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Evanescent light scattering: The validity of the dipole approximation

Patrick C. Chaumet, Adel Rahmani, Freerique de Fornel,and Jean-Paul Dufour
Laboratoire de Physique de I'UniverSitie Bourgogne ESA CNRS 5027,
Groupe d'Optique de Champ Proche, Facuttes Sciences Mirande,
Boite Postale 400, F-21011 Dijon Cedex, France
(Received 10 February 1998

In near-field optics the very concept of dipole is often used to represent either an elementary source or a
scattering center. The most simple and widely used example is that of a small spherical particle whose
polarizability is assumed to conform to the Clausius-Mossotti relation. While in conventional, far-field optics
this approximation is known to be valid provided that the object is much smaller than the wavelength, its
extension to near-field optics requires some precautions. Indeed, in the case of the scattering, by a spherical
object, of an evanescent field generated, for instance, by total internal reflection or by a surface polariton, the
strong-field gradient may increase the contribution to the polarizability of multipoles higher than the dipole.
Such high-order multipoles are seldom considered in near-field optics because they complicate considerably
any scattering calculation. In this paper we derive, for a spherical particle, the contributions of multipole orders
up to the hexadecapole. This serves to illustrate the relative importance of each order. Moreover, within the
framework of the coupled dipole method, we study, self-consistently, the problem of the scattering of an
evanescent field by the sphere. We show that, with an initial field decreasing exponentially, the dipole ap-
proximation can be misleadin§S0163-182@8)01428-3

I. INTRODUCTION E(r,w)=Eq(r,o)+[S(r,rg,o)

With the recent development of near-field opfiésnany TT(rrs,0)]ag(w)E(rs, w), @
models have been proposed to describe the scattering of g},
electromagnetic wave by some structure deposited on a sur-
face. An example of an elementary object often encountered, E(rg,w)=[1— 5(fs,fs,w)]_las(w)Eo(fs-w)- (2
either as such or within a discretization procedure, is that of ) i . . .
a subwavelength-sized spherical particle. A simple way tgvherel is the unit tensor. The quantityo(r, ) is the (ini-
calculate the electromagnetic response of such a sphere is#g!) field atr without the sphere being present(w) is the
consider a dipole whose polarizability is given by thedynamical dipolar polarizability of the spherers(w)
Clausius-Mossotti relation. While the great simplicity of this =2°[&s(@) —11/[e(w)+2] wherea is the radius of the
model explains why it is widely useti! it has the drawback SPhere, and () is its dielectric function. The tensdr is
to assume the initial field to be uniform within the sphere.the free-space field susceptibifignd S the field susceptibil-
Obviously, when the sphere is placed in an evanescent fieldfy associated with the surface. The derivation of the surface
this approximation may not hold anymore. We can refine thé@eld susceptibili.ty and the self—cpnsistent calculation of the
description of the particle with a multipole expansion of thefield are extensively developed in Refs. 10 and 11. As re-
polarizability® but we must then have clear indications as todards the optical response of the sphere, a more refined cal-
how to restrict the required multipole expansion in order to
describe efficiently the polarizability of the sphere. We shall 4
show that the importance of terms higher than the dipole in
the multipole expansion depends on the radius of the sphere vacuum
and on its dielectric function. In parallel to the multipole

calculation, we shall represent the sphere as an array of po-
larizable subunits arranged on a cubic lattice. Under some
precautions, the field calculation conducted with this method
a
k

\ Z
is considered to be very close to the exact solution and acts e
as reference for other calculations.

