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1. – Introduction

2. – Resonances

2.1. Introduction. – There is an increasing interest in the study of electromagnetic
eigenmodes of small particles. On the one hand, experiments on the linewidth of surface
plasmons in metallic particles [1] and on the evolution of their near fields, both in isolated
particles and in arrays, [2] aim to a basic research and possible applications of their
optical properties. On the other hand, experimental works of Mie resonance excitation
and whispering-gallery modes [3, 4, 5, 6, 7] put forward a possible interest of these
systems for their use as field concentrators and high-Q cavity devices. Also, in near field
optical studies [8, 9], small particles can act either as detectors or emitters [10, 11, 12,
13], thus their resonant behavior will greatly enhance their usefulness. In addition, the
analogy of eigenmodes with electron orbitals, suggest the possibility to form bonding
and antibonding interactions between neighbouring particles [14] and thus to introduce,
through light action, attractive interactions this leading to ensambling them in desired
nanostructures through optical binding. [15, 16]

Electromagnetic resonances in objects can be classified into two groups:

• Morphology-dependent resonances, MDR, or Whispering Gallery Modes, WGM.
They appear at non metallic particles and are strongly dependent on the object’s
morphology, internal structure (optical contrast in the dielectric permittivity be-
tween the particle and the surrounding medium), and the size and frequency of
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the incident light (through the so called Size parameter: x = 2πa/λ, a being the
particle radius).

• Surface plasmon resonances, SPR. When they are excited, they produce electro-
magnetic propagation of electron oscillations in metallic surfaces such as the ones
of small particles.

Both of them are associated with surface waves with exponential decay out from the
particle surface.

The existence of resonances must be taken into account at a wide variety of phe-
nomena. High field enhancements are produced close to the particle surface altering any
surface spectroscopy. Nonlinear effects can be found at Fluorence emission, Spontaneous
Raman emission, Stimulated Raman scattering, Stimulated Brillouin scattering, Coher-
ent Anti-Stokes Raman scattering and Coherent Raman mixing, Bistability and so on.
The excitation of resonances can produce lasing (they behave as small resonators), and
can generate second harmonic.

They have been widely applied up to now. Some examples are:

• Measurements of evaporation rate, temperature, surface tension and viscosity. The
shift of resonance’s position of known particles becomes a method for this kind of
measurements.

• Measurements of droplet shape deformation. The splitting of resonances account
for the deviation from an initial particle shape.

• Characterization of Sprays.

• Fluorescence and Spontaneous Raman emission.

Morphology-dependent resonances are interpreted as rays or beams propagating around
the object, confined by an almost total internal reflection, returning to the starting point
in phase. A Quality factor is also defined as Q = 2π (Stored energy) / (Energy lost per
cycle) = ω0/δω, where ω0 is the resonace frequency and δω the resonance full width.
The first theoretical studies of MDR were performed by Gustav Mie, whose Mie the-
ory in spheres has largely extended. The scattered field, either outside or within the
particle, is decomposed into a sum of partial waves. Each partial wave is weighed by
a coefficient whose poles explain the existence of peaks at the scattering cross section.
These poles correspond to complex frequencies but true resonances (real values with non
infinity height for the peaks) have a size parameter value close to the real part of the
complex poles. The imaginary part of the complex frequency accounts for the width
of the resonance peak. The MDR are classified by three integer numbers: one related
with the partial wave (order number), another one which accounts for the several poles
which can present the same coefficient (mode number), and a third one accounting for the
degeneration of a resonance (azimuthal mode number). In the first experimental check at
optical frequencies, [17] the variation of the radiation pressure (due to MDR) on highly
transparent, low-vapor-pressure silicone oil drops (index 1.4− 1.53) was measured. The
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Fig. 1. – Plots of |E/Eo|2 for an isolated silicon sphere illuminated by a plane incident wave,
as shown by the picture inside 1(b). 1(a): a = 60 nm and λ = 521 nm. 1(b): a = 200 nm and
λ = 817 nm. Insets: real (solid line) and imaginary (dashed lines) parts of the (n, l) external
Mie coefficient amplitude of the TE mode.

drops were levitated by optical techniques and the incident beam was focused at either
the edge or the axis of the particles showing the creeping nature of the surface waves.

