

This PhD thesis is devoted to the optical tomographic diffractive microscopy
(TDM) for three-dimensional isotropic resolution improvement. We illuminated the
objects with varying angles of plane waves and measured the complex diffracted field
from them using a TDM experimental setup and performed numerical inversions.
The incident field was known, the diffracted field was measured and the unknown
objects were three-dimensionally reconstructed beyond the optical diffraction limit
resolution. Thanks to the multiple scattering at the unknown object and the ac-
curate models I used to reconstruct the measured diffracted field with computers.
This is originality of our approach in reaching label-free super-resolution compared
to the fluorescence based techniques which rely on the fluorescent markers.

The measured data from the experimental setup was significantly enhanced due
to the implementation of low-coherence supercontinuum source, externally cooled
high sensitive camera, high sensitive mirror for varying the illumination and a delay
line for off-axis interferometry during this thesis. The measured complex diffracted
field was numerically inverted to reconstruct the object with linear inversion (Born,
Rytov etc.,) and accurate non-linear inversion (iterative) algorithms.

The linear inversion algorithms can be used to reconstruct resolution limited
images from the measured data. These algorithms consider there is a linear link
between the object and field measured from it. We shown the numerical imaging of
various microscope techniques such as bright-field microscope, dark-field microscope,
phase-contrast microscope, confocal microscope, 2D synthetic aperture microscope
and 3D synthetic aperture microscope from the experimentally measured complex
diffracted field TDM data under linear approximations. The advantage being the
TDM measurement was performed once with several angles on the sample. Thanks
to the single measurement, TDM provides complete complex measured field data
to realize various microscopy techniques. I discussed in detail the advantages and
disadvantages of each numerical microscopy technique. We believe that numerical re-
alization of several such microscopy techniques provide complementary information
about the object, leading to better understanding. We realized these techniques to
demonstrate the rapid and simple means of getting first understanding of the object
under observation. The main disadvantage is the resolution being limited.
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We have shown that using rigorous non-linear inversion algorithm by taking
into account the illumination and the detection polarization and the non-linear link
between the object with its diffracted complex field the resolution can be improved.
It was demonstrated that polarization plays a role in obtaining isotropic transverse
resolution. We have achieved transverse resolution of 100nm without any labeling
(marker-free) of the samples by this approach. The coupling of TDM full-polarized
complex field data with the inversions algorithm makes it possible to reconstruct
any irregularities in the sample too. Using singular value decomposition as a tool
along with non-linear inversion algorithm to reconstruct the samples in a noisy
environment was demonstrated spectacularly. We have shown that it is possible
to achieve even higher resolution of 50nm (λ/10) by providing a priori information
(sample permittivity range with in a bound) about the sample and taking advantage
of SVD treatment.

Along with the transverse resolution improvement, axial resolution is equally im-
portant to perform 3D isotropic super-resolution. Poor axial resolution is due to the
fundamental asymmetry of illumination and detection in microscopes. Illumination
and detection are performed only on one side of the sample. To obtain 3D isotopic
resolution the illumination and detection have to be performed in all possible angles
in 3D, which is very hard to realize in practice. To overcome this, a mirror-assisted
TDM set-up was proposed: the main idea is to deposit the sample on a mirror, so
that it is illuminated and observed simultaneously from both sides thanks to the
mirror.

We have validated on synthetic data to resolve two cylinders located at various
positions on top of a mirror. To experimentally demonstrate the axial-resolution
improvement, we fabricated two cylinders on top of a mirror at various locations.
We performed TDM measurement and applied non-linear inversion algorithm by
taking into account the presence of mirror. This permits to resolve two cylinders
that are separated by 100nm and 200nm side-by-side positioned along the axial
direction. This demonstrates the experimental applicability of our mirror-assisted
tomography approach to retrieve accurate reconstructions of the sample along the
axial direction. For the sample with 300nm side-by-side axial separation, the exper-
imental result presents rebounds and is challenging to reconstruct. For the global
improvement of the axial resolution and to overcome the challenges accurate quan-
tification of the aberrations coming from the use high NA objectives, optimization
of the illumination, multi-wavelength measurement were presented as perspectives.
The extension of the mirror-assisted tomography to bigger objects and biological
objects require optimization of algorithms and faster computers, which is already
being looked into.

