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Coupled dipole method determination of the electromagnetic force on a particle
over a flat dielectric substrate

P. C. Chaumet and M. Nieto-Vesperinas
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de investigaciones Cientificas,

Campus de Cantoblanco, Madrid 28049, Spain
~Received 13 October 1999; revised manuscript received 13 December 1999!

We present a theory to compute the force due to light upon a particle on a dielectric plane by the coupled
dipole method. We show that, with this procedure, two equivalent ways of analysis are possible, both based on
Maxwell’s stress tensor. The interest in using this method is that the nature and size or shape of the object can
be arbitrary. Even more, the presence of a substrate can be incorporated. To validate our theory, we present an
analytical expression of the force due to the light acting on a particle either in presence, or not, of a surface.
The plane wave illuminating the sphere can be either propagating or evanescent. Both two- and three-
dimensional calculations are studied.
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I. INTRODUCTION

The demonstration of mechanically acting upon sm
particles with radiation pressure was done by Ashkin.1,2 A
consequence of these works was the invention of the op
tweezer for nondestructive manipulation of suspend
particles3 or molecules and other biological objects.4–6 Re-
cently, these studies have been extended to the nanom
scale,7–12 and multiple particle configurations based on op
cal binding have been studied.13–17 Also, the effect of eva-
nescent waves created by total internal reflection on a die
tric surface on which particles are deposited was studie
Ref. 18. However, the only theoretical interpretation of su
a system is given in Refs. 19 and 20. In Ref. 19 no multi
interaction of the light between the particles and the diel
tric surface was taken into account. On the other hand
Ref. 20 a multiple scattering numerical method was put f
ward limited to a two-dimensional~2D! configuration.

It is worth remarking here that several previous theor
cal works on optical forces usually employ approximatio
depending on the radius of the particle; if the particle
electrically small it has been usual to split the force into th
parts: the gradient, scattering, and absorbing forces.21 How-
ever, a rigorous and exact calculation requires the use
Maxwell’s stress tensor. We shall use it in this paper. So
work has been done in free space,7,22 or for a spherical par-
ticle over a dielectric surface illuminated by a Gauss
beam.23

We shall present, therefore, a detailed theoretical anal
in three dimensions of how the optical force is built on t
multiple interaction of light with the particle and the diele
tric surface. This will be done whatever its size, shape,
permittivity. To this end, we shall make use of the coup
dipole method~CDM!, whose validity was studied in deta
in Ref. 25.

In Sec. II we present the CDM, and two possibilities th
arise with this method to compute the force by means
Maxwell’s stress tensor. Concerning the first possibility,
Sec. II A we use Maxwell’s stress tensor directly and p
form the surface integrations. As regards the second po
PRB 610163-1829/2000/61~20!/14119~9!/$15.00
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bility, we present in Sec. II B the dipole approximation o
each subunit of discretization for the numerical calculatio
Since, however, these methods are somewhat cumbers
from a numerical point of view, we have introduced in Se
III an analytical calculation for the force due to the light on
electrically small particle in the presence of the surface. R
sults are illustrated in three dimensions in Sec. III A~a little
sphere! and in two dimensions in Sec. III B~a small cylin-
der!. In Sec. IV we compute the force with the CDM an
validate these calculations on electrically small particles
means of the analytical solution presented in Sec. III. Af
this validation of the CDM on little particles, we present
Sec. IV C calculations on larger particles.

II. ELECTROMAGNETIC FORCE COMPUTED
WITH THE COUPLED DIPOLE METHOD

The CDM was introduced by Purcell and Pennypacker
1973 for studying the scattering of light by nonspherical
electric grains in free space.26 This system is represented b
a cubic array ofN polarizable subunits. The electric fiel
E(r i ,v) at each subunit positionr i can be expressed as

E~r i ,v!5E0~r i ,v!1(
j 51

N

@S~r i ,r j ,v!

1T~r i ,r j ,v!#a j~v!E~r j ,v!, ~1!

whereE0(r i ,v) is the field at the positionr i in the absence
of the scattering object,T is the linear response to a dipole
free space,27 andS represents the linear response of a dip
in the presence of a surface in front of which the particle
placed~see Fig. 1!. We take the weak form of the CDM, a
in our configuration the strong form does not adapt.28 How-
ever, in fact for very small discretization subunits, the diffe
ence of results derived from the strong and weak forms is
significant. The derivation ofS is extensively developed in
Refs. 29 and 30.a j (v), the polarizability of the subunitj, is
expressed as:

a j~v!5a j
0~v!/@12~2/3!ik0

3a j
0~v!#, ~2!
14 119 ©2000 The American Physical Society
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wherek05uk0u5v/c (k0 being the incident wave vector o
the electromagnetic field in vacuum! anda j

0(v) is given by
the Clausius-Mossotti relation:

a j
0~v!5

3d3

4p

«~v!21

«~v!12
. ~3!