Il. MULTIPOLAR POLARIZABILITIES >

X

1
In this section, we study the field existing above a sphere (c;g:zizs:s,zs 0

deposited on a plane surface of a transparent medium, illu- J E,

minated in total internal reflectioffFig. 1). Within the dipole 0

approximation, the field created aty a sphere centered at

r«=(0,0z) is given by the self-consistent equation FIG. 1. Schematic of the configuration considered in this paper.
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culation can be performed but it requires a knowledge of the When the sum in Eq(5) is stopped at thepth order, it
local-field gradients at the site occupied by the sphere. Thismeans that the derivatives, higher than b order, of
can be realized by taking a series of dynamical multipolag;(z’',w) for z’ =z, are equal to zero, and th&s(zs,w) can

polarizabilities® be written as a polynomial of degrge To find the coeffi-
% 1 cients of this polynomial, we differentiate E(b) p times
E(r,w):Eo(ﬁwHZ PSRV with respect toz. We obtain p+1) equations with the
p=1 [(2p—D)!!] aforementioned coefficients as unknowns. This system is
xVﬁ?il)[S(r,r’,w)+T(r,r’,w)](rr:rs) solveq to findEi(zs,g)) qnd it.sp sucpessive derivatiyes. On
(-1 , replacing these derivatives in E@) it becomes possible to
XalP () V) HE(r @) =1y (3)  computeE;(z,w). This method requires us to compute the

successive derivatives dioi(z,co), hence, it amounts to
make a Taylor expansion of the initial field z2& z; doing

so leads us to a more correct form of the field inside the
sphere.

whereV, is the gradient operatoagp)(w) is the multipolar
polarizability, defined byf~14

N i N
es(w)+ ——
P The coupled dipole metha@DM) initially introduced by
Solving this self-consistent equation up to very high or-Purcell and Pennypackeéris a very useful method to study
ders is difficult as it has been pointed out in Ref. 3 where théh€ scattering electromagnetic field by an arbitrary object
authors restricted their work to the dipole approximation.réPresented by a cubic array Nf polarizable subunits. An
This difficulty is the major reason why this method is seldomexternal elec_trlc field induces for each subunit a dipole mo-
used beyond the dipole approximation and why the mode&€ntpi(») given by
higher than the quadrupole have never been used in a self- N _
consistent procedur@.In order to gain a clear physical in- pi(w)=ai(w)E(r;,0), @
sight, without obscuring the discussion with too much cum-wherer; is the position of the sit¢, E(r;,w) is the electric
bersome calculations, we shall make two approximationdield at the sitei due to the incident field and the fields
before solving Eq(3). The first is based on the fact that for created by all the other dipoles locatedr at
an evanescen(initial) field, the variations of the field are

(4)
Il. THE COUPLED DIPOLE METHOD

. i . N
very important alongz, hence only the successive deriva- _
tives of the field with respect to will be taken into account. E(ri o) =Eo(ri "")”LJZI [S(ri.rj.@)
The second is not really an approximation but rather a re-
striction: we only study the field along theaxis. In this case +T(rrj,0)]aj(0)E(r), o). (8
the point of observation lies on the axis of revolution of the o i
system sphere plus substrate and the ten&end T) and The _polar|_zab|l|ty aij(w) conforms to the Clausius-
their successive derivatives with respect to theoordinate ~ Mossotli relation:
are diagonal. This restriction, together with the previous ap- 303 £(w)— 1
proximation, allows us to write Eq3) as a set of three ai(w)= R et a— 9
independent equations, each of which involves only one of 4m eg(w)+2
the three components of the field: whered is the spacing lattice. We solve the linear system Eq.
® 1 (8) to obtainE(r;,w) at each sité/ Hence, the field at the
Ei(zs,w)=Eoi(zs,cu)an:1 [(2p——1)”]2 positionr is given by
P VS (2,2, ) N
x( — T E(r,w)=Eo(r,w)+jZl[S(r,r,-,w)
4 =z
IPVE(Z, o) +T(r,rj,0)]aj(w)E(rj,w). (10

X a(sp)(w)(w) . (5
7'=z Using the Clausius-Mossotti relation implies that in each
_ ) , cell of the discretization lattice the electric field is uniform.
with i=x,y,z, and thei component of the field alon®z,  oying 1o the discretization of the sphefee use the value of
outside the sphere, becomes the initial field at each site,) we take into account the varia-
- 1 tion of the initial field inside the sphere. The smaller the
= W spacing lattice parameter, the closer to the exact solution one

gets.
x(ﬁ(p”[Sn(z,z"w”“‘(z'z,’w)])