In conclusion, I believe that optical tomographic diffraction microscopy cou-
pled with non-linear inversion algorithm is one of the futuristic methods that will
be employed to reconstruct objects in three-dimensions with their optical material
properties at resolution far superior to the conventional microscopes. With the im-
proved non-linear inversion algorithms, computational time and advancements in
mirror-assisted tomography, hopefully it would turn into a industrial product used
by physicist and biologist with ease.
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and C. Depeursinge. Polarization microscopy by use of digital holography: ap-
plication to optical-fiber birefringence measurements. Appl. Opt., 44(21):4461–
4469, 2005.

[94] E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz. Combined scanning
optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett.,
24(14):969–971, 1999.

[95] A. Valdecasas, D. Marshall, J. Becerra, and J. Terrero. On the extended depth
of focus algorithms for bright field microscopy. Micron, 32(6):559 – 569, 2001.

[96] S. H. Gage. Modern dark-field microscopy and the history of its development.
Transactions of the American Microscopical Society, 39(2):95–141, 1920.

[97] D. B. Murphy. Fundamentals of Light Microscopy and Electronic Imaging.
Wiley-Liss, 2001.

[98] R. H. Webb. Confocal optical microscopy. Reports on Progress in Physics,
59(3):427, 1996.

[99] S. W. Paddock. Principles and practices of laser scanning confocal microscopy.
Molecular Biotechnology, 16(2):127–149, 2000.

[100] C. L. Smith. Basic Confocal Microscopy. John Wiley & Sons, Inc., 2001.

[101] R. C. Jones. A new calculus for the treatment of optical systems. J. Opt. Soc.
Am., 31(7):488–493, 1941.

[102] F. Kleinermann, N. J. Avis, and F. A. Alhargan. Analytical solution to the
three-dimensional electrical forward problem for a circular cylinder. Inverse
Problems, 16(2):461, 2000.

[103] E. M. Purcell and C. R. Pennypacker. Scattering and absorption of light by
nonspherical dielectric grains. Astrophys. J., 186:705–714, 1973.

[104] A. Lakhtakia. Strong and weak forms of the method of moments and the
coupled dipole method for scattering of time-harmonic electromagnetics fields.
Int. J. Mod. Phys. C, 3:583–603, 1992.

[105] A. D. Yaghjian. Electric dyadic green’s functions in the source region. Pro-
ceedings of the IEEE, 68(2):248–263, 1980.



BIBLIOGRAPHY 131

[106] P. C. Chaumet and A. Rahmani. Electromagnetic force and torque on magnetic
and negative-index scatterers. Opt. Exp., 17:2224–2234, 2009.

[107] W. C. Chew and Y. M. Wang. Reconstruction of two-dimensional permit-
tivity distribution using distorted Born iterative method. IEEE Trans. Med.
Imaging, 9:218–225, 1990.

[108] N. Joachimowicz, C. Pichot, and J.-P. Hugonin. Inverse scattering: an iter-
ative numerical method for electromagnetic imaging. IEEE Trans. Antennas
Propagat., 39:1742–1753, 1991.

[109] A. G. Tijhuis. Born-type reconstruction of material parameters of an inhomo-
geneous lossy dielectric slab from reflected-field data. Wave Motion, 11:151–
173, 1989.

[110] A. G. Tijhuis, K. Belkebir, A. C. S. Litman, and B. P. de Hon. Theoretical and
Computational Aspects of 2-D Inverse Profiling. IEEE Trans. Geosci. Remote
Sensing, 39(6):1316–1330, 2001.

[111] R. E. Kleinman and P. M. van den Berg. A modified gradient method for
two-dimensional problems in tomography. J. Comput. Appl. Math., 42:17–35,
1992.

[112] R. E. Kleinman and P. M. van den Berg. An extended range-modified gradient
technique for profile inversion. Radio Sci., 28(5):877–884, 1993.

[113] E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac. Electromagnetic
wave imaging of three-dimensional targets using a hybrid iterative inversion
method. Inverse Probl., 28(6):065007, 2012.

[114] K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, and M. Saillard. Validation
of 2D inverse scattering algorithms from multi-frequency experimental data.
J. Electromag. Waves Appl., 14:1637–1667, 2000.

[115] K. Belkebir and A. G. Tijhuis. Modified2 gradient method and modified Born
method for solving a two-dimensional inverse scattering problem. Inverse
Probl., 17(6):1671–1688, 2001.