In Eq. ~3! d is the spacing of lattice discretization and«(v)
stands for the relative permittivity of the object. Let us r
mark that the polarizability is expressed according to Eq.~2!
as defined by Draine.31 The term (2/3)ik0

3a j
0(v) is the radia-

tive reaction term, necessary for the optical theorem to
satisfied and for a correct calculation of forces via t
CDM.32

Once the values ofE(r i ,v) are obtained by solving the
linear system, Eq.~1! ~whose size is 3N33N), it is easy to
compute the field at an arbitrary positionr :

E~r ,v!5E0~r ,v!1(
j 51

N

@S~r ,r j ,v!

1T~r ,r j ,v!#a j~v!E~r j ,v!. ~4!

The computation of the force also requires the magnetic fi
radiated by the scattering object. We obtain it through Fa
day’s equation,H(r ,v)5c/( iv)“3E(r ,v).

A. Force computed with Maxwell’s stress tensor

The force F on an object due to the electromagne
field33 is computed from Maxwell’s stress tensor:34

F51/~8p!ReF E
S
$@E~r ,v!•n#E* ~r ,v!

1@H~r ,v!•n#H* ~r ,v!21/2@ uE~r ,v!u2

1uH~r ,v!u2#n%dr G , ~5!

whereS is a surface enclosing the object,n is the local out-
ward unit normal, the asterisk denotes the complex con
gate, and Re represents the real part of a complex num

FIG. 1. Geometry of the configuration considered in this pap
sphere, or cylinder, of radiusa on a dielectric flat surface. The
relative permittivity is«52.25 both for the sphere~or the cylinder!
and the surface. The wavelength used isl5632.8 nm in vacuum
and the incident wave vectork is in theXZ plane.
-

e

ld
-

-
er.

Let us notice that Eq.~5! is written in CGS units for an
object in vacuum, and so will be given all forces presented
Sec. IV. To apply Eq.~5! with the CDM, we must first solve
Eq. ~1! to obtainE(r i ,v) at each dipole position, and then
through Eq.~4! and the Faraday equation, the electroma
netic field is computed at any positionr of S. This enables us
to numerically perform the two-dimensional quadrature
volved in Eq.~5!.

B. Force determined via the dipolar approximation

Let us consider a small spherical particle with a rad
smaller than the wavelength. Then theu component of the
force can be written in the dipole approximation:35,32

Fu~r0!5~1/2!Re(
v51

3 S pv~r0 ,v!
]Ev* ~r0 ,v!

]u D , u51,2,3

~6!

wherer0 is the position of the center of the sphere andu and
v stand for the components alongx, y, or z. We discretize
the object intoN small dipolesp(r i ,v) ( i 51, . . . ,N) so that
it is possible to compute the force on each dipole from E
~6!. Hence, to obtain the total force on the particle it suffic
to sum the contributionsF(r i) from all of the dipoles. To use
this method it is necessary to know]Ev(r i ,v)/]u at each
discretization subunit. On performing the derivative of E
~1! we obtain

S ]E~r ,v!

]r D
r5r i

5S ]E0~r ,v!

]r D
r5r i

1(
j 51

N S ]

]r
@S~r ,r j ,v!

1T~r ,r j ,v!# D
r5r i

a j~v!E~r j ,v!. ~7!

Thus, the derivative of the field atr i requires that of
E0(r i ,v) and that ofT andS for all pairs (r i ,r j ). Hence we
now have two tensors with 27 components each. It is imp
tant to notice that the derivative of the field atr i has been
directly computed from just the field at this positionr i , so it
is not computed in a self-consistent manner. To have
required self-consistence for the derivative, it is necessar
perform in Eq.~1! a multipole expansion up to second orde
Then, this equation must be written up to the quadrup
order after taking its derivative. As a result, we obtain
linear system whose unknowns are both the electric field
its derivative. The disadvantage of this method is that
size of the linear system increases up to 12N312N and re-
quires the computation of the second derivative ofT andS
~81 components!. More information about the CDM by using
the multipole expansion can be found in Ref. 25.

