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Time-averaged total force on a dipolar sphere in an
electromagnetic field
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We establish the time-averaged total force on a subwavelength-sized particle in a time-harmonic-varying field.
Our analysis is not restricted to the spatial dependence of the incident field. We discuss the addition of the
radiative reaction term to the polarizability to deal correctly with the scattering force. As an illustration, we
assess the degree of accuracy of several previously established polarizability models. © 2000 Optical Society
of America
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In the past few years there has been an increase of
interest in the manipulation of small particles by
means of the Lorentz force. For the subwavelength
radius of a sphere the total force that is due to a light
wave is usually split into two parts from the use of
the dipole approximation (cf. Ref. 1): a gradient force
�p?===�E, which is essentially due to interaction of the
particle-induced dipole moment p with the electric
field E and scattering and absorbing forces 1/c �p 3 B,
where B is the magnetic vector, �p 5 ≠p�≠t, and c is
the speed of light in vacuum. It has been customary,
after Ref. 1, to express the gradient force Fgrad as (see,
e.g., Ref. 2)

Fgrad � �1�2�a0===E2, (1)

where a0 is the particle polarizability that satisfies the
Clausius–Mossotti equation

a0 � a3 e 2 1
e 1 2

, (2)

where a is the particle radius and e denotes the dielec-
tric permittivity. On the other hand, the absorbing
and scattering forces are written in the approximation
of small spheres through the absorbing �Cabs� and scat-
tering �Cscat� cross sections as

F �
jEj2

�8p�
�Cabs 1 Cscat�

k
k

, (3)

where k represents the light vector �k � jkj�. When
one is using the expression of these cross sections in the
dipole approximation, only the f irst term of their Tay-
lor expansion versus the size parameter, x � 2pa�l, is
usually considered.3

At the optical frequencies involved in many ex-
periments, however, only the time average of the
electromagnetic force is observed. In this Letter we
establish the form of the time-averaged total force on a
particle without restriction on the spatial dependence
of the electromagnetic field. Further, we discuss some
of the consequences of this new relation. For time-
harmonic electromagnetic waves,4 we write E�r, t� �
Re�E0 exp�2ivt��, B�r, t� � Re�B0 exp�2ivt��, and
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p�r, t� � Re�p0 exp�2ivt��; E0, B0, and p0 are com-
plex functions of position in space, and Re denotes the
real part. Then the time average of the total force is

�F � �
1
4T

Z T�2

2T /2

∑
�p 1 p��?===�E 1 E��

1
1
c

� �p 1 �p�� 3 �B 1 B��
∏
dt , (4)

where � denotes the complex conjugate. On perform-
ing the integral and using E0, B0, and p0, we find that
Eq. (4) yields, for each ith Cartesian component of the
averaged total force,

�Fi� � �1�2�Re
∑
p0j≠

j �Ei
0�� 1

1
c

eijk �p0j �B0k��
∏

(5)

for i � 1, 2, 3, where eijk is the Levi–Civita tensor.
Using the relations B0 � c/iv === 3 E0, p0 � aE0, and
�p0 � 2ivp0, one gets for Eq. (5)

�Fi� � �1�2�Re�a�E0j≠j �Ei
0�� 1 eijkeklmE0j≠l�Em

0 ���	 .
(6)

On taking into account that eijkeklm � d
i
ld

j
m 2 di

md
j
l

one can finally express �Fi� as

�Fi� � �1�2�Re�aE0j≠
i�Ej

0 ��� . (7)

Equation (7) is the main result of this Letter. It rep-
resents the total averaged force exerted by an arbi-
trary time-harmonic electromagnetic field on a small
particle.

In this connection, Ref. 5 establishes the average
force on an object represented by a set of dipoles
when the electromagnetic field is a plane wave.
We note that in this case Eq. (7) reduces to just
Eq. (3), in agreement with the results reported in
Ref. 5. However, as we illustrate next, Eq. (7) allows
one to apply the coupled-dipole method (CDM) to
more-complex configurations such as that of a small
particle in front of a dielectric surface, under arbi-
trary illumination (see Ref. 6 for a discussion of the
coupled-dipole method for large particles). Also, the
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absence of the magnetic field B0 in Eq. (7) eases the
computations.