Ei(z,w)IEoi(Z,w)-i-

gz’ P~ IV. RESULTS AND DISCUSSION
) dPVE (7, w) In all the calculations presented in this paper the lower
Xag (o) — 1 (6)  mediumz<0 is glass (=1.5) illuminated in total internal
z'=z4 reflection atd=60° in p polarization with|Eq|=1 (Fig. 1).
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Since for isotropic materials the penetration depth of the field 0.9 T - T
depends only on scalar parametérgavelength, optical con- 0.8 — d=2857nm (179) |
stants, and angle of incidencthe three components of the A --- d=13.33nm (1791)
field have exactly the same behavior. For the sake of sim- 0-7‘; ------ d=10.00nm (4224)|]
plicity and brevity we shall henceforth consider only the o\ | d=9.52nm (4945)

component of the electric field. In all the figures, except the
last one, the magnitude of tllecomponent of the fieldE,|

is plotted along theéD, axis betweerz=2a (the top of the
spherg¢ andz= 3a since it is near the sphere that the contri-
butions of high multipole orders become important.

We first consider a dielectric sphefglass,e=2.25 with
radiusa=100 nm. The wavelength of the incident ligtih 04 . . . .
vacuum is 633 nm. Let us consider the CDM computation 00 220 240 260 280 300
for four values of the spacing lattice parameter. When the @ z (nm)
field is computed far from the sphere={ 3a), the first three A : :
curves(for d=9.52, 10.00, and 13.33 nm, respectiyedye E --- d=13.33nm (1791)
almost merged; only the last ond28.57 nm) is slightly d=10.00nm (4224)
above the three othef$ig. 2(@)]. Such a behavior for a d=9.52nm (4945) |1
relatively large value ofl is not surprising since this value of
d that corresponds to 179 dipolar subunits does not corre- | »
spond to a suitable simulation of a dense spherical particle. If ) S RENY
we focus on the first three curves, we note that very close to ~
the sphere 4~2a) the observed behavior depends strongly odski el
on the value ofl. For an observation point very close to the Tl e
sphere the electric field conveys the discrete character of the
sphere. But besides this general feature, two configurations 0 , , ,
are possible. First, the discretization is such that@zeaxis 00 205 210 215 220
corresponds to a row of the latti¢ee., dipolar subunits are (0) z (nm)
located on theDz axig). In this case, since in Fig.(B) the

field is_ computed alon_g th@z axis, when the point of ob- puted for different values of the spacing lattidefor a dielectric
servation(where the field is computedyets closer to the sphere ¢.=2.25) with radiusa=100 nm. The number beside the

sphere, it approaches the topmost dipolar subunit. As thgyjye ofd is the number of dipoles used for the CDM computation.
distancer between them is reduced, the contribution of the(y) is an enlargement df).

free-space field susceptibilityvhich varies as tF for short

distancep to the electric field diverges. This explains the .

dramatic increase of the field for=28.57, 13.33, and 9.52 the sph_ere (6:2<2a) as well as the result c_)f polync_)mlal
expansion fop=1,2,3,4(the casgp=1 for which the field

nm. The other possibility is that the mesh is such that N9 uniform inside the sphere obviously corresponds to the
dipole is present on th€@z axis. Hence, as the point of P y P

observation gets closer to the sphere and the discrete natu éaUS'US'MOSSOIt' static approximatjorivhen the field is

of the latter appears, one is confronted with “an absence 0%0mputed just above the sphere it is c_Iear that th_e contribu-
. . . _fion of the upper part of the sphere will be more important

matter” that entails a strong decrease of the computed fiel L

an that of the lower half. Therefore, whenever the initial

close to the top of the spherd{ 10.00 nm). Clearly, as one field is overestimatedunderestimatedin the upper part of

gets closer to the sphere, the smadlleithe later the discrete Pper p

nature of the sphere will be unveiled by the field. As an

empirical criterion concerning glass, the result of the compu-

0.55¢

IE |

z
=
n
S

FIG. 2. Modulus of thez component of the electric field com-

tation of the field is assumed to be converged #er2a 08 — p=l
+d. For instance, if we wish to compute the field at 0.7} pr_
=215 nm, a spacing latticd=13.33 nm is sufficient, and o P:ﬁ
we can see clearly on Fig(i® that takingd=10.00 nm, or 061 P=A;
9.52 nm does not lead to any significant improvement. H_JZ 5