It is important, when speaking about resonances, to mention the Glory effects [18,
19, 20] that have been found in water droplets. The Glory theory accounts for the
backscattering intensity enhancements found in water droplets. These enhancements are
associated with rays grazing the surface of the droplet, involving hundreds of circumvo-
lutions (surface effects). Axial rays (geometrical effects) also contribute. They have been
observed in large particle sizes (x > 102) and no glory effects have been found for sizes in
the range x ∼ 1. These backscattering intensity enhancements cannot be associated to a
unique partial wave, but a superposition of several partial waves. Whenever a resonance
is matched in a large particle, Glory effects take places but it is not truth the inverse
assertion.

2.2. Near and Far field resonant scattering . – The near field outside and within the
particles [22] show a charasteristic lobe pattern depending on the resonance excited.
In fig. 1 is shown the resonant near field distributions |E/Eo|2 (Eo being the electric
incident field) for propagating plane wave excitation on an isolated silicon sphere with
either a = 60 nm (fig. 1(a)) or a = 200 nm (fig. 1(b)). These are shown in a plane
containing the sphere equator, parallel to the incident wavevector and perpendicular
to the incident electric vector. The resonance’s position in wavelengths are λ = 521
nm with n = (4.195, 0.058), and λ = 817 nm with n = (3.677, 0.005). The modes are
identified [23] (by the numbers explained above) as TE with n = 1, l = 1 for a = 60 nm,
and n = 3, l = 1 for a = 200 nm. The latter are rather similar to the whispering-gallery
modes studied in larger particles (cf. refs. [4, 5, 6, 7]). The insets show the charasteristic
behavior of the external Mie coefficient amplitude whenever a resonance is matched.

The peak positions and widths of the resonances are not perturbed by the kind of
incidence, but the peak heights depends on the excitation. [22, 24] Figure 2 shows the
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Fig. 2. – Scattering geometry

scattering geometry for a particle on a dielectric surface. Figure 3 shows the scattering
efficiencies for an isolated silicon cylinder in vacuum with size a = 200 nm. The incident
field is either propagating or evanescent, created with θo = 60o. The interaction with the
plane at which the evanescent wave has been created has not been taken into account. The
polarization of the incident wave is S-polarized (electric field parallel to the cylinder axis),
fig. 3(a), or P -polarized (magnetic field parallel to the cylinder axis), fig. 3(b). When the
incident wave is evanescent, the intensity is normalized to the incident intensity averaged
over the cross-sectional area of the sample perpendicular to the incident Poynting vector.
Namely, to:

Ĩ0 =
1
2a

∫
〈Sinc〉ndA = I0

n0

n1
sin θ0 exp(−2κd)

sinh(2κa)
2κa

(1)

where n0 and n1 are the refractive indices of air and the surface on which the particle is
located, respectively, κ = 2π/λ(n2

0 sin2 θ0−n2
1)

1/2 and I0 represents the incident intensity.
The peak height strongly depends on the excitation, being larger for evanescent waves.
This efficiency difference is more important as the size of the cylinder increases.

2.3. Presence of a surface. – A procedure that permits predicting and controlling
the eigenmode excitation should be put forward. This requires to include in the model
the presence of interfaces [24, 25] that act as light couplers between the particle and
the illuminating wavefield. Near field measurements must account of the resonances.
Nanometer particle response at optical wavelengths must be studied for the development
of nanotechnology: Optical binding, nanodetection and nanoemission (new possibilities
of resolution and local emission), Optical Force Microscopy and so on.

Figure 4 shows the scattered efficiencies (normalized as eq. (1)) at fixed scattering
angles versus wavelength for two silver cylinders of radius: a = 30 nm, fig. 4(a), and
a = 200 nm, fig. 4(b). Incident plane waves, either propagating or evanescent, are
considered for the cases of isolated cylinders, and Gaussian beams when the interaction
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Fig. 3. – Scattering Efficiency for an isolated silicon cylinder of radius a = 200 nm. The incidence
is done with a plane wave either propagating or evanescent (see the code). 3(a): S polarization.
3(b): P polarization.

with the plane is taken into account (P polarization). The distance d from the bottom of
the object to the plane is considered either 15.5 nm for an incident evanescent plane wave
in the presence of the plane, or zero for the rest of the cases. The enhancement observed
is due to the plasmon resonance excited under P polarization. For S polarization, no
plasmon resonance is excited in a cylinder, though it is allowed in a non-cylindrical object
like a sphere, since this geometry depolarizes the incident wave. The curves for the
isolated particle keep remarkable similarity with the corresponding scattering efficiencies
thus showing the contribution of large angle differential cross sections to the resulting
efficiency. Although not shown here for the sake of brevity, however, the intensity can
be larger for incident propagating waves than for incident evanescent waves at scattering
angles close to the forward direction of the propagating wave.