In what follows, we shall denote CDM-A the force com
puted directly from Maxwell’s stress tensor Eq.~5! and
CDM-B the force obtained on using the field derivative E
~6!. The advantages of these two methods is that they are
restricted to a particular shape of the object to be discretiz
Furthermore, this object can be inhomogeneous, metallic
in a complex system whenever it is possible to compute
linear response to a dipole.

r:
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III. FORCE ON A DIPOLAR PARTICLE

A. The three-dimensional case: A sphere

Equation~1! with N51, taking the surface into accoun
gives for the field at the positionr05(x0 ,y0 ,z0) of the
sphere of a radiusa:

E~r0 ,v!5@ I2a~v!S~r0 ,r0 ,v!#21E0~r0 ,v!, ~8!

whereI is the unit tensor anda(v) the polarizability of the
sphere according to Eq.~2! with a0(v)5a3@«(v)
21#/@«(v)12#. We notice thatS is purely diagonal and
depends only on the distancez0 between the center of th
sphere and the surface~see Fig. 1!. We also assume that th
sphere is near the surface, and henceS can be used in the
static approximation (k050, we shall discuss the validity o
this approximation in Sec. IV!. Therefore, the components o
this tensor become Sxx5Syy52D/(8z0

3) and Szz

52D/(4z0
3), with D5(12e)/(11e) representing the

Fresnel coefficient of the surface. Since we consider the
ject in the presence of a surface with a real relative perm
tivity, D is real. As shown by Fig. 1, the light incident wav
vectork0 lies in theXZ plane. Therefore, there is no force
the Y direction. On using Eqs.~6! and~8!, and assuming the
incident fieldE0 above the surface to be a plane wave eit
propagating or evanescent, depending on the illumina
angleu, the components of the force on the sphere can
written as

Fx5
Re

2 F4az0
3~ ikx!* S 2uE0xu2

8z0
31aD

1
uE0zu2

4z0
31aD

D G , ~9!

Fz5uE0xu2
Re

2 S 8z0
3a~ ikz!*

8z0
31aD

1
12z0

2uau2D

u8z0
31aDu2D

1uE0zu2
Re

2 S 4z0
3a~ ikz!*

4z0
31aD

1
6z0

2uau2D

u4z0
31aDu2D ~10!

for p polarization and

Fx5uE0yu2
Re

2 F8z0
3a~ ikx!*

8z0
31aD

G , ~11!

Fz5uE0yu2
Re

2 S 8z0
3a~ ikz!*

8z0
31aD

1
12z0

2uau2D

u8z0
31aDu2D ~12!

for s polarization. We see that the advantage of working w
the static approximation is that an analytic form of the for
is obtained. To see the effect of the incident field only~i.e.,
without interaction with the surface!, we can putz0→` or
D50 in Eqs.~9!–~12!. The forces are then expressed as

Fx5uE0u2
Re

2
@a~ ikx!* #, ~13!

Fz5uE0u2
Re

2
@a~ ikz!* #, ~14!
b-
t-

r
n
e

h

with uE0u25uE0yu2 for s polarization and uE0u25uE0xu2
1uE0zu2 for p polarization. Equations~13! and ~14! show a
spherical symmetry, and hence the results both inp and s
polarization are the same.

If we look at Fig. 1, we see that the incident field abo
the surface always haskx real, but kz can be either rea
~propagating wave! or imaginary~evanescent wave whenu
.uc , whereuc is the critical angle defined asAe sinuc51).
Hence, all forces in theX direction have the form
A Re@a( ikx)* #, where A is always a positive number. In
using Eq.~2! we find that Re@a( ikx)* #.(2/3)a0

2k0
3kx @we

have assumed that (4/9)k0
6a0

2!1; in fact, this expression is
about 6.631027 for a510 nm, l5632.8 nm, and«
52.25; thus this approximation is perfectly valid#. Hence,
whatever the field, either propagating or evanescent,
whether the system is in the presence of a surface or in
space, the force in theX direction is always along the inci
dent field.

From Eq.~14! and from the discussion above, it is easy
see that in the absence of interfaces the force is positive f
propagating incident wave (kz real!. In the case of an eva
nescent incident wave,kz5 ig with g.0, and hence the
force becomesFz52ga0uE0u2/2; namely, the sphere is at
tracted towards the higher intensity field. Concerning
force along theZ direction, its sign will depend on the natur
of the field and the interaction of the sphere with the surfa
We shall discuss this in Sec. IV A.