A similar field computation from the standpoint of a mul- "
tipolar expansion is given in Fig. [Egs.(6) and Eq.(5) for 0.4}
p=1,2,3,4. We note that whem increases the result con-
verges toward a limit value and the correction brought by 0.3

increasingp of unity becomes less significant. The relative
positions of the four curves is a consequence of the hypoth- . . . .
esis made on the initial field. Indeed, if we recall what has 200 220 240 (nm)250 280 300

been said in Sec. Il, performing a multipolar expansion up to )

order p amounts to make a polynomial expansion of the FIG. 3. Same as Fig. 2 but the computation is done with the
initial electric field at the center of the sphere. We havemultipole expansion. On all the figures, the valugdhdicates the
plotted in Fig. 4 the modulus of thexactinitial field inside  largest order included in the multipole expansion.

0.2} aSS
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FIG. 4. Modulus of thez component of the initiakapplied FIG. 5. Same as Fig. 2. The solid line is computed with CDM

electric field inside the sphere. The thickest line is the exact initialg=13.33 nm), the dotted line with multipolar expansion for
field inside the sphere. The four other curves are the terms of a4, and the dashed line with CDMiIE 13.33 nm) with the form
Taylor series of the initial field. of the initial field given by the hexadecapole approximatisee
Fig. 4).

the sphere by the polynomial expansion, the computed field ) o )
will also be overestimatedunderestimated This is why WO approaches give similar results. As regards the dipole
with the multipolar expansion, the relative magnitude of the@PProximation, however, it gives an electric field larger than
field computed above the sphere is a reflection of the relativé® guadrupole approximation and this even far from the
magnitude of the initial field. sphere. Once again this demonstrates that the assumption of

Now, let us focus our attention on the order of the multi-an initial field unifor_m over the sphere is misleading, al-
pole up to which the expansion must be done to obtain &10ugh the sphere is relatively smalve do not present
converged result for the field. Close to the sphere, the curve@urves for the casa=25 nm for the conclusions are identi-
corresponding tg=3 andp=4 (Fig. 3) are close and this cal. . .
means that considering the octupole mode is sufficient. Far- W& now consider the case of metals. Metallic spheres
ther from the sphere, the quadrupole order becomes suffWith a radius around 25 nm have been extensively consid-
cient(the curves merge fqu=2,3,4): on the other hand, the ered in the literature. For an incident radiation in the visible
dipole approximation entails an overestimation of the fieldSPectrum, such small spheres made of noble metals can sup-
even at relatively large distances from the sphere; the hyport plasmon resonances, I_eadlng to an enhancement of the
pothesis of an initial field uniform over the sphere is toofi€ld around the sphere. This phenomenon has been used to
crude for this configuration. mvesngatg th_e modification of the optical properties and the