Adding the multiple scattering due to the presence of the plane (see the code), we
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Fig. 4. – Normalized scattered intensity at θs = 45o versus wavelength for a silver cylinder of
radius either a = 30 nm, 4(a) or a = 200 nm, 4(b). The cylinder is placed at d = 0 for the
isolated cases and at d = 15.5 nm when it is placed on a dielectric plane with length either
L = 30500 nm, 4(a), or L = 40500 nm, 4(b). The incidence is a P polarized plane wave, either
propagating or evanescent, when the particle is isolated, and a Gaussian beam with HWHM
either W = 3050 nm, 4(a), or W = 4050 nm, 4(b), when the interaction with the plane is taken
into account.
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observe the decrease, broadening and red-shift of the peak. For evanescent wave excita-
tion, this peak decrease is remarkable, since the lineshape is lower than that from the
incident plane wave. In this case, to the above explanation we have to add that multiple
scattering at the surface breaks the nearly isotropic radiation obtained in the absence of
interaction, leading to a rather directional scattered intensity into the glass medium [26].
In this way the intensity at scattering angles not very close to this main direction is
largely reduced. This effect is amplified for larger object sizes, as shown in fig. 4(b).
These results are similar when considering Morphology-dependent resonances.

Figure 5 shows the normalized near field intensity spatial distribution (|H/Ho|2, Ho

being the incident magnetic field) for a silicon cylinder with radius a = 60 nm on the
dielectric plane at distance d = 5 nm for P polarization at the resonant wavelengths: λ =
471 nm [n = (4.485, 0.101)], figs. 5(a) and 5(c), and λ = 638 nm [n = (3.872, 0.018)], figs.
5(b) and 5(d) respectively. The length of the plane dielectric surface in the computation is
L = 34000 nm, W = 4000 nm. Large field concentrations are obtained for P polarization.
However, for S polarization the field distribution spreads outside the cylinder with a no
so high enhancement inside (not shown here for the sake of brevity). This behavior of the
near field distribution remains at both wavelengths: P polarization concentrates almost
all the incident field inside the cylinder leading to low eigenmodes. On the other hand,
evanescent incident wave excitation (created under TIR) shifts this distribution to that
of the coupling with the surface wave refracted under TIR, i.e. it rotates this near field
intensity distribution by 90o, and slightly displaces it towards the flat surface. Notice
that the lower values of this intensity are due to the decay of the evanescent wave at
the cylinder. At the same time, evanescent wave excitation is more effective for field
concentration, since the ratio of the intensity field distribution to that of the incident
intensity along the plane z = d + a, is larger in this case. The number of lobes must be
2n along the perimeter. The average field intensity integrated on a circle, centered at the
cylinder axis, as a function of the radius of the particle, must show l lobes. Thus, the
corresponding Mie coefficient [21] for figs. 5(a) and 5(c) are n = 1 and l = 1, and for figs.
5(b) and 5(d), n = 0 and l = 1. The insets in figs. 5(c) and 5(d) show the amplitude of
the external Mie coefficient for these resonances. For such small cylinder sizes, multiple
scattering effects between the flat surface and the cylinder are not very large.

Figure 6 shows the intensity distribution |E/E0|2 for the S wave resonance at λ =
919 nm (index n = (3.670, 0.005)). In figs. 6(a) and 6(c) is plotted the normalized
intensity when the particle is isolated and the incident wave is plane either propagating or
evanescent, respectively. Figures 6(b) and 6(d) show the field distribution in the presence
of the surface after multiple scattering at the flat interface has been taken into account
(L = 40000 nm). The incident wave is a Gaussian beam with W = 4000 nm at either
θ0 = 0o or θ0 = 60o, respectively. The distance is d = 15 nm. This resonant structure
has large near field concentrations taking place inside the particle. For plane propagating
wave illumination we can explain the resulting lobe pattern as an interference between
counterpropagating evanescent surface waves. The damping is very important for this
particle size and the multiple scattering between particle and plane acts by smearing the
contrast. The slighter lobe pattern in figs. 6(c) and 6(d), corresponding to evanescent
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Fig. 5. – Plots of |H/Ho|2 for P polarization for a cylinder with a = 60 nm on a plane at d = 5
nm and W = 4000 nm. 5(a): λ = 471 nm, θo = 0o. 5(b): λ = 638 nm, θo = 0o. 5(c): λ = 471
nm, θo = 60o. 5(d): λ = 638 nm, θo = 60o. The circular lines show the boundary of the
cylinder. Insets: real (solid line) and imaginary (dashed line) parts of the (n, l) external Mie
coefficient amplitude.