B. The two-dimensional case: A cylinder

For a cylinder with its axis at (x0 ,z0), parallel to theY
axis ~Fig. 1!, the electric field at its center is obtained by a
equation similar to Eq.~8!, but with a different polarizability.
With the help of Refs. 36 and 37 we write this polarizabilit

a1~v!5
a1

0~v!

12 ik0
2pa1

0~v!/2
with a1

0~v!5
«~v!21

«~v!11

a2

2
,

~15!

a2~v!5
a2

0~v!

12 ik0
2pa2

0~v!
with a2

0~v!5@«~v!21#
a2

4
.

~16!

The subscriptsi 51 and 2 correspond to the field perpendic
lar and parallel to the axis of the cylinder, respectively. T
linear response in the presence of a surface in the two dim
sional case is given in Ref. 38 fors-polarization and in Ref.
39 for p polarization. Since we address a cylinder with
small radiusa and near the surface, we use the static appro
mation, and thenSxx5Szz52D/(2z0

2) and Syy50. In the
same way as seen before, the force is written as

Fx5uE0u2
Re

2
@a2~ ikx!* #, ~17!

Fz5uE0u2
Re

2
@a2~ ikz!* # ~18!

for s polarization and
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TABLE I. Force on a sphere of radiusa510 nm in free space. Numerical results for different number
subunitsN in the CDM-A, CDM-B. Comparison of calculation with the dipolar approximation and Mi
calculation. %~Mie! is the relative difference~in percent! between the exact Mie calculation and the meth
used.

CDM-A CDM-B Dipole approx. Mie
Force N % ~Mie! Force N % ~Mie! Force %~Mie! Force

2.8119310222 81 0.46 2.8338310222 81 1.24 2.8027310222 0.13 2.7991310222

2.8181310222 912 0.68 2.8243310222 912 0.91
2.8151310222 1791 0.57 2.8194310222 1791 0.73
2.8151310222 2553 0.57 2.8186310222 2553 0.70
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Fx5uE0u2
Re

2 S 2z0
2a1~ ikx!*

2z0
21a1D

D , ~19!

Fz5uE0u2
Re

2 S 2z0
2a1~ ikz!*

2z0
21a1D

1
2z0ua1u2D

u2z0
21a1Du2D ~20!

for p polarization. uE0u25uE0yu2 for s polarization and
uE0u25uE0xu21uE0zu2 for p polarization. If, again,z0→` or
D50 and there is no interaction between the cylinder a
the surface, then we find the same equations as those e
lished for the sphere with only a replacement ofa by a1 or
a2, depending on the polarization. Concerning the fo
along theX direction, we have the same effect as for t
sphere, namely,Fx has the sign ofkx .

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present numerical results on forces
ing on either an electrically small sphere or a small cylind
Theses forces are normalized in the formFu /uE0u2, where
Fu is the u component of the force anduE0u stands for the
modulus of the incident field at the center of either the sph
or the cylinder. All calculations are done for a body in gla
(«52.25), at a wavelength of 632.8 nm, in front of a fl
surface (e5«52.25) illuminated from the glass side by in
ternal reflection~Fig. 1!.

A. Results for an electrically small sphere

We have first checked our CDM calculation by compari
it with the well known Mie scattering results for a sphere
free space illuminated by a plane wave.40 The force is

FMie5
1

8p
uE0u2~Cext2cosuCsca!

k0

k0
, ~21!

where Cext denotes the extinction cross section,Csca the
scattering cross section, andcosu the average of the cosin
of the scattering angle. Calculations are done for a spher
radiusa510 nm.

Table I compares the force obtained from the CDM
using, without any approximation, either the method dev
oped in Sec. II A~CDM-A! or that from Sec. II B~CDM-B!,
and from the dipolar approximation presented in Sec. III
with the Mie calculation@% ~Mie! is the relative difference
in percent between the Mie result and the other correspo
ing method#. For an incident field withuE0u594825 V/m,
d
ab-

e

t-
r.

re
s

of

l-

,

d-

which corresponds to a power of 1.19 mW distributed on
surface of 10mm2, the force on the sphere in MKSA unit
is 2.7991310222 N. One can see that for both CDM-A an
CDM-B the convergence is reached even for a coarse
cretization, and hence either one of the two CDM approac
can be used. As regards the dipolar approximation, we c
clude that it is perfectly valid to use it for a sphere of radi
a510 nm (a/l,0.016). Notice that in this article we prefe
the Clausius-Mossotti relation with the radiative reacti
term to the polarizability defined by Dungey and Bohren24 as
the force obtained in free space for an electrically sm
sphere is less accurate than the one obtained from
Clausius-Mossotti relation.