Conversely, when Eq. (2) for the polarizability is in-
troduced into Eq. (7), one obtains for the ith component
of the time-averaged optical force

�Fi� � �1�2�a0 Re�E0j≠i�Ej
0 ���

� �1�4�a0 Re�≠ijE0j
2� � �1�4�a0�≠ijE0j

2� , (8)

which is just the gradient force. Notice the factor
�1�4� (see, e.g., Ref. 7) instead of �1�2�, which often
appears for nonaveraged fields in the literature (see,
for example, Refs. 2, 8, and 9). In agreement with
the remarks in Ref. 10, the scattering force, Eq. (3),
vanishes, and thus �F � reduces to the gradient force.
Therefore, the static expression of a0 from Eq. (2)
must be replaced with an added damping term. This
was done by Draine,10 who, with the help of the optical
theorem, obtained

a � a0��1 2 �2�3�ik3a0� . (9)

The existence of the imaginary term for a in Eq. (9) is
essential for deriving the correct value for the averaged
total force that is due to a time-varying field.

As an illustration, let the field that illuminates the
particle be the beam whose electric vector is

Ex � exp�2x2�2�exp�i�kz 2 vt��, Ey � 0,Ez � 0 .
(10)

Using Eqs. (2) and (10) in Eq. (7), we find

�Fx� � 2�a0�2�x exp�2x2� , (11a)

�Fz� � 0 . (11b)

On the other hand, if the correct polarizability,
Eq. (9), is introduced with Eqs. (10) into Eq. (7), the
total force is then expressed as

�Fx� � �1�2�Re�2ax exp�2x2��

�
2�a0�2�x exp�2x2�

1 1 �4�9�k6a2
0

, (12a)

�Fz� � �1�2�k exp�2x2�Re�2ia�

�
exp�2x2�k4a

2
0�3

1 1 �4�9�k6a
2
0

. (12b)

For a particle with a radius a ,, l, e.g., a � 10 nm,
at wavelength l � 632.8 nm and e � 2.25, the fac-
tor �1 1 �4�9�k6a

2
0 � is very close to 1 (notice in pass-

ing that the expression used for a in Ref. 11 makes
this factor unity). Thus we can see that, in contrast
with Eqs. (11), the correct form for the polarizability,
Eq. (9), leads to a total force given by Eqs. (12a) and
(12b), which can be associated with the gradient and
scattering components, namely, with the time average
of Eq. (1) and Eq. (3) with Cabs � 0, respectively.

In the case of an absorbing sphere, the dielectric con-
stant becomes complex, and so is a0. Then, Eqs. (12)
with a ,, l become

�Fx� � 2�1�2�Re�a0�x exp�2x2� , (13a)
�Fz� �
exp�2x2�k4ja0j

2

3

1
k exp�2x2�

2
Im�a0� . (13b)

The imaginary part of a0 does not contribute to
the component �Fx�, that is, to the gradient force,
Eq. (13a). On the other hand, the absorbing and
scattering force, Eq. (13b), exactly coincides with the
expression obtained from Eq. (3).

We next illustrate the above arguments with numeri-
cal calculations that permit us to assess the degree
of accuracy of several previously established polariz-
ability models. We first compare the relative differ-
ence between the force obtained from the exact Mie
calculation and the most-typical polarizability models,
namely, those of Lakhtakia12 (LAK) and Dungey and
Bohren13 (DB) and the Clausius–Mossotti relation with
the radiative reaction term10 (CM-RR), versus the ra-
dius a of a sphere illuminated by a propagating plane
wave in free space (Fig. 1). Next, when this sphere is
illuminated by an evanescent wave created by total in-
ternal ref lection on a dielectric surface, the component
of the force perpendicular to the incident wave vector
(Fig. 2) is compared with the result derived from the
CDM.6 All curves are represented up to a � l�10.
The percent relative difference in Fig. 2 is defined as
100 3 �Fref 2 Fpol��Fref , where pol denotes the force
obtained from the corresponding method used for the
polarizability (LAK, DB, or CM-RR) and ref stands for

Fig. 1. (a) Relative difference between the force com-
puted by the exact Mie calculation and by the dipole
approximation: thin curve, CM-RR; thick curve, LAK;
dashed curve, DB. The sphere is glass �e � 2.25�
illuminated by an incident propagating plane wave
�l � 600 nm�. (b) Same as (a) but for a silver sphere
�l � 400 nm, e � 24 1 i0.7�.