wave illumination of the particle, either isolated or in presence of the plane, is attributed
to the conversion of evanescent waves on the plane to surface waves in the particle. This
is seen in the inset of fig. 6(c), which shows the field |E/E0|2 along a concentrical line
for the cylinder either isolated (thin lines) or on the plane (thick lines). Solid lines
correspond to propagating plane wave illumination at θ0 = 0o and dashed lines, show
results for illumination with an evanescent wave at θ0 = 60o. The other parameters are
the same as before. The lobe pattern has a higher contrast when the object is isolated.
The incident propagating plane wave also contributes to enhance this contrast. Then,
the more propagating the incident waves is, the higher the contrast for the modes of a
resonance become because of the resulting counterpropagating surface wave interference.
This resonance in fig. 6 is identified as that with n = 3, l = 1. The corresponding
Mie coefficient is shown in the inset in fig. 6(d). The real and imaginary parts of this
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Fig. 6. – |E/Eo|2 for S polarization for a silicon cylinder with a = 200 nm and λ = 919 nm. 6(a):
isolated object illuminated by a plane propagating wave at θo = 0o. 6(b): Object on a dielectric
plane at d = 15 nm and L = 40000 nm, illuminated by a Gaussian beam (W = 4000 nm) at
θo = 0o. 6(c): isolated object illuminated by an evanescent plane wave at θo = 60o (d = 15
nm). 6(d): Object on a plane at d = 15 nm and L = 40000 nm, illuminated by a Gaussian
beam (W = 4000 nm) at θo = 60o. The circular lines show the boundary of the cylinder. Inset
6(c): normalized near field intensity along an internal circumference of radius r = 165 nm; solid
and dashed thin lines: isolated cylinder excited by either a plane propagating wave (θo = 0o)
or a plane evanescent wave (θo = 60o), respectively. Solid and dashed thick lines: cylinder on
a plane excited by a Gaussian incident beam of W = 4000 nm at either θo = 0o or θo = 60o,
respectively. Inset 6(d): real (solid line) and imaginary (dashed line) parts of the (n, l) external
Mie coefficient amplitude.

coefficient have the characteristic jump at the resonant wavelength.
The near field intensity distributions for metallic particles is different. Next, silver

cylinders are analysed. Figure 7 shows the intensity near field |H/H0|2 for an incident
P wave either at θ0 = 0o (figs. 7(a) and 7(b)) or θ0 = 60o (figs. 7(c) and 7(d)), at which
total internal reflection (TIR) occurs in absence of the object, for a silver cylinder with
a = 30 nm. Figures. 7(a) and 7(c) correspond to off-resonance (incident wavelength:
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λ = 317 nm, refractive index n = (0.978, 0.509)) and figs. 7(b) and 7(d) to on-resonance
(incident wavelength: λ = 346 nm, refractive index n = (0.234, 1.275)). The distance
from the plane to the bottom of the cylinder is fixed at d = 5 nm, L = 30500 nm and
W = 4000 nm. In this latter figure at θ0 = 0o, we observe an intensity enhancement
on-resonance almost four times higher than off-resonance at plane wave excitation (fig.
7(b)). Such enhancement is localized just at the space between the cylinder and the
flat dielectric surface and corresponds to a field distribution more concentrated than
off-resonance. In case of evanescent wave excitation, a lower enhancement at resonance
is observed (fig. 7(d)) but it has a higher field concentration below the cylinder than
off-resonance, (fig. 7(c)), where the maximum intentity spreads along the flat dielectric
surface. It is also worth noticing how this field concentration on-resonance by the particle
(fig. 7(d)) is in contrast with the transmitted field distribution off-resonance (fig. 7(c))
that mainly corresponds to the evanescent surface wave created under TIR.