Now that we have validated our methods~both analytic
and CDM! we proceed to take the surface into account
should be remarked that with the CDM-A it is not possible
compute the force when the sphere is on the surface. Th
because for an observation point very close to the sphere
electromagnetic field values are affected by the discretiza
of the sphere, and so the field is not correctly computed.
empirical criterion that we have found25 is that the electric
field must be computed at least at a distanced from the
sphere, but this criterion depends on the relative permittiv
For more precision about the dependence of the criterion
the relative permittivity one can look to Ref. 31. With th
CDM-B this problem does not occur because with this a
proach it is not necessary to obtain the field outside
sphere.

In all figures shown next, we plot the force versus t
distancez between the sphere~or the cylinder, see Sec. IV B!

FIG. 2. Normalized force in theZ direction on the sphere ofa
510 nm versus distanceZ. The angle of incidence of illumination
is u542° in p polarization. The full line represents the exact ca
culation with CDM-B, the dashed line corresponds to the sta
approximation with CDM-B, and the dotted line is the calculati
without interaction between the sphere and the surface.
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and the plane~notice that we represent byz0 the distance
between the center of the sphere, or cylinder, and the pla!.
The calculation using the dipole approximation, as well
the CDM ~A or B!, has been done with the static approxim
tion for the linear response of a dipole in the presence o
surface~SALRS!. However, the distance between the sph
and the surface goes generally up to 100 nm. In orde
justify the study of the force at distances about 100 nm
tween the sphere and the plane through a calculation don
the static approximation, we plot in Fig. 2 the normaliz
force Fz for p polarization, with a sphere of radiusa
510 nm, at an angle of incidenceu542°, without any ap-
proximation with the CDM-A~namely, taking into accoun
all retardation effects! with the SALRS, and with the ap
proximation in which no interaction between the sphere a
the surface is considered. The difference between SAL
and the exact calculation is less than 1.5%. This is in f
logical. Near the surface, the SALRS is correct, far from
surface. However,S in the exact calculation is significantl
different fromS derived from a static approximation. Neve
theless, for distances larger thanz530 nm the curves over
lap because the sphere does not ‘‘feel’’ the substrate at
distance. This is manifested by a difference of only 2%
tween the exact calculation result and that computed with
addressing the surface~horizontal line!.

Figure 3 shows the normalized force for light at an an
of incidenceu50°. The curves corresponding to CDM-
and CDM-B are similar, and the dipole approximation a

FIG. 3. Normalized force in theZ direction on a sphere of radiu
a510 nm. The full line corresponds to the dipole approximatio
the dashed line to the CDM-A, and the dotted line to the CDM
The angle of incidence isu50°. The inset shows the force nearz
550 nm. We show the zero force and the force computed fr
Mie’s limit with Eq. ~21!.
e
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e
to
-
in

d
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e

is
-
ut

e

-

pears slightly above when the sphere is close to the surf
This may seem strange at first sight in view of the go
results presented in Table I~we will discuss it later!. We can
see that although the illuminating wave is propagating, if
sphere is near the surface, it is attracted towards it, oppo
to the propagation direction. To understand this, we look
Eq. ~12!, established with the dipole approximation with th
valueskx50, kz5k0, and E0z50, which corresponds tou
50°. After some approximations@namely (4/9)k0

6a0
2!1,

which impliesuau2.a0
2#, the force can be written:

Fz5
uE0u264z0

6

u8z0
31aDu2 S a0

2k0
4/31

3a0
2D

32z0
4 D . ~22!

The factor before the parentheses of Eq.~22! corresponds to
the intensity of the field at the position of the sphere. T
first term in the parentheses of this equation is due to
light scattering on the particle~as in free space! and is al-
ways positive. The second term in the parentheses is alw
negative asD,0. Therefore, the relative weight of the tw
terms in Eq.~22! determines the direction ofFz . Fz given by
Eq. ~22!, becomes zero for

z0
45

9~«21!

32k0
4~«11!

. ~23!