[116] K. Belkebir, P. C. Chaumet, and A. Sentenac. Superresolution in total internal
reflection tomography. J. Opt. Soc. Am. A, 22:1889–1897, 2005.

[117] P. C. Chaumet and K. Belkebir. Three-dimensional reconstruction from
real data using a conjugate gradient-coupled dipole method. Inverse Probl.,
25:024003–17, 2009.

[118] C. Prada and M. Fink. Eigenmodes of the time reversal operator: a solution to
selective focusing in multiple-target media. Wave Motion, 20:151–163, 1994.



132 BIBLIOGRAPHY

[119] H. Tortel, G. Micolau, and M. Saillard. Decomposition of the time reversal
operator for electromagnetic scattering. J. Electromag. Waves Appl., 13:687–
719, 1999.

[120] A. Dubois, K. Belkebir, and M. Saillard. Localization and characterization
of two-dimensional targets buried in a cluttered environment. Inverse Probl.,
20(6):S63–S79, 2004.

[121] T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Tal-
neau, C. Prada, A. Sentenac, and K. Belkebir. Tomographic diffractive mi-
croscopy with agile illuminations for imaging targets in a noisy background.
Opt. Lett., 40(4):573–576, 2015.

[122] M. Fink, C. Prada, F. Wu, and D. Cassereau. Self focusing with time reversal
mirror in inhomogeneous media. Proc. IEEE Ultrason. Symp., 2:681–686, 1989.

[123] R. Carminati, R. Pierrat, J. de Rosny, and M. Fink. Theory of the time
reversal cavity for electromagnetic fields. Opt. Lett., 32:3107–3109, 2007.

[124] S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan.
Exploiting the time-reversal operator for adaptive optics, selective focusing,
and scattering pattern analysis. Phys. Rev. Lett., 107:263901, 2011.

[125] G. Micolau and M. Saillard. D.O.R.T. method as applied to electromagnetic
sensing of buried objects. Radio Sci., 38(3):1038, 2003.

[126] T. Zhang, P. C. Chaumet, E. Mudry, A. Sentenac, and K. Belkebir. Electro-
magnetic wave imaging of targets buried in a cluttered medium using a hybrid
inversion-dort method. Inverse Probl., 28(12):125008, 2012.

[127] C. Prada, S. Manneville, D. Spoliansky, and M. Fink. Decomposition of the
time reversal operator: detection and selective focusing on two scatterers. J.
Acoust. Soc. Am., 9:2067–2076, 1996.

[128] M. Davy, J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink. Influence
of noise on subwavelength imaging of two close scatterers using time rever-
sal method: theory and experiments. Progress In Electromagnetics Research,
98:333–358, 2009.

[129] E. Mudry, E. L. Moal, P. Ferrand, P. C. Chaumet, and A. Sentenac. Isotropic
diffraction-limited focusing using a single objective lens. Phys. Rev. Lett.,
105(20):203903, 2010.

[130] T. Zhang, Y. Ruan, G. Maire, D. Sentenac, A. Talneau, K. Belkebir, P. C.
Chaumet, and A. Sentenac. Full-polarized tomographic diffraction microscopy
achieves a resolution about one-fourth of the wavelength. Phys. Rev. Lett.,
111:243904, 2013.



BIBLIOGRAPHY 133

[131] A. Litman, D. Lesselier, and F. Santosa. Reconstruction of two-dimensional
binary obstacle by controlled evolution of a level-set. Inverse Probl., 14:685–
705, 1998.

[132] P. C. Chaumet, K. Belkebir, and A. Sentenac. Experimental microwave imag-
ing of three-dimensional targets with different inversion procedures. J. Appl.
Phys., 106:034901–8, 2009.

[133] T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Tal-
neau, M. Allain, K. Belkebir, and A. Sentenac. Far-field diffraction microscopy
at λ

10
resolution. Optica, 3(6):609–612, 2016.

[134] S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer. Confocal microscopy
with an increased detection aperture: type-b 4pi confocal microscopy. Opt.
Lett., 19(3):222–224, 1994.