Figure 8 shows intensity near field distributions |H/H0|2 for a larger particle, its radius
is now a = 200 nm. We again consider multiple scattering of light with the flat interface
and P polarization. Figures 8(a) and 8(c) show a case off-resonance at either θ0 = 0o

or θ0 = 60o, respectively (incident wavelength: λ = 317 nm, index n = (0.978, 0.509)).
The distance from the plane to the bottom of the cylinder is d = 15 nm, L = 30000
nm and W = 4000 nm. Now the field cannot deeply penetrate inside the cylinder and
thus the intensity is primarily concentrated on its surface, close to the flat interface.
Off-resonance, the intensity maximum is similar to those previously obtained for smaller
sizes. However, the spatial intensity distribution is more inhomogeneus since now the
particle is big enough to highly scatter and distort the field, thus higher multipolar
orders of the electromagnetic field playing a more relevant role. Qualitatively, those
characteristics previously described for the smaller size, are enhanced in this case of
larger particles. The shadow contrast at both sides of the particle for an incident plane
wave, is larger. At on-resonance excitation (incident wavelength: λ = 366 nm, index
n = (0.186, 1.621)), figs. 8(b) and 8(d), there is an enhancement of the intensity very
close to the particle surface, as expected, due to the plasmon travelling along the particle
surface. The diffraction fringes outside the particle at plane wave excitation have high
contrast (fig. 8(b)) whereas at evanescent wave excitation, the particle swallows the
field and concentrates it at the bottom of its surface (fig. 8(d)), (compare with the off-
resonance case which shows the distribution concentrated at the surface wave travelling
along the flat interface (fig. 8(c)). However, the enhancement is now higher for evanescent
wave incidence. This is explained as due to the better excitation of higher multipolar
orders of the field by inhomogeneus waves contributing to enhance the plasmon resonance.

A regular fringe pattern is also observed on the top hemisphere of the particle (plane
wave excitation) very similar to the lobe pattern observed for high index dielectric par-
ticles [22] with the same radius (as previously). We can explain this as an interference
between counterpropagating surface plasmon waves. This radiates outside with a corre-
sponding fringe pattern.

The multiple scattering at the flat interface acts mainly diminishing and broadening
the peak intensity. The red-shift produced is known of a few nanometers, but given
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Fig. 7. – |H/Ho|2 for P polarization for a silver cylinder with a = 30 nm on a dielectric plane
at d = 5 nm; L = 30500 nm and W = 4000 nm. 2(a): λ = 317 nm, θo = 0o. 2(b): λ = 346 nm,
θo = 0o. 2(c): λ = 317 nm, θo = 60o. 2(d): λ = 346 nm, θo = 60o. The circular lines show the
boundary of the cylinder.

the lineshape width, it is relatively small with such a transparent interface. [22] The
resonances, however have a width large enough to obscure this red-shift effect. The peak
decrease is estimated as 13% (from 3.7 to 3.2) for the plane wave case, and as 32% (from
7.1 to 4.8) for the evanescent wave case (a = 200 nm).

2.4. Conclusions. – A detailed study of eigenmode excitation in both metallic and
dielectric nanoparticles on a flat dielectric surface is presented. Multiple scattering be-
tween the particle and the surface has been taken into account. We have analysed the
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Fig. 8. – |H/Ho|2 for P polarization for a silver cylinder with a = 200 nm on a dielectric plane
at d = 15 nm; L = 30000 nm and W = 4000 nm. 2(a): λ = 317 nm, θo = 0o. 2(b): λ = 366
nm, θo = 0o. 2(c): λ = 317 nm, θo = 60o. 2(d): λ = 366 nm, θo = 60o. The circular lines show
the boundary of the cylinder.

effects of this interaction on both near and far field scattered intensity distributions. The
incidence takes place from the dielectric side, either normally to the surface plane, or un-
der total internal reflection thus creating a transmitted evanescent wave which circulates
at the flat interface and excites the particle eigenmodes.

In the far zone, the scattering efficiency shows sharp peaks, associated to the excitation
of either plasmon resonances (in metallic particles) or Morphology-dependent resonances
(in dielectric particles), which are further enhanced on incidence with an evanescent
plane wave. At discrete scattering angles well separated from the forward direction, the
scattered intensity keeps very close to this behavior of the scattering efficiencies. When
multiple interaction with the interface is taken into account, it is that lineshape due to
evanescent plane wave excitation which keeps below the one from incident propagating
plane waves. This is more noticeable as the size of the object increases.