Hence, in our example we findz0557 nm. Below the value
of Eq. ~23! the force is attractive towards the surface, a
above this value the sphere is pushed away. This is see
the inset of Fig. 3 which enlarges those details. We findFz
50 at z547 nm namely atz05(47110) nm557 nm,
which is exactly the same value previously found. Phy
cally, the attraction of the sphere is due to the second term
Eq. ~22!, which corresponds to the interaction of the dipo
with its own evanescent field reflected by the surface. N
we can explain the discrepancy between the dipole appr
mation and the CDM as regards the good results obtaine
free space. In fact, when the computation is done in f
space the field can be considered uniform over a range
20 nm. However, in an evanescent field, the applied field
not uniform inside the sphere and the Clausius-Mossotti
lation is less adequate. Hence the dipole approximation
parts more from the exact calculation. However, when
sphere is out from the near field zone, the three meth
match well~see the inset of Fig. 3!. We can also see in the

,
.

and
used.
TABLE II. Force on a finite cylinder of radiusa510 nm in free space. The discretization interval isd54 nm. Numerical results are
presented for different lengthsL of the cylinder for both CDM-A and CDM-B. Comparison is made with both the dipolar approximation
Mie’s calculation. %~Mie! is the relative difference between the exact Mie calculation for an infinite cylinder and the method
Calculations are done for the field perpendicular to the axis of the cylinder.

CDM-A CDM-B Dipole approx. Mie
Force L ~nm! % ~Mie! Force L ~nm! % ~Mie! Force %~Mie! Force

2.1540310213 197 24 2.1625310213 197 24 2.8433310213 0.27 2.8354310213

2.9906310213 391 5.47 3.0013310213 391 5.85
2.7907310213 777 1.58 2.8000310213 777 1.25
2.8661310213 1164 1.08 2.8756310213 1164 1.42
2.8347310213 1551 0.03 2.8439310213 1551 0.30
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inset of Fig. 3 that these three curves tend towards the
limit because at large distance there is no interaction with
surface.

Figure 4 shows thez component of the normalized forc
when the incident wave illuminated atu542°.41.8°5uc .
Then, fors polarization we can write Eq.~12! as

Fz5
uE0yu2

u8z0
31aDu2

@24z0
3ga0~a0D18z0

3!16z0
2a0

2D#.

~24!

It is easy to see that for a dielectric sphere both the first
second terms within the brackets of Eq.~24! are always
negative. Hence, the sphere is always attracted towards
surface~the same reasoning can be done forp polarization!.
Near the surface the force becomes larger because o
interaction of the sphere with its own evanescent field.
notice that the normalized force becomes constant at largz.
This constant reflects the fact that the force decrease
e22gz from the surface.

B. Results for a small cylinder

Let us now address an infinite cylinder. Since the CD
method used here works in three dimensions, we have c
puted the force on a finite length cylinder. In order to ver
this approximation, we once again compare the force,
tained in free space from the CDM with different cylinde
lengths, with that from a calculation done with the dipo
approximation established in Sec. III B, and that from
exact calculation for an infinite cylinder40 ~i.e., the well
known 2D version for cylinders of the Mie calculation fo

FIG. 4. Normalized force in theZ direction acting on the spher
with a510 nm. The angle of incidenceu542° is larger than the
critical angleuc541.8°. The full line corresponds to the dipo
approximation, the dashed line to the CDM-A, and the dotted
to the CDM-B. Curves without symbols are forp polarization, and
those with symbol1 are fors polarization.
ie
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spheres!. We consider a radius of the cylinder,a510 nm,
with the same spacing lattice as for the case of the sph
namely 81 subunits. We have seen that this value od
54 nm gives consistent results. In all cases we compute
force per unit length of the cylinder.

The first case addressed is with the electric field perp
dicular to the axis of the cylinder (p polarization!. The re-
sults are given in the Table II. The second case considere
with the electric field parallel to the axis of the cylinder (s
polarization! in Table III.
We notice that the dipole approximation gives the corr
results forp polarization, but it is worse fors polarization. If
we compare CDM-A and CDM-B, we see that they both gi
the same results. But we also see that the length of the
inder has a great influence, although up to a different ex
according to whether we deal withp or s polarization. Forp
polarization, the simulation of an infinite cylinder becom
correct atL.l/2 and for s polarization only it is so atL
.2l. This can be understood by the fact that inp polariza-
tion the electric field is continuous at the end of the cylind
thus the end does not have a large influence on the fi
computed around the cylinder. However, ins polarization the
field is discontinuous at the end of the cylinder and then
field will strongly vary around this end and so will do th
force. This is why ins polarization it is necessary to consid
cylinders with large lengths in order to avoid edge effec
Now let us address the presence of the plane surface to c
pute the force. We consider the cylinder lengthL
51551 nm. Like for the sphere, we address bothu50°
~Fig. 5!, and 42°~Fig. 6!. The curves from CDM-B stop a
z510 nm due to the disadvantage previously noted.