At this stage we should recall that to solve E¢S. and chafactelrgzlgtlon of adsorbed molecules on metal
(6) we made an approximation that consisted in taking intoF’art'Cl_eSéO'_ ) 3the stimulated emission radiative spectroscopic
account only the derivatives of the field with respect tozhe |_nte'nS|t3£,4 and the modification of the fluorescence
coordinate. To illustrate the influence of this assumption, weifetime.” The interested read_er2|ss referred to the reVIEWS by
have plotted in Fig. 5 three curves. The first ddetted ling ~ Chance and c_o-worke?é,Metlu, and Moskovits™® Very
is the multipolar expansion fqv=4. The second onésolid recently, .Iocahzed_ plasmgn reson:_;mces8 have also been ob-
line) corresponds to a CDM calculation with=13.33 nm  Seérved with near-field optics techniqueés. _ o
and gives the correct field fa>2a+d. This result allows The field enhancement above a metallic sphere illumi-
us to estimate the error brought by the approximation done ifjated in totaé internal reflection has been addressed l_)y sev-
the multipolar expansion, and to show that with the latter®"@ authors:® Usually, they consider the spheres as dipoles
method the field is always overestimated. The third curve Clausius-Mossoftiand they compute the field at distances
(dashed ling is still computed with the CDM, but at the
location of each subunit, the initial field as given by the
hexadeca-pole approximati@Rig. 4). One can see then that
the multipolar curves tend towards this limit. This establishes
that the approximation made to solve E@S) and (6) (to
consider only the derivatives with respectzpamounts to
neglect the lateral variation of the initial field inside the
sphere. Hitherto, we have considered a relatively large
sphere in order to illustrate clearly the difference between the
CDM and the multipolar expansion. If now we consider a
smaller sphereg=50 nm), the quadrupole approximation 0
(p=2) is sufficient and gives a result close to the CDM foo 110 20, (nm)130 140 150
calculation(Fig. 6). This is a normal behavior: owing to the
smaller size of the sphere, the spatial variations of the initial FIG. 6. Electric field computed for a sphere of glésadiusa
field within the sphere are less important and as expected the50 nm with the multipolar expansion and the CDM.
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TABLE I. Energy of the resonance of the sphere computed with 6
the multipolar expansion fqp=1,2,3,4 and CDM. — p=1
sk --- p=2]
Method p=1 p=2 p=3 p=4 CDM 2N | p=§
........ p=
Resonance ineV  2.3696 2.3680 2.3679 2.3679 2.3249 i l
EN
3.

sometimes as small as 1 or 2 nm. For such short distances we
shall show that while the dipole approximation does not en- sl
tail any significant modification of the resonance energy, it
leads to an important error on the value of the field. Usually,

the spheres are made of gold or silver. In this paper we shall @ 5o 55 60 - (nm) 65 70 75
consider spheres of gofd.If we wish to get a sound result '
for the field very close to the sphefaround 1 nmy the 40

parameted must be very small. In order to keep the amount 35
of computer memory and the CPU required to do the CDM
computation reasonable, we used an adaptable discretization

grid®® where the parametet is taken very small on the top =25

of the sphere. Incidentally, we might mention that in the case %20

of metals the convergence of the CDM computation is diffi- 2
SIS

cult to perform. This point will be discussed elsewhere. The
energies of resonance as computed from the different meth- [T
ods are given in Table I.

The resonance for an isolated sphere lies at 2.3895 eV 3
[this value corresponds to the maximum value for the polar- 0 ; - s .
izability |ag(w)|]. As the sphere is brought close to the sur- (b) 20 33 602(nm) 6 70 7

face, the electromagnetic coupling between the sphere and
the substrate increases, entailing a well-known redshift of the FIG. 7. Electric field computed for sphere of gold at 2.3696 eV
resonancél Actually, as higher values g are included in with radiusa=25 nm. (a) electric field computed either with the
the multipolar expansion, the electromagnetic coupling beCDM [with 12579(circle) and 22361(squar¢ dipoleg or the mul-
tween the sphere and the surface increases, which explaiHBc"e expansi_on(b) relative difference in percent between the mul-
the fact that the largep, the lower the resonance energy. tiPole expansion and the CDNE2361.