[135] E. H. K. Stelzer and S. Lindek. Fundamental reduction of the observation vol-
ume in far-field light micr oscopy by detection orthogonal to the illumination
axis: confocal theta microsco py. Optics Communications, 111(5-6):536–547,
1994.
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Résumé

La microscopie optique est classiquement limitée par la diffraction à une réso-
lution transverse d’environ λ/2 et une résolution axiale de λ (λ étant la longueur
d’onde). De nombreux domaines, tels que les nanotechnologies, les sciences des
matériaux ou la biologie, nécessitent de résoudre les objets à de plus petites échelles.
Cette thèse vise à améliorer la résolution en trois dimensions grâce à une technique
récente d’imagerie : la microscopie tomographique diffractive (MTD). Son principe
est d’éclairer l’objet successivement sous différents angles en lumière cohérente, de
détecter le champ diffracté en phase et en amplitude, et de reconstruire la carte 3D
de permittivité de l’objet par un algorithme d’inversion. La MTD s’est avérée ca-
pable de combiner plusieurs modalités utiles d’imagerie sans marquage, telles que la
microscopie plein champ, la microscopie champ sombre, la microscopie à contraste
de phase, la microscopie confocale, ou encore la microscopie à synthèse d’ouverture
2D ou 3D. Toutes sont basées sur des approximations scalaires et linéaires qui sup-
posent un lien linéaire entre l’objet et le champ mesuré, ce qui restreint leur domaine
d’application pour restituer l’objet de manière quantitative. A l’aide d’une inversion
numérique rigoureuse prenant en compte la polarisation du champ et le phénomène
de diffusion multiple, nous sommes parvenus à reconstruire la carte 3D de permittiv-
ité d’objets avec une résolution de λ/4. Une amélioration supplémentaire la portant
à λ/10 a été rendue possible par l’insertion d’information a priori sur l’objet dans
l’algorithme d’inversion. Enfin, l’amélioration de la résolution axiale a été étudiée.
Celle-ci est fondamentalement moins bonne que la résolution transverse du fait de
l’asymétrie des schémas d’illumination et de détection dans les microscopes. Pour
s’affranchir de cette limitation, une configuration de tomographie assistée par miroir
a été implémentée et a mis en évidence un pouvoir de séparation axial meilleur que
λ/2. Au final, la MTD s’est illustrée comme un outil de caractérisation puissant
pour reconstruire en 3D les objets ainsi que leurs indices optiques, à des résolutions
bien supérieures à celles des microscopes conventionnels.

Key words:Microscopie optique; super-résolution; tomographie; inversion numérique;
microscopie de phase; imagerie 3D; tomographie assistée par miroir.





Abstract

Classical optical microscopy is limited in resolution by the wavelength of light
(diffraction limit) restricting lateral resolution to about λ/2, and axial resolution
to about λ (the wavelength). Various domains, such as nanotechnology, material
science or biology, require tools to resolve smaller objects at best possible resolution
with optics. This PhD thesis is devoted to the three-dimensional isotropic reso-
lution improvement using optical tomographic diffraction microscopy (TDM), an
emerging optical microscope technique. The principle is to illuminate the sample
successively with various angles of coherent light, collect the complex (amplitude and
phase) diffracted field and reconstruct the sample 3D permittivity map through an
inversion algorithm. A single TDM measurement was shown to combine several pop-
ular microscopy techniques such as bright-field microscope, dark-field microscope,
phase-contrast microscope, confocal microscope, 2D and 3D synthetic aperture mi-
croscopes. All rely on scalar and linear approximations that assume a linear link
between the object and the field diffracted by it, which limit their applicability to
retrieve the object quantitatively. Thanks to a rigorous numerical inversion of the
TDM diffracted field data which takes into account the polarization of the field and
the multiple scattering process, we were able to reconstruct the 3D permittivity
map of the object with a λ/4 transverse resolution. A further improvement to λ/10
transverse resolution was achieved by providing a priori information about the sam-
ple to the non-linear inversion algorithm. Lastly, the axial resolution improvement
was studied. Poor axial resolution is due to the fundamental asymmetry of illumina-
tion and detection in microscopes. To overcome this, a mirror-assisted tomography
configuration was implemented, and has demonstrated a sub-λ/2 axial resolution
capability. As a result, TDM can be seen as a powerful tool to reconstruct objects
in three-dimensions with their optical material properties at resolution far superior
to conventional microscopes.

Key words: Optical microscopy; super-resolution; tomography; numerical in-
version; phase microscopy; 3D imaging; mirror-assisted tomography.
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