Concerning Fig. 5, if we focus onFz for p polarization,
we can write this force approximated from Eq.~20! by

Fz5
4z0

4uE0u2

u2z0
21a1Du2 S ~a1

0!2k0
3p/41

~a1
0!2D

4z0
3 D . ~25!

Equation~25! is of the same form as Eq.~22!. Hence, the
same consequence is derived: near the surface the cylind
attracted towards the plane surface. But far from the pl
the cylinder is pushed away because at this distance the
inder cannot interact with itself. As with the sphere, we c
compute the distancez0 at which the force is null,

z0
35

~«21!

pk0
3~«11!

, ~26!

which in our illustration leads toz0550 nm. Although we
do not present now an enlargement with details of Fig. 5,

e

TABLE III. The same as in Table II but for the electric field parallel to the axis of the cylinder.

CDM-A CDM-B Dipole. approx. Mie
Force L ~nm! % ~Mie! Force L ~nm! % ~Mie! Force %~Mie! Force

0.5649310212 197 63 0.2163310212 197 86 1.5015310212 2.31 1.5370310212

0.9986310212 391 35 1.0021310212 391 35
1.3059310212 777 15.0 1.3103310212 777 14.7
1.3971310212 1164 9.10 1.4018310212 1164 8.80
1.4430310212 1551 6.12 1.4479310212 1551 5.80
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have found the valuez05(40110) nm550 nm. The cylin-
der in p polarization has the same behavior as the sph
However, in s polarization there is a difference. Then th
force obtained from the dipolar approximation is always co
stant because there is no interaction with the surface. Th
clear from Eq.~19!, and it is due to the fact that in th
electrostatic limitSyy tends to zero, and then there is n
influence of the surface on the cylinder. This is a con
quence of the continuity of both the field and its derivative
both the plane and the cylinder.38 Therefore, the cylinder
does not feel the presence of the plane. As the wave is pr
gating, the force is positive, thus pushing the cylinder aw
from the plane with magnitude values given by Table I
Notice that the force obtained from CDM-B, when the cy
inder is in contact with the surface, becomes negatives
polarization. This is due to the diffraction of the field at th
end of the cylinder, which induces a component perpend
lar to the plane, and therefore an attractive force.

In the case represented in Fig. 6, as for the sphere,
observe a force always attractive (Fz,0) whatever the po-
larization. Forp polarization we have exactly the same b
havior as for the sphere. However, fors polarization the nor-
malized force is always constant whatever the dista
between the cylinder and the surface, due to the same re
as before, namely,Syy50. Only when the cylinder is on the
surface can we see from the CDM-B calculation that
force is slightly more attractive for the same reason pre
ously quoted.

C. Results for a sphere beyond the Rayleigh regime

Let us now consider a sphere of radiusa5100 nm. This
size is far from the Rayleigh scattering regime ('l/3). As in

FIG. 5. Normalized force in theZ direction on a cylinder with
radiusa510 nm, l5632.8 nm, and«52.25. The light angle of
incidence isu50°. The full line corresponds to the dipole approx
mation, the dashed line to the CDM-A, and the dotted line to
CDM-B.
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previous cases, we first validate our method with the aid
Mie’s calculation in free space. Table IV shows the resu
As before, asd decreases, the CDM results tend to the M
calculation, the error never exceeding 1.7%. Now, we
dress the presence of a flat dielectric surface. The force
be shown next, are computed with CDM-B only since t
particle can be in contact with the surface.