On the other hand, it must be borne in mind that in the
case of the multipolar expansion, irrespective of the ordepetween the field as derived from the octupope=@) and
(p) up to which the expansion is performed, the computedrom the hexadecapole 4) approximations we can notice
field is always a function of the initial fielgand of its de- that the multipole expansion is not exactly converged near
rivatives at the center of the sphere only. When the CDMthe sphere. On the other hand, far from the sphere, the octu-
approach is adopted, many subunits of the discretized sphep®le approximation constitutes a relevant approximation.
are located close to the surfa@ibe closest ones lie a/2), ~ However, unlike the case of a dielectfiglass sphere, the
and the couplingwhich is described in a more realistic way difference between the CDM and the multipole expansion
by the CDM than by the multipolar expansjdnetween the remains significant. This is once again due to the approxima-
sphere and the surface is strong. This explains why the CDNion we made to solve Eqg6) and (5). The discrepancy
gives the largest value for the redshift. However, the differ-between the CDM and the multipole expansion is much more
ence between the shifts predicted by the dipole approximaPronounced in the metallic case than in the dielectric case.
tion (Clausius-Mossottiand the CDM is only of 0.04 eV. This is an expected result. Indeed, for the gold sphere, there
Thus we can conclude that the dipole approximation does nds an enhancement of the field induced by the plasmon phe-
cause a significant error for the resonance energy. We shaiomenon; hence the respective gradiésmtial derivatives
now study the implications of the various approaches on théf the field are larger, on the one hand, alongztaxis, thus
magnitude of the field. higher orders must be included in the multipole expansion,

The field is computed for the resonance of the dipoleand, on the other hand, alongor y, which makes the ap-
(2.3696 eV. We plot in Fig. 7a) |E,| as a function ok. As ~ proximations used to solve the equations slightly less valid.
regards the multipole expansion, the same valuep ¢p  As regards the simplest approach based on the dipole ap-
=1,2,3,4) are considered, while the CDM calculation is perfroximation[which does not rely on the approximation made
formed for two different numbers of dipolar subunits, i.e., t0 solve Egs(5) and(6) for p>1] at a distance of 2 nm from
two different sizes of the lattice spacimgin order to dem- the top of the sphere, the relative difference, in comparison
onstrate that the convergence of the CDM calculation igvith the CDM, is of the order of 20%25% at 1 nn.
achieved(the thinnest of the two discretization grids corre-
sponds tod=0.41 nm at the top of the spheréVe plot in
Fig. 7(b) the relative difference, in percent, between the field
computed with the multipolar expansion and the CDM cal- We have presented a theoretical study of the electromag-
culation with 22 361 dipoles. By looking at the difference netic response of a minute spherical particle in finite geom-

V. CONCLUSION
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etries. We have investigated the scattering of an evanescespectral position of the plasmon resonance is required, the
wave by such a particle deposited on a surface, includingipole approximation is valid. However, if one seeks for
both the far-field and the near-field components of the fieldyuantitative values of the field, the multipole expansion has
in a rigorous, fully retarded description of the interaction. Ato be performed up to high orders; for the dipole approxima-
knowledge of the dynamical electromagnetic response of thon the behavior observed for dielectrics is enhanced by the
surface together with the use of the coupled dipole methogjasmon resonance phenomenon and the field above the
allowed us to study the interaction between the sphere anghhere is strongly overestimated. In this paper we did not
the field in a realistic way. On the other hand, we have conyake an extensive study of the influence of the various
sidered the contribution of several multipole orders to thephysical parameters that play a role. Actually, any modifica-
dynamical polarizability of the particle. In order to avoid the tion of the penetration depth will have a consequence on the
too cumbersome calculations arising from the multipole pic-,

S ; ~way that the multipolar response of the sphere should be
ture, we have neglected the variations of the field and its y P P b

: ) : computed and some other features may be observed. Simi-
successive gradients in a plane parallel to the surface. How- . the d ini f the int i ¢ bigtar in-
ever, this approximation does not prevent us from observin grly, the description ot the Interaction ot an o j& T in
the convergence of the multipole expansion when computin ta.mce., a spheyavith .the highly nc_)nhomogeneous f'el.d ex-
the field above the sphere. For dielectric spheres whose r Sting mn the near field of a microscopic source, 1.€., a
dius is smaller than 50 nm the quadrupole approximation igecaylpg atom or mo!ecule, may 'bengflt from a m.u|t|po'|ar
sufficient and very close to the CDM result. On the other_anaIySIS. Further studies of near-field |ntera(_:t|o_ns involving
hand, the dipole approximation systematically overestimateihomogeneous modes of the electromagnetic field are under
the field above the sphere. In the case of metals, if only th@r0gress in our group.
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