Fig. 2. (a) Relative difference between the component of
the force perpendicular to the incident wave vector obtained
by the CDM and by the dipole approximation: thin curve,
CM-RR; thick curve, LAK; dashed curve, DB. The sphere
is glass �e � 2.25� illuminated by an incident evanescent
wave �l � 600 nm�. (b) Same as (a) but for a silver sphere
�l � 400 nm, e � 24 1 i0.7�.
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the force derived from the Mie calculation when the
incident wave is propagating and from the CDM when
the incident wave is evanescent.

We first consider a dielectric sphere (glass, e � 2.25)
illuminated at l � 600 nm [Figs. 1(a) and 2(a)].
We observe that, for an incident propagating wave
[Fig. 1(a)], the result from the CM-RR relation is
better than that of DB, and this, in turn, is better
than the result from LAK. The force over a dielec-
tric particle given by the exact Mie calculation is
F � Cscat�1 2 cos u� jEj2��8p�, and that obtained from
the dipole approximation is F � �1�2� jEj2 Re�2ia�.
When the DB model is used, a � �3�2�ia1�k3, where
a1 is the f irst Mie coefficient, and hence, 4p Re�2ia�
is the scattering cross section for an electric dipole.
However, when Eq. (9) for the CM-RR is employed,
4p Re�2ia� constitutes only the f irst term of the
Taylor expansion of the scattering cross section versus
the size parameter x. This is why Cscat is underesti-
mated when it is calculated from the CM-RR model.
Therefore the DB model should be better. However,
in both cases the factor cos u has not been taken into
account in the dipole approximation, and thus both
results overestimate the force. Hence, this factor
cos u produces a balance, making the CM-RR result
closer to the Mie solution. In the case of an incident
evanescent wave [Fig. 2(a)], the DB and CM-RR
results are very close together; this is due to the fact
that the real parts of both polarizabilities are very
close to each other. One can see that the LAK result,
as with a propagating wave, is far from the correct
solution.

As a second example, we consider a metallic sphere
(silver) illuminated at l � 400 nm �e � 24 1 i0.7�.
We now observe that for an incident propagat-
ing wave [Fig. 1(b)] the DB model yields the
best result. The force can be exactly written as
F � �Cext 1 Cscatcos u� jEj2��8p�. Notice that now
Cscatcos u is of the sixth order in x in comparison
with Cext. Since Cext ~ Re�a1� in the electric dipole
limit, the DB formulation appears to be the best.
Also, for incident evanescent waves [Fig. 2(b)], the
DB formulation gives the most accurate solution.
However, for a metallic sphere, the relative per-
mittivity greatly depends on the wavelength used.
Hence, it is diff icult to establish a generalization of
these results. We checked and found that, for a gold
or silver sphere in free space in the visible, the DB
formulation is often the best.
In summary, we have established the average total
force on a small particle in a time-harmonic-varying
field of arbitrary form and thus clarified the use of
this finding in the interpretation of experiments as
well as of previous theoretical works. For instance, we
showed that Eq. (7) is not just the gradient force as
stated previously (see, e.g., Ref. 14). Also, this general
expression shows the importance of the radiative re-
action term in the polarizability of the sphere as put
forward by other authors. In the derivation of Eq. (7)
we make no assumptions about the surrounding envi-
ronment. It is necessary only to know both the electric
field and its derivative at the position of the sphere,
and thus Eq. (7) permits easy handling of illuminat-
ing evanescent fields. An immediate important conse-
quence is that it allows one to assess the adequacy of
several polarizability models.
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