In Fig. 7 we present the case foru50°. We have plotted
two curves: the exact calculation and the SALRS done w
N51791. In the inset of Fig. 7, we see that even near
surface SALRS is not good. This is due to the large radius
the sphere; then the discretization subunits on the top of
sphere are at 100 nm from the surface, and thus the effec
retardation are now important. The SALRS calculation a
shows that at a distance of 200 nm~which corresponds to the
size of the sphere: 2a5200 nm) the sphere does not ‘‘feel
the surface, as manifested by the fact that then the cu
obtained from this computation reaches the Mie scatter
limit previously obtained in Table IV~cf. the full horizontal
line in the inset!. Hence, we conclude that evanescent wa
are absent from the interaction process at distances be
this limit. From the exact calculation we obtain a very lo
force near the surface, due to the interaction of the sph
with itself. This effect vanishes beyondz'50 nm where
oscillations of the forceFz take place with periodl/2. As
these oscillations do not occur in the SALRS, this means
they are due to interferences from multiple reflections
tween the surface and the sphere. As expected, they dec
as the sphere goes far from the surface.

e
FIG. 6. Normalized force in theZ direction on the same cylinde

as described in Fig. 5 but with an angle of incidenceu542° larger
than the critical angleuc541.8°. The full line corresponds to th
dipole approximation, the dashed line to the CDM-A, and the dot
line to the CDM-B.
nt
TABLE IV. Force on a sphere of radiusa5100 nm in free space. Numerical results are for differe
number of subunitsN in CDM-A and CDM-B. Comparison with Mie’s calculation also given.

CDM-A CDM-B Mie
Force N (d in nm! % ~Mie! Force N (d in nm! % ~Mie! Force

2.1355310216 280 ~25! 1.31 2.1439310216 280 ~25! 1.71 2.1080310216

2.1353310216 912 ~17! 1.30 2.1402310216 912 ~17! 1.53
2.1332310216 1791 ~13! 1.20 2.1367310216 1791 ~13! 1.37
2.1312310216 4164 ~10! 1.11 2.1333310216 4224 ~10! 1.21
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Figure 8 shows the force computed with an angle of in
denceu542°. We plot the exact calculation~full line! and
the SALRS~dashed line! both forp polarization~no symbol!
ands polarization (1 symbol!. Once again, we see that th
SALRS is not adequate even near the surface. On the o
hand, in the exact calculation, the two polarizations sh
oscillations of the forceFz with periodl/2. However, there
is a large difference of magnitude of these oscillations
tween the two polarizations~see inset of Fig. 8!. To under-
stand this difference, we must recall that the sphere is a s
dipoles. When a dipole is along theZ direction there is no
propagating wave in this direction. But if the dipole is o
ented in theX ~or Y) direction, its radiation is maximum in
the Z direction. However, ins polarization all dipoles are
approximately, parallel to the surface, so there is an imp
tant radiation from the dipole in theZ direction and conse
quently between the sphere and the surface.

V. CONCLUSIONS

In this paper we have presented exact three-dimensi
calculations based on the coupled dipole method and an
lytical expression for the force on either a sphere or an i
nite cylinder, both in front of a flat dielectric surface. Th
results for electrically small bodies show that, whatever
polarization, in the case of a sphere, and inp polarization for
the cylinder, the force always has the same behav
namely, in the case of illumination under total internal r
flection, the particle is always attracted towards the surfa
A surprising result in the case when the illuminating beam
perpendicular to the surface and the object remains stuc

FIG. 7. Normalized force in theZ direction on a sphere with
radiusa5100 nm,l5632.8 nm, and«52.25. The light angle of
incidence isu50°. The full line corresponds to the exact calcul
tion with CDM-B, and the dashed line represents the static appr
mation.
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the surface is that the force is attractive due the interactio
the particle with itself, and therefore this object keeps stu
to the surface. However, when the object is far from t
surface, the force becomes repulsive, as one would have
pected.

For s polarization, the cylinder does not ‘‘feel’’ the pres
ence of the substrate. This is more noticeable for a propa
ing wave, namely, at angles of incidence lower than the c
cal angle. However, when an evanescent wave is create
total internal reflection, the force is attractive unders polar-
ization.

The scope of the static calculation for this configurati
has been validated. We have also shown the advantag
having an analytical form that shows the contribution of t
incident field on the particle, as well as that of the for
induced by the sphere~or cylinder! on itself, thus yielding a
better understanding of the physical process involved.

For bigger spheres, we have observed somewhat diffe
effects of the forces. Under the action of evanescent wa
the force is always attractive, but it always becomes rep
sive when it is due to propagating waves. Unlike the case
the small sphere, there is no point of zero force.
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FIG. 8. Normalized force in theZ direction on a sphere with
radiusa5100 nm,l5632.8 nm, and«52.25. The light angle of
incidence isu542°.uc . The full line corresponds to the exac
calculation with CDM-B, and the dashed line to the static appro
mation. The curves without symbol are inp polarization, and those
with the 1 symbol ins polarization.
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