In the near field, the stucture of both kind of resonances is observed: we obtain
plasmon resonances whose wave field is located very close to the particle surface, with
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its maximum of intensity being reached outside. For dielectric particles, however, the
intensity maximum of the Mie resonant modes is located inside the particle. Special care
must be taken with the polarization for dielectric particles: P polarized incidence shows
higher field concentration inside the particle with intensity maxima larger than with S

polarization. An interference pattern is created within the particle surface for both kind
of resonances when incident propagating plane wave takes place. The interaction with
the flat interface slightly breaks the mode structure and diminishes the peak intensity
in both cases. The incidence with an evanescent wave acts by smearing the contrast
of the mode pattern in dielectric particles, and by concentrating the intensity at the
bottom side of the particle in metallic particles, due to the higher absortion of the latter.
Besides, in dielectric particles, the pattern rotates with the angle of incidence of the
exciting wave. An interference between the incident evanescent wave and the reflected
wave at the incidence wave side of the particle is also observed.

3. – Optical forces

3.1. Introduction. – This part deals with the optical forces. It has been shown by
Ashkin and coworkers [27, 28] the possibility to act mechanically upon small particles
with radiation pressure. A consequence of these works was the invention of the optical
tweezer for non destructive manipulation of suspended particles [29] or molecules and
other biological objects [30, 31, 32]. Recently, these studies have been extended to the
nanometer scale [33, 34, 35, 36, 37, 38], and multiple particle configurations based on
optical binding have been studied [15, 39, 40, 14, 41]. The effect of evanescent waves
created by total internal reflection on a dielectric surface upon particles has also been
studied, experimentally in Ref. [42], and theoretically in Refs. [43, 44]. In Ref. [43] no
multiple interaction of the light between the particles and the dielectric surface was taken
into account. On the other hand, in Ref. [44] a multiple scattering numerical method
was put forward limited to a 2-D configuration.

It is worth remarking here that several previous theoretical works on optical forces
usually employ approximations depending on the radius of the particle; if the particle is
small it has been usual to split the force into three parts: the gradient, scattering, and
absorbing forces [45]. However, when the radius of the particle grows, or if the shape of
the particle is not spherical, or in the case of an evanescent wave illuminating the sphere,
it is not possible to use this method. Hence, we will use a rigorous and exact calculation
by using the Maxwell’s stress tensor. [46] Some work has been done with this approach
in free space [33, 47], or for a spherical particle over a dielectric surface illuminated by a
Gaussian beam. [48]

3.2. Theory . –

3.2.1. The Maxwell’s stress tensor. The force on an object due to the electromagnetic
field can be computed from Maxwell’s stress tensor. [46] At optical frequencies involved
in many experiments, however, only the time average of the electromagnetic force is
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observed, hence the time averaged force is :

F = 1/(8π)<e

[ ∫

S

[
(E(r, ω).n)E∗(r, ω) + (H(r, ω).n)H∗(r, ω)(2)

−1/2(|E(r, ω)|2 + |H(r, ω)|2)n]
dr

]
,

where S is a surface enclosing the object, n is the local outward unit normal, ∗ denotes
the complex conjugate, and <e represents the real part of a complex number. Let us
notice that Eq. (2) is written in CGS units for an object in vacuum. Notice than an
other form of the Maxwell’s stress tensor exist :

F = 1/(8π)<e

[ ∫

V

[
ρ(r, ω)E∗(r, ω) + J(r, ω)×B∗(r, ω)

]
dr

]
,(3)

with ρ(r, ω) the polarization charge density, J(r, ω) the polarization current density and
V the volume of integration. This second form is more easy to read physically: the first
and second term represents the resultant forces acting, respectively, on the charge and
the current.

3.2.2. The coupled dipole method used for compute the optical forces. For compute
the optical forces, through the Maxwell’s stress tensor, we use the coupled dipole method
(CDM). The CDM was introduced by Purcell and Pennypacker in 1973 for studying the
scattering of light by non-spherical dielectric grains in free space.[49] The object under
studied is represented by a cubic array of N polarizable subunits. Each subunit gets a
dipole moment, due to the incident field, and the field radiated by the other subunits.
Then the field radiated by the object at the position r is the sum of the incident field and
the field radiated by the N subunits. In presence of a flat dielectric surface the procedure
is the same but we must take into account of the interaction between the subunits and
the surface. [50]

For compute the optical forces we use Eq. (3) of the Maxwell’s stress tensor. As
the subunits are small Eq. (3) can rewritten with the help of the dipole moment of the
subunit and the value of the field at its position: [51, 52]

Fk(ri) = (1/2)<e

(
pil(ri, ω)

(
∂

∂k
El(r, ω)

)∗

r=ri

)
,(4)

where k and l stand for the components along either x, y or z. Hence, we use Eq. (4), for
get the force at each subunit of the discretization, and the total force is only their sum.
Notice that if the sphere under studied is small in compare to the wavelength we can do
the dipole approximation and use directly Eq. (4) without the process of discretization
of the CDM.
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Fig. 9. – Geometry of the configuration considered. Sphere of radius a on a dielectric flat surface
(ε = 2.25). The incident wave vector k is in the XZ plane.

3.3. Results and discussions. – The situation under study is represented by fig. 9. We
will compute the optical forces with different radius a and at different angle of incidence
and distance sphere-surface.

3.3.1. Force on a small sphere.

0 25 50 75 100
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022
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Mie limit

zero force

Fig. 10. – Normalized force in the Z-direction for a sphere of radius a = 10nm. The incidence
angle is θ = 0◦. The inset shows the force after z = 50nm. The first horizantal line is the zero
force and the second line the Mie limit.
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Fig. 11. – Normalized force in the Z direction for the sphere with an incidence angle largest than
the critical angle: θ = 42◦. Curve without symbols is for p-polarization, and this with symbol
+ is for s-polarization.

Dielectric case. Figure 10 shows the force in the Z-direction, normalized in respect to
the intensity of the field at the center of the sphere, for light at an angle of incidence
θ = 0◦. A priori, the force seems always negative, i.e., the sphere is attracted towards
the surface, so in a direction opposites to the propagation direction. In fact, we see in the
inset, that the force becomes positive when the sphere goes far from the surface. This
complex behaviour can be explained as followed. The dipole moment associated to the
sphere, induced by the incident field, radiates propagating and evanescent field. These
field are reflected by the surface, hence the sphere interacts with its own evanescent field.
As known, a small dielectric sphere is always attracted by the higher intensity field and
so the sphere is attracted in the direction of the surface. When the sphere goes far
from the surface the force due to the evanescent wave vanishes and then stays only the
scattering force due to the incident field, that is why the force goes to a limit which is
the radiation pressure on the sphere in free space. Notice the difference of magnitude
between the negative and positive force, who denotes the strong coupling between the
sphere and the surface through the evanescent wave.

Figure 11 shows the case where the lower medium is illuminated by total internal
reflection : θ = 42◦ > 41.8◦ = θc where θc is the critical angle. As shown by fig. 11
the normalized force in the Z-direction is always negative. Far from the surface only
the gradient force due to the incident field acts upon the sphere, hence the sphere is
attracted to the higher intensity field. As we plot the normalized force, in respect to the
intensity of the incident field at the position of the sphere, the curve is horizantal far
the surface involving a force decreasing as e−2γz, where γ is the component of the wave
vector perpendicular to the surface. Notice that due to the interaction of the sphere with
itself, via the surface, the force decreases more strongly at small distance sphere-surface.
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Fig. 12. – Force in the z direction for a silver sphere with an incidence angle largest than
the critical angle: θ = 42◦. Curve in full line is for p-polarization, and in dashed line is for
s-polarization.

Metallic case. In the case of metallic spheres the behaviour can be very different due to
the fact that the dipole associated to the sphere is not in phase with the incident field
due to the complex permittivity.[53] fig. 12 shows the case of a small sphere in silver at
z0=30nm of the surface when the ligth illuminates the surface in internal total reflexion.
We see that the force in the Z-direction is also either positive or negative. In fact it
depends of the phase between the dipole moment of the sphere and the applied field.
When the phase is larger than π/2 the sphere is attracted towards the weaker field (for
more details see Ref.[53]) Notice that the same phenomenon is used to build an atomic
mirror: for frequencies of oscillation higher than the atomic frequency of resonance, the
induced dipole oscillates in phase opposition with respect to the field. The atom then
undergoes a force directed towards the region of weaker field. [54] The changing of sign
happens when the dipole moment is in quadrature with the applied field, so when the real
part of the polarizability of the sphere is null. In taking the clausius-Mossotti relation
with a Drude model for the relative permittivity of the sphere, it is easy to see that this
happens at the plasmon resonance and when the relative permittivity is equal to one.
Between these two values the sphere is attracted towards the weaker fields.

We have not plot the case θ = 0◦ as the metallic case has the same behaviour of the
dielectric case: when the sphere is far from the surface we have a positive force due to
the scattering and absorbing force and when the sphere is closed from the surface the
sphere interacts with itself for given a decreasing of the force whatever the wavelength
used.

3.3.2. Force on a large sphere.

Dielectric case. Let us now consider a sphere of radius a =100nm. In fig. 13 we present
the case θ = 0◦. We plot the force along the Z-direction without any approximation
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Fig. 13. – Normalized force in the Z-direction on a sphere with radius a =100nm, λ =632.8nm,
and ε = 2.25. The light angle of incidence is θ = 0◦. The curve in full line corresponds to the
exact calculation and in dashed line with the static approximation.

(full line) and in not taking into account the retardation effect between the sphere and
the surface (dashed line). The dashed line becomes constant after z=200nm, it involves
that the evanescent waves are absent from the interaction process at distances beyond
this limit. From the exact calculation we obtain a low force near the surface (due to the
interaction through the evanescent wave as seen before) and far the surface oscillations
of the force with a period λ/2. As these oscillations does not occurs in the static case,
it means that they come from the multiple reflection of propagating field between the
surface and the sphere. As expected, they decrease as the sphere goes far from the
surface.

Figure 14 represents the case of an evanescent wave above the surface. The force in
that case is always negative, as for a small sphere, but we can see that the force has
oscillations as in fig. 13. We see that, conversely of a small sphere, the propagating wave
becomes not negligible in the process even in an appliced evanescent field.

Metallic case. For the dielectric case, we have seen that the scattering force when the
radius of the sphere increases, becomes not negligible in the computation of the force
even in an evanescent field. If the sphere is metallic we must take into account, in the
process, the absorbing force which produces a positive force along the Z-axis. We have
not presented the study as done in fig. 14 as we have the same behaviour: oscillation of
the normalized force and decrease of the force when the sphere is close from the surface.
More interesting, in this case, is the transition small sphere to large sphere. In fig. 15
we plot the force along the Z-axis for a sphere in an evanescent wave versus the radius
of the sphere.

When the radius is small, as the gradient force depends of a3 and the scattering force
and absorbing force of a6, the gradient force is the most important force. Hence, the
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Fig. 14. – Normalized force in the Z-direction on a sphere with radius a =100nm, λ =632.8nm,
and ε = 2.25. The light angle of incidence is θ = 42◦.The curves in full line correspond to the
exact calculation and in dashed line to the static approximation. The curves without symbol
are in p-polarization, and those with the + symbol in s-polarization.

variation of the force is cubic for small radius. The force is negative for λ = 300nm
(dipole moment in phase with the applied field) and positive for λ = 340nm (dipole
moment in opposition with the applied field). When the radius grows the scattering and
absorbing force can not be considered negligible, as shown by the curve obtained for
λ = 300nm in s-polarization. For this curve when the radius increases, the scattering
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Fig. 15. – Force along the Z-direction on a silver sphere located at z0 =100nm, with θ = 50◦,
versus the radius a for λ = 300nm (dashed line), λ = 340nm (full line), and λ = 351.5nm (thick
line). Symbol +: s-polarization; without symbol: p-polarization. The interaction between the
sphere and the surface is not taken into account.
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force and absorbing force become predominant and change the sign of the force imposed
by the gradient force when the radius was small. This not occurs in p-polarization.[53]
Note that at the plasmon resonance (λ = 351.5nm) as the dipole moment is in quadrature
with the applied field, we have not a gradient force for a small sphere. Hence, we have
only a very small scattering and absorbing force which increase when the radius increases.

3.4. Conclusion. – This present section deals with a theoretical study of the optical
forces acting upon a particle on a dielectric plane surface either illuminated at normal
incidence or under total internal reflection. This study is done both with the coupled
dipole method and Maxwell’s stress tensor. The advantage to take the coupled dipole
method is the possibility to compute in an exact form the forces for any arbitrary form
for the object studied.

We observe that when the incident wave is propagating, the difference between the
force acting on a dielectric sphere and that on a metallic sphere is very small: only the
decreases of the force when the sphere is close to the surface is changed. The main
difference between the two cases (dielectric and metallic) arises however on illumination
under total internal reflection. In that case, the effect on a small silver sphere is com-
pletely different to that observed on a dielectric sphere. Depending on the wavelength,
the gradient force due to the incident field can be either repulsive or attractive. The
change of sign happens both at the plasmon resonance and when ε becomes close to one.
In the interval between these two values the gradient force is positive.

For large sphere the presence of the multiple reflection between the sphere and the
surface produces oscillation of the force in the dielectric and metallic case. But in the
metallic case when the sphere becomes large the scattering and absorbing force can
change an attractive force on a repulsive force in s-polarization.
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